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Abstract 

 Control charts are powerful tools used by many industries to monitor the quality of processes 

and detect special cause of variations. The Shewhart 𝑋𝑋� chart is one of the most popular control 

charts to monitor the process mean, i.e., to detect a change from an in-control (IC) to an out-of-

control (OOC) situation. In its original formulation, if the actual process mean is different from 

the specified IC level, the process is considered to be in an OOC state. However, in many 

practical situations, the process might still be capable from a practical point of view even if the 

process mean may slightly differ from the IC level.  In such situation, the Modified and the 

Acceptance Control Charts are the appropriate tools to monitor the process mean. To design 

these charts, usually, the IC process standard deviation must be estimated from reference 

samples. In this paper, we show that this estimation has a negative impact on the performance 

of the Modified and the Acceptance Charts. Solutions to this impact are investigated. 

Key Words: Type I and Type II Errors, False Alarm Rate, Control Limit Adjustments, 

Guaranteed In-Control Performance, Average Run Length 

 

1. Introduction 

 

The Shewhart 𝑋𝑋� chart is one of the most used tools to monitor the mean of some 

processes quality characteristics in many manufacturing industries. Its main purpose is sending, 

with great probability, an alarm to the manager every time that the in-control process (IC) 

becomes out-of-control (OCC), i.e., detect any shift from the in-control mean level  as soon as 

possible so that the manager can intervene in the process in order to correct it, avoiding the 

production of many nonconforming items. 
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 However, sometimes small shifts on the process, perceived over time, may be of a little 

or no practical importance (WOODALL, 1985). In this case, there is no necessity of any 

intervention, which may save some money. Mohammadian and Amari (2012) and Oprime and 

Mendes (2017) expose that in high capable processes, for example, some changes on the mean 

do not negatively affect its quality in terms of production of defective units, this occurs because 

the natural dispersion of the process is significantly smaller than its specification limits. Thus, 

the process mean might to vary inside a range, not being necessary to keep this one fixed on the 

target value.  

Because of that, the Shewhart 𝑋𝑋� chart is not the most suitable tool to monitor high 

capable processes, note that in these cases a lot of signals may be issued without the process 

should be considered rejectable, which is undesirable. Therefore, the better option is using the 

Modified and/or the Acceptance Charts, which allow the process mean to vary inside a specific 

range, determined by the specification limits, and only genuinely important changes are 

detected. Woodall and Faltin (2019) highlights that false alarms should be averted and, for 

them, even though the Modified and the Acceptance Chart have been developed a long time 

ago (in the 50’s), they may be of a great value in practice nowadays. 

The goal of the Modified and the Acceptance Chart is concerned on accept or reject a 

process according to the rate of nonconforming items. The main difference between the 

Modified Chart and the Acceptance Chart is that the first one controls the probability of the 

Type I error (α), and the second one is designed to control the probability of Type II error (β).  

In this paper it will be provided some new insights regarding the Modified Chart, 

considering the known and unknown parameters cases. The Modified Chart has been chosen 

because it is more common, in practice, designing a control chart to monitor the probability of 

Type I error (α). However, if the reader wants to replicate the results of this work to the 

Acceptance Chart, it is completely possible and it is not complex. 

 It is interesting to say that we will analyze the effects of the parameter estimation on 

the performance of this chart (the measurement analyzed here is the False Alarm Rate – FAR) 

and some possible solutions to these effects are being investigated. 

Finally, it should be said that the present paper is a part of a larger work that we are 

developing, where we also analyze another performance measure, the Average Run Length 

(ARL), and we examine the two main performance perspectives in the current SPC literature: 

The Unconditional and the Conditional Perspectives (see Jardim et al. (2019a)). 

 

2. Modified Control Chart (case K) 
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As seen in the Introduction, the Modified Control Chart is useful for capable processes 

whose mean is allowed to vary inside a range (delimited by two extreme values) without 

compromising process quality (in terms of process capability). We call these values as the 

minimum and maximum tolerated limits for the process mean, defined respectively by 𝜇𝜇𝐿𝐿 (the 

minimum tolerated mean) and 𝜇𝜇𝑈𝑈 (the maximum tolerated mean).  

Now, consider X the random variable of a high capable process whose mean should be 

monitored. Assume that X follows a normal distribution, i.e., 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎), where 𝜇𝜇 and 𝜎𝜎 are 

respectively the actual mean and variance of the process. Considering that the Modified Chart 

is used to control this process, we have that, instead of the in-control situation be represented 

just when 𝜇𝜇 = 𝜇𝜇0 (where 𝜇𝜇0 represents the target for the process mean) as occurs on the 

Shewhart 𝑋𝑋� chart, the process is considered acceptable (or in-control) when 𝜇𝜇𝐿𝐿 < 𝜇𝜇 < 𝜇𝜇𝑈𝑈 

(where 𝜇𝜇0 is the exact middle point between 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑈𝑈). So, the process is classified as rejected 

(or out-of-control) when 𝜇𝜇 < 𝜇𝜇𝐿𝐿 or 𝜇𝜇 > 𝜇𝜇𝑈𝑈.  

The 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑈𝑈 must be chosen according to the maximum tolerated rate of 

nonconforming units (denoted here by δ), which is defined by the specification limits. In other 

words, δ is the maximum allowed probability of X being smaller than the lower specification 

limit (LSL) or greater than the upper specification limit (USL). Figure 1 illustrates the situation 

when the process is running at the tolerable limits (𝜇𝜇𝐿𝐿 or 𝜇𝜇𝑈𝑈), which means that the process is 

producing the maximum percentage allowed of nonconforming items (δ). Moreover it is 

exposed the acceptable IC range and the rejected (or OOC) range. 

 
Figure 1 – The acceptable and rejectable range of Modified Chart based on the tolerable 

nonconforming items rate 

In addition to the tolerable mean, it can be said that there are two others mean that 

represent a specific intolerable situation where the manager, with great interest, desires to reject: 

they are the lower intolerable mean (𝜇𝜇1,𝐿𝐿) and the upper intolerable mean (𝜇𝜇1,𝑈𝑈). Note that 

𝜇𝜇1,𝐿𝐿 < 𝜇𝜇𝐿𝐿 and 𝜇𝜇1,𝑈𝑈 > 𝜇𝜇𝑈𝑈. These mean are defined according to a specific rate of nonconforming 
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units (γ) that it is desired to reject with a large probability (1 − 𝛽𝛽). However, the process 

condition (if should be accept or reject) must be defined only by the tolerable mean, this means 

that even that the process mean has not exceed one of the intolerable mean, if it is outside from 

de acceptable range, the process must still be considered OOC. 

According to Freund (1957) the tolerable and intolerable mean can be specified by some 

past experiences or calculated from the equations bellow. 

 𝜇𝜇𝑈𝑈 =  𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑧𝑧𝛿𝛿 ∗ 𝜎𝜎0 1) 

 𝜇𝜇𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑧𝑧𝛿𝛿 ∗ 𝜎𝜎0 2) 

 𝜇𝜇1,𝑈𝑈 =  𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑧𝑧𝛾𝛾 ∗ 𝜎𝜎0 3) 

 𝜇𝜇1,𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑧𝑧𝛾𝛾 ∗ 𝜎𝜎0 4) 

 As already said, the Modified Chart is focused on controlling the probability of the Type 

I error (α), i.e., controlling the probability of the process being between the tolerable mean and 

the chart emits erroneously a signal (𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝜇𝜇𝐿𝐿 < 𝜇𝜇 < 𝜇𝜇𝑈𝑈)). Remember that a signal 

is given every time that a sample mean falls outside from one of the control limits 

(CHAKRABORTI, 2000). 

It is known that there are many possible positions for the process mean inside the 

acceptable range and that the 𝜇𝜇0 is the exact middle point between 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑈𝑈. So, to any position 

assumed by the mean inside this range there is a new possibility of a false alarm, in other words 

there are many possible FAR’s (or α’s) for the Modified Chart. However there is a minimum 

probability of a false alarm that corresponds to the moment when the process mean is 

centralized on the target value, i.e., 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃(𝑋𝑋� < 𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑋𝑋� > 𝑈𝑈𝑈𝑈𝑈𝑈 |𝜇𝜇 = 𝜇𝜇0), and there is 

a maximum value which refers to the moment on what the process mean equals to one of the 

tolerable mean, i.e., 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃(𝑋𝑋� < 𝐿𝐿𝐿𝐿𝐿𝐿|𝜇𝜇 = 𝜇𝜇𝐿𝐿) or 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃(𝑋𝑋� > 𝑈𝑈𝑈𝑈𝑈𝑈|𝜇𝜇 = 𝜇𝜇𝑈𝑈). The 

Panels a and b from the Figure 2 illustrate the 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and the 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 respectively.  

The control limits of the Modified Chart are calculated according to 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚, because 

the manager is concerned about monitoring the maximum probability of occurs an alarm when 

the process is still acceptable. The equations below describe the upper and lower control limits 

(UCL and LCL, respectively) for this chart. 

 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝜇𝜇𝑈𝑈 + 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎0
√𝑛𝑛

= 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑧𝑧𝛿𝛿 ∗ 𝜎𝜎0 + 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎0
√𝑛𝑛

 5) 

 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜇𝜇𝐿𝐿 − 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎0
√𝑛𝑛

=  𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑧𝑧𝛿𝛿 ∗ 𝜎𝜎0 − 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎0
√𝑛𝑛

 6) 
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Figure 2 – The moment when 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 occurs 

Let’s consider 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 3, the most common 3-Sigma Limits. It is presumed that we 

know the standard deviation of the process (𝜎𝜎0) and that its mean has moved to the lower 

tolerable mean (𝜇𝜇𝐿𝐿). Given a capable process, we have: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃�
𝑋𝑋� − 𝜇𝜇𝐿𝐿
𝜎𝜎0 √𝑛𝑛⁄

<
𝜇𝜇𝐿𝐿 − 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎0
√𝑛𝑛

− 𝜇𝜇𝐿𝐿

𝜎𝜎0 √𝑛𝑛⁄
� = 𝑃𝑃�𝑍𝑍 < 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚� 

= Φ(−3) = 0.0027 

7) 

Note that, in this case, the Equation to find the 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 from the Modified Chart is 

equivalent to the Equation of the unique false alarm rate (FAR) of the one-sided 𝑋𝑋� control chart 

(remember that the in-control process mean can assume only one value in this case). 

 

3. Modified Control Chart (case U) 

Until this moment we have supposed that the standard deviation of the process was 

known. However, in practice, most process have its parameters - mean and/or standard 

deviation - unknown, because of that it is necessary to estimate them before the charts can be 

set up and used (CHAKRABORTI, 2006). 

The parameter estimation is made from “m” samples of size “n”, which ones are taken 

from the process during the Phase I of the Statistical Process Control (SPC) (JARDIM; 

CHAKRABORTI; EPPRECHT, 2019) (SALEH, et al, 2015) (JONES-FARMER et al, 2014). 

Due to the fact that the data are gotten from samples and considering that each user can get 

Panel (a)

Panel (b)

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋�𝜇𝜇0𝑳𝑪𝑳 𝑼𝑪𝑳𝜇𝜇𝐿𝐿 𝜇𝜇𝑈𝑈
Acceptable IC Range OCCOCC

𝑋𝑋�𝜇𝜇0𝑳𝑪𝑳 𝑼𝑪𝑳𝜇𝜇𝐿𝐿 𝜇𝜇𝑈𝑈
Acceptable IC Range OCCOCC

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
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different samples with different parameters values, it is reasonable to conclude that the 

parameter estimation is subject to some variability, which Saleh et al (2015) call by practitioner-

to-practitioner variability. This variability compromise some operational properties of the 

control charts including the FAR (CHAKRABORTI, 2006). 

At the unknown parameter case (case U) the maximum false alarm rate will be 

conditioned on the estimator of the in-control process standard deviation (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜎𝜎�)). The 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is a random variable which depends from estimative to estimative, because of that it 

can be very different from the desired value. This means that for 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 3 (the most 

common 3-Sigma Limits) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 may be very different from 0.0027. 

The estimator that we use and recommend in this work is the pooled sample standard 

deviation (𝑆𝑆𝑝𝑝). This is because Mahmound et al (2010) showed that the 𝑆𝑆𝑝𝑝 is preferable to the 

more traditional estimator: 𝑆𝑆̅ 𝑐𝑐4⁄ . The 𝑆𝑆𝑝𝑝 is calculated by the square root of the average of the 

sample variance of the Phase I samples (𝑆𝑆𝑝𝑝 = �1
𝑚𝑚
∑ 𝑆𝑆𝑖𝑖2𝑚𝑚
𝑖𝑖=1 , where 𝑆𝑆𝑖𝑖2 = 1

𝑛𝑛−1
∑ �𝑋𝑋𝑖𝑖,𝑗𝑗 − 𝑋𝑋�𝑖𝑖�

2𝑛𝑛
𝑗𝑗=1 ). 

So, we can write the formula of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 as it is shown on the equation 7. 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿 < 𝑋𝑋� < 𝑈𝑈𝑈𝑈𝑈𝑈|𝑆𝑆𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 = 𝜇𝜇𝐿𝐿 𝑜𝑜𝑜𝑜 𝜇𝜇 = 𝜇𝜇𝑈𝑈) 7) 

 Since 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is a random variable, it is important to have knowledge of its 

probability distribution. The cumulative distribution function (c.d.f.) of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the 

probability of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 being lower than any value on its distribution (called here by 𝑡𝑡), in 

others words, 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡). 

It is natural to think that the calculation of 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶max(𝑡𝑡) is get through the distribution of 

the standard deviation estimator (𝑆𝑆𝑝𝑝), but it is very complex. An easier way to calculate 

𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶max(𝑡𝑡) is through the distribution of Y, a variable that is function of the pooled sample 

standard deviation (𝑌𝑌 = 𝑚𝑚(𝑛𝑛 − 1) 𝑆𝑆𝑝𝑝2 𝜎𝜎02⁄ ), which follows a much known distribution – the 

central chi-square distribution with 𝑚𝑚(𝑛𝑛 − 1) degrees of freedom (𝜒𝜒𝑚𝑚(𝑛𝑛−1)
2 ). Thus, the c.d.f. of 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 can be written in function of Y, as shown at the next equation. 

𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌)(𝑡𝑡) = 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡)

= 1 − 𝐹𝐹𝜒𝜒𝑚𝑚(𝑛𝑛−1)
2 �𝑚𝑚(𝑛𝑛 − 1)�−

Φ−1(𝑡𝑡)
𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

�
2

�               0 ≤ 𝑡𝑡 ≤ 1    

8) 

 Formula 8 is equivalent to the c.d.f. expression of the false alarm rate for the one-sided 

𝑋𝑋� chart in the case where only the in-control process standard deviation is estimated and when 

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 is replaced by 𝐹𝐹𝐹𝐹𝐹𝐹. 
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 From the formula 8 it is possible to draw the curve of 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌) parameterized in 

function of “m”, as presented on the Figure 3. 

 
Figure 3 – C.D.F. of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 when 𝑛𝑛 = 5 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0027. 

Note on Figure 3 that the vertical line shows the nominal false alarm rate (𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 =

0.0027). It is easily to observe that the conditioned false alarm rate (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) is directly 

related with the number of samples collected from process on the Phase I of the SPC (m). In 

other words, as “m” increases, the c.d.f. curves of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 get closer to the vertical line, 

meaning that the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is likely to be not much different from 0.0027. However, when 𝑚𝑚 

is small, the chances are high that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 being greater than the nominal value (from Figure 

3 we see that when 𝑚𝑚 = 10, there is a 40% chance that the conditional false alarm rate is 48% 

higher than the nominal 0.0027). 

To provide further insight, at Figure 4 we display the p.d.f. of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚), 

which was calculated taking the numerical derivatives of the corresponding c.d.f. The 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  

plot shows that the distribution of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is extremely right skewed when “𝑚𝑚” is small. This 

also shows that there is a large probability of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑥𝑥 being substantially larger than the 

nominal value.  
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Figure 4 – P.D.F. of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 when 𝑛𝑛 = 5 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0027. 

 Furthermore, it is interesting to analyze the expectation and the standard deviation of 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 to better understand what was presented on the Figure 4 (look Table 1). 

 
Table 1 – Numerical analyzes of the effects of the parameter estimation on the false alarm 

rate 

 Beyond the expectation and the standard deviation of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, Table 1 presents two 

others analyzes of the effects of the parameter estimation on the false alarm rate, they are: the 

difference between the expected value of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and the nominal value (𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚); and the 

probability of  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 being upper than the nominal value. 

 It was observed that as the number of samples collected on Phase I (m) increases, the 

expectation of  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 gets closer for than nominal value (see the second and the third 

columns of Table 1). If we pay attention on the forth and fifth columns, we will observe that 

the dispersion of the process and the probability of  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 of being upper than the nominal 

value decrease with increasing of “m”, what means that the p.d.f. of  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 becomes more 

symmetrical (less skewed) getting closer from a normal distribution.  

Concluding, when the standard deviation is estimated on the Modified Chart, to increase 

the chances of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 to be similar from the false alarm rate obtained when sigma is known, 

m
        x

10 0.0041 52% 0.0039 53%
20 0.0032 19% 0.0020 52%
50 0.0030 11% 0.0013 51%
100 0.0028 4% 0.0009 51%
500 0.0027 0% 0.0004 50%

𝐸(𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) 𝑈𝑈𝐷(𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) 1−𝑃𝑃(𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 < 0.0027)𝐸(𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
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it is necessary to collect quite a large number of samples on Phase I (such as 500), which is 

unviable or even impossible. But if it is taken a small number of samples (such as 10 or 25) the 

probability of having more false alarms is significantly big. Because of that it is necessary to 

find the best way to minimize the effects of the parameter estimation on the  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ensuring 

a reasonable number of samples. 

More recently, several authors recommended adjusting the control limits of the 

Shewhart 𝑋𝑋� chart by finding some adjusted limit factor (𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) so that 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑝𝑝, while 𝑝𝑝 = 85%, 90% 𝑜𝑜𝑜𝑜 95%. This is known as the Exceedance Probability 

Criterion (proposed by Albers in 2005) and it also relates with the theory of Tolerance Intervals. 

Nevertheless we are still investigating this adjustment for the Modified Control Chart. 

 

4. Conclusions 

The Modified Control Chart is an interesting tool to control high capable processes, 

cause it allows some variation of the process mean, which is defined so that the production of 

nonconforming units does not exceed the established rate by the managers. 

Despite being a relevant tool, there are some concepts about the performance 

measurements of the Modified Chart that were still unknown, including the effects of the 

parameters estimation on these charts. So, our goal was to fill this gap and provide to readers 

and users more knowledge about this chart in practice. The present work was focused in explain 

the concepts of maximum and minimum false alarm rate (𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝐹𝐹𝐹𝐹min ) and the effects 

of the standard deviation estimation (using the estimator 𝑆𝑆𝑃𝑃) on the conditional maximum false 

alarm rate (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). 

On the Modified Chart there is a multitude of possible values to the false alarm rate, by 

the fact that to each position assumed by the mean inside the tolerable range there is a new 

probability of a signal. Thus, if the process mean is equal to the target value, we have the 

minimum rate of false alarms (𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝜇𝜇 = 𝜇𝜇0)), and if the process mean have 

run to the tolerable limits, we can say that exists a maximum chance of a false alarm (𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑃𝑃((𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| 𝜇𝜇 = 𝜇𝜇𝐿𝐿 𝑜𝑜𝑜𝑜 𝜇𝜇 = 𝜇𝜇𝑈𝑈))).  

When it is supposed that the standard deviation is known (case K), despite there are 

many possible values to FAR, it is not a random variable. However, when the standard deviation 

is unknown (case U), the false alarm rate becomes a random variable conditioned to the 

estimator (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑝𝑝)). Thus, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑝𝑝) changes from practitioner-to-practitioner and it can 

assume values very different from the target one. 
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It was exposed that the number of samples (m) that should be collected from the process 

to achieve similar results between the case K and case U is much greater than 25, 30 or 50, i.e., 

much greater than recommendations by previous work concerning to the Shewhart 𝑋𝑋� chart. In 

practice it is unviable, because of that it is necessary to find some solution to minimize the 

effects of the parameter estimation on the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, finding a way to decrease the number of 

samples that are needed to be collected. A possible solution to this problem is the adjustment 

of the control limits, but this work is still in progress. 
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