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Abstract: Statistical process control (SPC) and monitoring techniques are often used in applications 
where multiple sources of variation are present, as for example in a variance components model. The 
Shewhart 𝑋 control charts for these situations have been studied by Roes and Does (1995), Woodall 
and Thomas (1995) and other researchers, but Montgomery (2009) argued that the Shewhart 𝑋 
control charts are less useful in Phase II and recommended the exponentially weighted moving 
average (EWMA) chart which is more sensitive to small process mean shifts.  We study refinements 
and adaptations of these charts for the variance components model taking proper account of the 
effects of parameter estimation while designing and implementing the control charts. In the sequel, 
we derive and calculate the corrected (adjusted) control limits for Phase II applications. Two types of 
corrected limits are provided, following the recent literature, one based on the unconditional 
perspective and the other on the conditional perspective and the exceedance probability criterion 
(EPC). Tabulations of the charting constants and illustrations with data are provided.   An R package 
is provided to help deployment of the new methodology in practice. 

Keywords: Statistical process control; Random effects model; Analysis of variance; Phase II 
monitoring; Parameter estimation; Robustness.  
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1. Introduction

Statistical Process Control (SPC) and monitoring methods are widely used in various
industries. Many famous companies such as IBM, Phillips, Mercedes, GM and GE have successfully 
taken advantage of the technology and have revolutionized their product lines. Design of 
Experiments (DOE) is an important component of SPC where various mathematical models are used 
for the phenomenon under study and the resulting output is monitored with control charts. So control 
charts need to be developed for the type of model one uses, the parameter(s) of interest, along with 
the assumptions on the error term. Over twenty years ago, Roes and Does (1995), Woodall and 
Thomas (1995) among others, considered various control charts including the Shewhart 𝑋 charts (the 
simplest and the most popular control charts) for monitoring processes that follow some more 
general linear models, with multiple sources of variation, that are commonly used in DOE. 
However, Montgomery (2009) considered a major disadvantage of Shewhart 𝑋 charts is that focuses 
on only the information from the last sample observation, so it is insensitive to detect small process 
shift. This feature makes these charts less useful in Phase II. One of alternatives is the exponentially 
weighted moving average (EWMA) control chart. The analogy EWMA charts were developed and 
studied by Park (1998) and other researchers, but their idea has been silent for years and recently we 
have some developments in this topic. There is a wealth of knowledge about the effects of parameter 
estimation, which is most common while setting up the control charts in practice, how it affects chart 
performance and how to adjust the control limits in order to achieve nominal in-control and 
reasonable out-of-control chart performance. In this paper, we consider these issues and provide 
correct Phase II control limits for the EWMA charts for a model more general than the basic 
Shewhart model. Under this model there are two sources of common cause variation, the variation 
between and the variation within the batches. In the first section we describe the models, starting 
from the basic Shewhart model to the model under consideration, and provide the background for 
our methodology. 

1.1 The Basic Shewhart Model 

The basic Shewhart model (Montgomery (2009)) is given by 

𝑋𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗 (1) 
where 𝑋𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑚,𝑚 + 1,𝑚 + 2, . . . , 𝑗 = 1,2, . . . , 𝑛 is the 𝑖-th observation of the 𝑗-th batch, 𝜇 
is the true mean of measurements, and 𝜖𝑖𝑗 is the 𝑖-th normal random error of the 𝑗-th batch with 
mean 0 and variance 𝜎2.  

For 𝑖 = 1,2, . . . , 𝑚 the process is in Phase I, so the observations are Phase I data, which are 
monitored with Phase I control charts constructed using a performance metric (such as the false 
alarm probability) until process control is established and parameter estimates are obtained.  On the 
other hand, when 𝑖 = 𝑚 + 1,𝑚 + 2, . . ., the process is in Phase II, and prospective process 
monitoring starts based on new control limits, derived using some performance metric (such as the 
in-control average run-length) and using parameter estimates found at the end of Phase I analysis 
from the reference data.  The basic Shewhart model is the simplest and the most commonly studied 
model in SPC.  

The Phase II EWMA plotting statistic for the for this basic model is given by 
𝑍ℎ = 𝜆�̅�ℎ. + (1 − 𝜆)𝑍ℎ−1, 𝑍0 = �̅�.., (2) 

where ℎ = 𝑚 + 1,𝑚 + 2,… , 𝑋ℎ. = 1/𝑛∑ 𝑋ℎ𝑗
𝑛
𝑗=1  is ℎ -th Phase II sample (batch mean), 𝑋.. =

1/𝑚∑ 𝑋𝑖.
𝑚
𝑖=1  is the grand mean of the Phase I data and 𝜆 ∈ (0, 1] is the smoothing constant. Note 

that when 𝜆 = 1, the EWMA process is as same as the Shewhart process.  The error variance 𝜎𝑒2 is 
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typically estimated by 𝑆𝑝2 = 1/𝑚∑ 𝑆𝑖
2𝑚

𝑖=1 , the pooled variance of the 𝑚 Phase I reference sample 
variances, the 𝑆𝑖2 =

1

𝑛−1
∑ (𝑛
𝑗=1 𝑋𝑖𝑗 − 𝑋𝑖.)

2, 𝑖 = 1,2,… ,𝑚.  

Over the last twenty plus years a great deal of knowledge has been acquired on how to 
monitor both the mean 𝜇 and the variance 𝜎2  of the basic model.  We will expand on some of these 
advances a little later in the paper. For example, in case UU, when the mean 𝜇 is unspecified or is 
unknown, along with 𝜎2 , the control limits for the Phase II EWMA chart for the mean thickness 𝜇 
are given by 

 𝑋.. ± 𝑎√
𝑆𝑝
2

𝑛
(√

𝜆

2−𝜆
(1 − (1 − 𝜆)2𝑖))   𝑖 = 𝑚 + 1,𝑚 + 2,…

for the zero state, and by 

 𝑋.. ± 𝑎√
𝑆𝑝
2

𝑛
(√

𝜆

2−𝜆
)

The charting constant 𝑎 is typically determined so that the control chart has a specified nominal in-
control average run length. 

1.2 The Random Effects Model: A Linear Model with Two Random Components for Common 
Cause Variability 

In some applications, there are sources of variation in addition to the error term and thus the 
basic Shewhart model is not deemed adequate.  Several authors have studied this type of situation in 
the literature.  For example, Woodall and Thomas (1995) (hereafter W&T) summarized and 
reviewed some related approaches to monitor a relatively homogeneous batch of product with some 
“inherent batch-to-batch variability” which must be accounted for in the model.  To this end, they 
considered an example and stated that “(in the example) batches correspond to production runs of 
plastic material. Some between-run variation was to be expected because, in addition to setup 
fluctuations, there were significant time delays between production runs with resulting variability in 
raw materials and ambient conditions.”  A similar justification of an extended model was offered by 
Roes and Does (1995) (hereafter R&D) after they carefully analyzed the production process of 
integrated circuits (IC) made by Philips Semiconductors, a leading IC chip manufacturer in Europe.  
They stated that the “wafers are ground(ed) in batches of 31 on the MPS-R600 grinder”.  They 
continued to state that “these wafers are positioned on so-called frits on a grinding table and located 
under the grindstone”.  Thus, R&D argued that a mixed model with fixed and random effects was 
more appropriate than a basic model.  In the R&D model, the fixed effect represented a position 
effect associated with positions of silicon wafers on the grinder and the random effect represented 
the between-batch effect.   

For a discussion more consistent with the literature, we follow the notation and the 
terminology in W&T and first consider a simple mixed model with one additional source of 
variability due to the batch, the so-called variance components model, which is also called a random 
effects model.  This linear model has two components for the variance of an observation, given by  

𝑋𝑖𝑗 = 𝜇 + 𝛽𝑖 + 𝜖𝑖𝑗 (3) 
where 𝑋𝑖𝑗 , 𝑖 = 1,2, . . , 𝑚 and 𝑗 = 1,2, . . . , 𝑛 is the  𝑖-th observation from the 𝑗-th batch (sampled from 
all the batches) in Phase I, 𝜇 is the true mean, 𝛽𝑖 is the effect of the i-th batch which is assumed to be 
random, and 𝜖𝑖𝑗  is the random error corresponding. It is assumed that 𝛽𝑖  follows a normal 
distribution with mean 0  and variance 𝜎𝑏2  and 𝜖𝑖𝑗  is normal random variable with mean 0  and 
variance 𝜎𝑒2.  In Phase II the linear model is the same in Equation (3), given by 
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𝑋𝑖𝑗 = 𝜇 + 𝛽𝑖 + 𝜖𝑖𝑗 (4) 
where 𝑋𝑖𝑗 , 𝑖 = 𝑚 + 1,𝑚 + 2, . . , and 𝑗 = 1,2, . . . , 𝑛  is the 𝑖 -th observation from the 𝑗 -th batch in 
Phase II and the definitions of the other terms are the same as for Equation (3).  Under the model 
assumptions, the data are from a 𝑁(𝜇, 𝜎𝑒2 + 𝜎𝑏2) distribution in both phases.  The goal is to monitor 
the Phase II mean with and EWMA chart for the random effects model in Equation (4).  

The Phase II EWMA chart is based on the plotting statistic 
𝑍𝑖 = 𝜆�̅�𝑖. + (1 − 𝜆)𝑍𝑖−1, 𝑍0 = �̅�.. for 𝑖 = 𝑚 + 1,𝑚 + 2,… In order to study chart performance, the 
event when the plotting statistic plots outside the control limit, called a signaling event (or its 
compliment, the non-signaling event) and its probability is important.  To this end, for a chosen 
estimator �̂� (discussed below) and the zero state EWMA chart, the non-signaling event is given by 

�̅�.. − 𝐿�̂�√
𝜆

2−𝜆
(1 − (1 − 𝜆)2𝑖) ≤ 𝑍𝑖 ≤ �̅�.. + 𝐿�̂�√

𝜆

2−𝜆
(1 − (1 − 𝜆)2𝑖) ,              (5)   

Similarly, the Phase II non-signaling event for the steady state EWMA chart is given by 

�̅�.. − 𝐿�̂�√
𝜆

2 − 𝜆
≤ 𝑍𝑖 ≤ �̅�.. + 𝐿�̂�√

𝜆

2 − 𝜆

(6) 

Before considering the probabilities of these events, note that the batch mean �̅�𝑖.  follows a 
𝑁(𝜇, 𝜎2 = 𝜎𝑒

2/𝑛 + 𝜎𝑏
2)  distribution both in Phase I and II, and the Phase I grand mean 𝑋.. =

∑ 𝑋𝑖.
𝑚
𝑖=1 /𝑚 follows a 𝑁(𝜇, 𝜎2/𝑚) distribution.  The ANOVA table for the Phase I data under the 

random effects model is shown in Table 1 (Montgomery, 2017).  
Table 1: Phase I ANOVA table for the random effects model 

Source D.F. SS MS E(MS) 
Batch 𝑚 − 1

𝑆𝑆𝐵 = 𝑛∑ (�̅�𝑖. − �̅�..)
2

𝑚

𝑖=1
 𝑀𝑆𝐵 =

𝑆𝑆𝐵

𝑚 − 1

𝑛𝜎𝑏
2 + 𝜎𝑒

2 

Error 𝑚(𝑛 − 1) 
𝑆𝑆𝐸 =∑ ∑ (𝑋𝑖𝑗 − �̅�𝑖.)

2𝑛

𝑗=1

𝑚

𝑖=1
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑚(𝑛 − 1)
𝜎𝑒
2 

Total 𝑚𝑛 − 1
𝑆𝑆𝑇 =∑ ∑ (𝑋𝑖𝑗 − �̅�..)

2
𝑛

𝑗=1

𝑚

𝑖=1
 

Among the various estimators of the standard deviation (𝜎) two are popular, each with its 
pros and cons.  The first is based on the uniformly minimum variance unbiased estimator 
(UMVUE) of 𝜎2 based on the within-batch mean-squared error.  This estimator, denoted by 𝑠𝑏2, is 
defined by  

𝑠𝑏
2 =

∑ (�̅�𝑖. − �̅�..)
2𝑚

𝑖=1

𝑚− 1
=
𝑀𝑆𝐵

𝑛
.

(7) 

So the first estimator of 𝜎 is given by �̂� = 𝑠𝑏.   Note that this estimate is directly obtained from the 
ANOVA table.  

The second estimator is based on the mean of the subgroup moving ranges of span two, 
denoted 𝑚𝑟𝑚, defined by 

 𝑚𝑟𝑚 =
1

𝑚−1
∑ |�̅�𝑖. − �̅�(𝑖−1).|
𝑚
𝑖=2  

The two corresponding unbiased estimators of 𝜎 are given by 
�̂�1 = 𝑠𝑏/𝑐4  and �̂�2 =  𝑚𝑟𝑚/𝑑2 (8) 

respectively, where 𝑐4  and 𝑑2  are the corresponding unbiasing constants, tabulated in many 
textbooks, such as Montgomery (2009). 

Both estimators have their pros and cons (see for example Nelson (1982); Cryer and Ryan 
(1990)).  In this paper, we work with the estimator �̂�1based on the MSB first as the requisite theory 
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is exact under normality and some recent research (see for example Mahmoud et al. 2010) has 
recommended its use for the basic Shewhart model.  Moreover, as shown above, this estimator is 
obtainable from the ANOVA table and thus has some practical advantage when a routine analysis of 
the data is performed in the process monitoring context.  For convenience of computation, we 
discuss the Phase II EWMA Chart using the.  The moving range estimator can be accommodated in 
our framework with some adaptations, this is not pursued in this paper. 

We provide the correct charting constants for the EWMA chart for the random effects model 
accounting for parameter estimation.  It is now well-known that the parameter estimates obtained in 
the computation of the charting constants necessary to establish the control limits for process 
monitoring.  The charting constants are affected by the model fitted for the problem at hand, the 
chosen variance estimator, the perspective (unconditional or conditional) and the metric used for in-
control performance (which depends on the particular phase of monitoring).  One of the most 
common ways to obtaining the charting constants is to assume that the in-control mean and variance 
are known (case KK) so that one can calculate the limits using a geometric distribution for the run-
length.  The famous “3-sigma” rule is an example of this method which yields a FAR of 0.0027 or 
an in-control ARL of 370.  However, in practice the process parameters, the mean and the standard 
deviation are mostly unknown (case UU) and must be estimated from reference data obtained from a 
Phase I analysis.  In the last several years, many authors have contributed to this literature starting 
with Chakraborti (2000), Gandy and Kvaloy (2013), Albers et al. (2005), Epprecht et al. (2015), 
Goedhart et al. (2017) Jardim et al. (2017) and Jardim et al. (2019).  This list is not exhaustive but 
most of this work is for the Shewhart chart.  The present work extends this literature to the case of 
the EWMA charts and corrected charting constants for case UU in the case of the random effects 
model.  

In Section 2, we discuss determination of the charting constants under two perspectives 
dominant in the current literature. One, under the unconditional perspective, using the conditioning-
unconditioning (CUC) method (see, for example, Chakraborti (2000); Felipe et al. (2019)) which 
guarantees a nominal average in-control ARL value. Two, under the conditional perspective, and 
using the exceedance probability criterion (EPC) (see, for example, Jardim et al. (2019)).  In Section 
3, an illustration is provided using the EWMA chart using the corrected charting constants with a 
dataset based on a case study presented in Roes and Does (1995).  In Section 4, we summarize and 
discuss the discovery of the proposed method.  

2 Methodology 

It is well known that in Phase II the EWMA control charts are more effective for detecting 
small shifts and more robust to the violation of normality than Shewhart �̅�  control charts. The 
performance of the chart is measured in terms of its robustness and sensitivity. This will be 
examined by comparing the in-control and the out-of-control performance of the EWMA charts to 
those of the Phase II Shewhart �̅� control charts in Section 3.  Recall that the plotting statistic 𝑍ℎ of 
the EWMA control chart for the ℎ-th Phase II sample is defined in Equation (2).  Also, in this case, 
the non-signaling event for the zero state is shown in Equation (4) and that for the steady state is 
shown in Equation (5).  Note that the charting constant L are assumed to be unchanged for the zero 
state and the steady state to some extent, because the difference of ARL between the two states is 
trivial examined and stated by Lucas and Saccucci (1990). Thus, we only consider the steady state 
case in the following derivations. 
The run length distribution 

Many researchers have shown that the key to solving for the charting constant 𝐿  with 
estimated parameters is to obtain the distribution of the conditional in-control average run length, 
𝐶𝐴𝑅𝐿0 and to this end we start with the distribution of the conditional false alarm rate 𝐶𝐹𝐴𝑅.   The 
“conditional” refers to the fact that both of these chart performance characteristics are random 
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variables and their distributions depend on the parameter estimators used in calculating the Phase II 
control limits.  

Using Equation (5), the CFAR for the steady state case is given by 

𝐶𝐹𝐴𝑅 = 𝑃(|𝑍ℎ − �̅�..| > 𝐿�̂�√
𝜆

2 − 𝜆
) = 

= 1 − 𝑃(�̅�.. − 𝐿�̂�√
𝜆

2 − 𝜆
≤ 𝑍ℎ ≤ �̅�.. + 𝐿�̂�√

𝜆

2 − 𝜆
)   (9) 

Since the charting constant is calculated via the 𝐶𝐴𝑅𝐿0 , it is more meaningful in our context.  
However, finding the distribution of 𝐶𝐴𝑅𝐿0 is not easy since unlike in the case of the Shewhart 
chart, the conditional run length distribution of an EWMA chart is not geometric. For Case KK, 
Crowder (1987) obtained the exact probability mass function (p.m.f.) of the run length distribution 
of the EWMA chart and showed that this is not geometric.  So the reciprocal of the 𝐶𝐹𝐴𝑅 is not 
equal to 𝐶𝐴𝑅𝐿0 and the distribution of the one can not be calculated from that of the other, as 
conveniently as in the case of the Shewhart chart.  Lucas and Saccucci (1990) introduced an 
approximate approach to calculate the average run length of the EWMA chart using the absorbing 
Markov Chain theory.  The computation is inspired by theirs and the detailed derivation is given in 
the Appendix.   

Chakraborti and Graham (2019) used results in Fu and Lou (2003) to find the average of the 
run-length of the conditional in-control average run length.  This is given by  

𝐶𝐴𝑅𝐿0 = 𝜉(𝐼 − 𝑄(𝑈, 𝑉; 𝜆, 𝐿))
−11 (10) 

where 𝜉 = [𝜉𝑘] is an initial vector which contains the probabilities that the Markov chain starts in a 
given state, under the condition that  ∑ 𝜉𝑘

𝑡
𝑘=−𝑡 = 1.  This initial vector depends on the condition of 

the Phase II process.  If the process is (starts) in-control, the elements of the vector are assigned as 
𝜉0 = 1  and 𝜉𝑘 = 0 , 𝑘 ≠ 0 .  . Further, 𝐼  is a (2𝑡 + 1) × (2𝑡 + 1)  identity matrix, the (2𝑡 +
1) × (2𝑡 + 1) essential transition probability matrix with its elements is given by

𝑄(𝑈, 𝑉) = 𝑄(𝑈, 𝑉; 𝜆, 𝐿) = [𝑞𝑘𝑙(𝑈, 𝑉)] = [𝑞𝑘𝑙(𝑈, 𝑉; 𝜆, 𝐿)] (11) 
where the elements are given by 

𝑞𝑘𝑙(𝑈, 𝑉; 𝜆, 𝐿) = 𝛷

(

𝛷−1(𝑈)

√𝑚
+ (
2𝑙 − (1 − 𝜆)2𝑘 + 1

2𝑡 + 1
)(
𝐿

𝑐4
√

𝐹
𝜒𝑚−1
2
−1 (𝑉)

𝜆(2 − 𝜆)(𝑚 − 1)
)

)

−𝛷

(

𝛷−1(𝑈)

√𝑚
+ (

2𝑙 − (1 − 𝜆)2𝑘 − 1

2𝑡 + 1
)(

𝐿

𝑐4
√

𝐹
𝜒𝑚−1
2
−1 (𝑉)

𝜆(2 − 𝜆)(𝑚 − 1)
)

)

,

and 1 is a (2𝑡 + 1) × 1 vector of 1’s.  The notation of 𝑄(𝑈, 𝑉; 𝜆, 𝐿) and 𝑞𝑘𝑙(𝑈, 𝑉) are compressed as 
𝑄(𝑈, 𝑉) and 𝑞𝑘𝑙(𝑈, 𝑉) until it is necessary.  Note that the 𝐶𝐴𝑅𝐿0 is a random variable as a function 
of 𝑈 and 𝑉, which is the key to obtaining the charting constants for the Phase II Shewhart 𝑋 control 
charts for the random effects model.  We follow this same idea to derive the charting constants for 
the EWMA chart.  Using Equation (11), the c.d.f. of the 𝐶𝐴𝑅𝐿0 for the EWMA chart is given by  

𝐹𝐶𝐴𝑅𝐿0(𝑡) = 𝑃(𝐶𝐴𝑅𝐿0 ≤ 𝑡) = 𝑃 (𝜉(𝐼 − 𝑄(𝑈, 𝑉))
−11 ≤ 𝑡) , 𝑡 ≥ 1 (12) 

In the next sections, we derive the charting constants under two different perspectives and 
provide some side results.  
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2.1 The Unconditional Perspective 

Chakraborti (2000, 2006) introduced the charting constant for the Shewhart �̅� control chart 
with estimated parameters, for the basic Shewhart model, using the CUC (conditioning-
unconditioning) method. This is called the unconditional perspective in Jardim et al. (2019).  We 
follow this idea and find the EWMA charting constant using the unconditional perspective for the 
random effects model. Under this perspective, the charting constant is found by equating the 
unconditional in-control average run length (denoted 𝐴𝑅𝐿𝑖𝑛 ), which is the expectation of the 
conditional in-control average run length 𝐶𝐴𝑅𝐿0, to a desired nominal value say 𝐴𝑅𝐿0.  The nominal 
values are taken to be 370 or 500, as in the known parameters case. Thus, the 𝐴𝑅𝐿𝑖𝑛 is set to equal to 
𝐴𝑅𝐿0 as follow 

𝐴𝑅𝐿𝑖𝑛 = ∫ ∫ 𝐶𝐴𝑅𝐿0𝑑𝑢𝑑𝑣
1

0

1

0

= ∫ ∫ 𝜉(𝐼 − 𝑄(𝑢, 𝑣; 𝜆, 𝐿))−11𝑑𝑢𝑑𝑣
1

0

1

0

= 𝐴𝑅𝐿0 
(13) 

and the charting constant is the solution of this equation.  Some values of the charting constants from 
this perspective are provided in Table 1. 

Table 2: EWMA charting constant L under the unconditional perspective for different smoothing 
constants and numbers of Phase I samples 

𝐴𝑅𝐿0 = 370 𝐴𝑅𝐿0 = 500 
m 𝜆 = 0.5 𝜆 = 0.8 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.8 𝜆 = 1

20 2.7015 2.6800 2.6666 2.7647 2.7416 2.7281 
25 2.7635 2.7451 2.7329 2.8325 2.8121 2.7996 
30 2.8041 2.7886 2.7774 2.8771 2.8594 2.8479 
50 2.8816 2.8747 2.8669 2.9629 2.9533 2.9450 

100 2.9343 2.9376 2.9337 3.0219 3.0224 3.0180 
150 2.9501 2.9581 2.9558 3.0399 3.0449 3.0422 
200 2.9576 2.9682 2.9669 3.0484 3.0560 3.0543 

Table 2 is constructed using the solutions of Equation (13). This shows how the charting 
constants vary for number of batches, smoothing constants and the nominal ARL. It is seen that a) 
the charting constants are monotonically increasing with increasing values of the nominal ARL. b) 
The charting constants are increasing with increasing numbers of batches.  c) For a specific number 
of batches, the maximum values of charting constants are at the lower endpoints of 𝜆.  For example, 
for 𝑚 = 20, the maximum is at 𝜆 = 0.5. 

In summary, there may be no evidence that the charting constants converge to 3 or the 
values decided by the “3-sigma” rule. 

2.1.1 Robustness for Normality under the Unconditional Perspective 

From a practical point of view, it is necessary to examine how the nominal performance is 
affected when the underlying distribution changes from the assumed normal. In this section we 
examine this robustness aspect of our adjusted chart, following similar work in Graham et al. (2010) 
and Capizzi and Masarotto (2013).  The investigation is divided into two parts, namely the in-control 
(IC) and the out-of-control (OOC), respectively. The OOC case is interpreted as the situation where 
the process distribution is non-normal.  The purpose of the IC case is to examine the robustness of 
the charts in terms of the closeness between the nominal average run length 𝐴𝑅𝐿0 and the simulated 
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average run length 𝐴𝑅𝐿𝑖𝑛 as a function of the number of batches m and smoothing constants 𝜆, when 
the data are from a normal distribution.   This closeness should be “high”.  On the other hand, the 
OOC case is important in order to investigate the robustness of the charts (again, in terms of the 
closeness between 𝐴𝑅𝐿0  and𝐴𝑅𝐿𝑖𝑛  as a function of 𝑚  and 𝜆 ) but for distributions that are not 
normal. The various distributions considered are listed and described in Table 3. The IC case is 
defined by the assumption that all batch means �̅�𝑖. are independently and identically distributed, each 
as a normal random variable with mean 𝜇 and variance 𝜎2. This is Case 1 in Table 3. The OOC 
cases are defined by Cases 2 through 5 in Table 3. 

        Table 3: Distributions used for investigating robustness 

C
Case 

Process 
Status 

Distribution of  
the batch mean Value of Mean 𝜇, Variance 𝜎2 

1
1 IC Normal(0,1) 0, 1 

2
2 OOC t(5) 0, 1.6667 

3
3 OOC Exponential(1) 1, 1 

4
4 OOC Gamma(5,1) 5, 5 

5
5 OOC Beta(8,2) 0.8, 0.0145 

In summary, the distribution of the charting statistic is first chosen to be the standard normal 
distribution.  Next, the t distribution with 5 degrees of freedom is used to examine a “small” change 
in the shape (tails) of the distribution, since this distribution is standard normal like but with heavier 
tails.  This is an OOC situation.  Similarly, the last three distributions (Cases 3 through 5) also depict 
the OOC setting, chosen to investigate the impact of “bigger” changes in the shape, from symmetric 
to asymmetric distributions, over different types of support. The exponential distribution is 
asymmetric and extremely right-skewed and the gamma distribution is asymmetric and right-skewed 
with an infinite support; the gamma distribution begins to look symmetric for larger scale and shape 
parameters.  The beta (8,2) distribution is left-skewed with a finite support. Note that the simulated 
observations are all “standardized” to eliminate the effects of different means and variances of the 
underlying distributions. The standardization is performed.  The robustness is graphed as follows. 
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Figure 1: Robustness for 𝐴𝑅𝐿0 = 370, 500, 𝜆 = 0.5, 0.8 and 1, and different distributions.  Note 
that the dotted line is the reference line for the different nominal 𝐴𝑅𝐿0’s. 

In Figure 1, it is seen that a) the IC case is close to the nominal values for high 𝜆 = 0.8 and 
1 and the closeness is reduced slightly if 𝜆 = 0.5, and b) the EWMA chart is sensitive to the 
normality assumption, since the curves of non-normal distributions in cases through 2 to 5 are much 
far away from the reference line, and c) the EWMA chart is more robust than the Shewhart chart 
which is 𝜆 = 1, since the curves for non-normal distributions are closer to the 𝐴𝑅𝐿0 for 𝜆 < 1 than 
those for 𝜆 = 1. 

In summary, the EWMA chart is more robust to the violation of normality assumption than 
the Shewhart chart as expected.  

2.2 The Conditional Perspective 

Equation (12) shows that the 𝐶𝐴𝑅𝐿0 is a random variable, so it is quite likely to be different 
(sometimes significantly) from its expectation, the 𝐴𝑅𝐿0, as specified via the nominal value in the 
construction of the chart under the unconditional perspective.  This may be problematic from a 
practical point of view.  The CUC method guarantees that the average chart performance reaches the 
target 𝐴𝑅𝐿0 in the long run but it does not consider the variability. A more recent alternative option 
recognizes the randomness of 𝐶𝐴𝑅𝐿0 and considers various solutions.  To this end, several authors 
including Albers et al. (2005), Epprecht et al. (2015), Goedhart et al. (2017), and Jardim et al. (2019) 
have considered setting up the control chart limits so that the 𝐶𝐴𝑅𝐿0  has a high probability of 
exceeding a given nominal value (a lower bound) such as 370. This formulation is related to the 
exceedance probability criterion (EPC) proposed by Gandy and Kvaloy (2013) in which one finds 
an upper bound (that can be tolerated in an application) to the random variable, the conditional in-
control false alarm rate 𝐶𝐹𝐴𝑅 = 𝐶𝐴𝑅𝐿0−1 with a high probability.  The probability of the conditional 
in-control average run length 𝐶𝐴𝑅𝐿0 greater than the prediction lower bound using Equation (12) is 
given by 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 𝐴𝑅𝐿𝑏) = 𝑃(𝐶𝐴𝑅𝐿0 ≥ (1 − 𝜀̃)𝐴𝑅𝐿0)

= ∫ ∫ 𝐼𝑛𝑑(𝐶𝐴𝑅𝐿0 ≥ (1 − 𝜀̃)𝐴𝑅𝐿0)𝑑𝑢𝑑𝑣
1

0

1

0

= ∫ ∫ 𝐼𝑛𝑑(𝜉(𝐼 − 𝑄(𝑢, 𝑣; 𝜆, 𝐿))−11 ≥ (1 − 𝜀̃)𝐴𝑅𝐿0)𝑑𝑢𝑑𝑣
1

0

1

0

= 1 − 𝑝0 

(14) 

where 𝑝0 (0 < 𝑝0 < 1) is a specified probability, typically a small value, such as 0.1 or 0.05, 𝜀 (0 ≤
𝜀 < 1) is a “tolerance factor” allowing the user some flexibility for choosing a nominal conditional 
false alarm rate, such as 0 or 0.1, 𝜀̃(0 ≤ 𝜀̃ < 1) is a "tolerance factor" allowing the user some 
flexibility for choosing a nominal conditional false alarm rate, 𝐴𝑅𝐿𝑏 = (1 − 𝜀̃)𝐴𝑅𝐿0  is a lower 
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prediction bound which can be seen as the 𝑝0-quantile of the distribution of 𝐶𝐴𝑅𝐿0, and 𝐼𝑛𝑑(⋅) is an 
indicator function given by 

𝐼𝑛𝑑(𝑎 > 𝑏) = {
1 if 𝑎 > 𝑏
0 if 𝑎 ≤ 𝑏

Many researchers (see, for example, Jardim et al., 2019) pointed out that the charting 
constants under the conditional perspective were different from those from "3-sigma" rules for the 
Shewhart �̅� charts. We verify whether this phenomenon also happens for the EWMA charts. 

Table 4: EWMA charting constants under the conditional perspective, for 𝜆 = 0.5,0.8,1, 𝑝0 =
0.05, 0.1, 𝜀̃ = 0,0.1 and various values of m

𝐴𝑅𝐿0 = 370 𝐴𝑅𝐿0 = 500
𝑝0 𝜀̃ m 𝜆 = 0.5 𝜆 = 0.8 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.8 𝜆 = 1 

0.05 0 20 4.2897 4.1898 4.1516 4.4143 4.3169 4.2770 
0.05 0 25 4.0904 4.0182 3.9868 4.2127 4.1401 4.1072 
0.05 0 30 3.9533 3.9012 3.8742 4.0757 4.0195 3.9912 
0.05 0 50 3.6681 3.6519 3.6315 3.7816 3.7627 3.7412 
0.05 0 100 3.4178 3.4192 3.4049 3.5255 3.5229 3.5075 
0.05 0 150 3.3223 3.3312 3.3155 3.4268 3.4322 3.4155 
0.05 0 200 3.2719 3.2770 3.2660 3.3747 3.3764 3.3646 
0.05 0.1 20 4.2450 4.1446 4.1070 4.3712 4.2728 4.2335 
0.05 0.1 25 4.0452 3.9748 3.9440 4.1707 4.0979 4.0654 
0.05 0.1 30 3.9107 3.8590 3.8326 4.0325 3.9784 3.9506 
0.05 0.1 50 3.6327 3.6124 3.5925 3.7436 3.7242 3.7031 
0.05 0.1 100 3.3793 3.3822 3.3683 3.4882 3.4869 3.4719 
0.05 0.1 150 3.2850 3.2952 3.2799 3.3906 3.3972 3.3808 
0.05 0.1 200 3.2351 3.2415 3.2309 3.3391 3.3419 3.3304 
0.1 0 20 3.9810 3.9225 3.8794 4.0928 4.0415 3.9960 
0.1 0 25 3.8289 3.7924 3.7555 3.9484 3.9073 3.8686 
0.1 0 30 3.7319 3.7003 3.6672 3.8494 3.8125 3.7779 
0.1 0 50 3.5123 3.4971 3.4793 3.6229 3.6017 3.5841 
0.1 0 100 3.3274 3.3242 3.3181 3.4321 3.4250 3.4183 
0.1 0 150 3.2535 3.2545 3.2517 3.3559 3.3532 3.3494 
0.1 0 200 3.2098 3.2162 3.2154 3.3108 3.3138 3.3115 
0.1 0.1 20 3.9374 3.8801 3.8379 4.0495 4.0002 3.9553 
0.1 0.1 25 3.7865 3.7515 3.7149 3.9067 3.8675 3.8293 
0.1 0.1 30 3.6899 3.6603 3.6282 3.8016 3.7735 3.7395 
0.1 0.1 50 3.4728 3.4601 3.4423 3.5846 3.5649 3.5477 
0.1 0.1 100 3.2901 3.2882 3.2825 3.3958 3.3890 3.3835 
0.1 0.1 150 3.2170 3.2195 3.2167 3.3204 3.3189 3.3158 
0.1 0.1 200 3.1737 3.1815 3.1808 3.2758 3.2799 3.2779 

Table 4 shows that the charting constants under the conditional perspective increase with 
decreasing 𝑝0 , decreasing 𝜀̃ , decreasing m, decrease 𝜆  and increasing 𝐴𝑅𝐿0 , for small and large 
sample sizes such as 20 ≤ 𝑚 ≤ 100 .  For extreme large sample size such as 𝑚 > 100 , the 
maximum of the charting constants is at 𝜆 = 0.8.  Also, the charting constants in Table 4 are much 
greater than those in Table 2, so it is expected that the 𝐴𝑅𝐿𝑖𝑛 for the conditional perspective is much 
greater than the 𝐴𝑅𝐿0.   
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Next, we verify the theoretical 𝐴𝑅𝐿𝑖𝑛 in Equation (13). 

2.2.1 The In-control Performance under the Conditional Perspective 

In this section, we calculate the theoretical 𝐴𝑅𝐿𝑖𝑛  in Equation (13) for measuring the 
robustness as that in Section 2.1.1.  The charting constants are used in Table 4.  The 𝐴𝑅𝐿𝑖𝑛 is shown 
in Table 5. 

Table 5:  𝐴𝑅𝐿𝑖𝑛 under the conditional perspective, for 𝜆 = 0.5,0.8,1, 𝑝0 = 0.05, 0.1, 𝜀̃ = 0,0.1 and 
various values of m

𝐴𝑅𝐿0 = 370 𝐴𝑅𝐿0 = 500
𝑝0 𝜀̃ m 𝜆 = 0.5 𝜆 = 0.8 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.8 𝜆 = 1 

0.05 0 20 2.92E+07 1.08E+07 8.15E+06 1.13E+08 4.20E+07 2.71E+07 
0.05 0 25 9.65E+05 6.67E+05 5.71E+05 2.63E+06 1.77E+06 1.47E+06 
0.05 0 30 1.67E+05 1.41E+05 1.27E+05 3.97E+05 3.21E+05 2.85E+05 
0.05 0 50 1.08E+04 1.11E+04 1.06E+04 1.94E+04 1.99E+04 1.87E+04 
0.05 0 100 2.19E+03 2.29E+03 2.22E+03 3.41E+03 3.55E+03 3.41E+03 
0.05 0 150 1.37E+03 1.43E+03 1.37E+03 2.04E+03 2.12E+03 2.02E+03 
0.05 0 200 1.09E+03 1.10E+03 1.07E+03 1.59E+03 1.61E+03 1.55E+03 
0.05 0.1 20 1.70E+07 7.02E+06 5.39E+06 7.22E+07 2.71E+07 1.78E+07 
0.05 0.1 25 6.74E+05 4.77E+05 4.11E+05 1.85E+06 1.25E+06 1.06E+06 
0.05 0.1 30 1.25E+05 1.06E+05 9.61E+04 2.91E+05 2.40E+05 2.14E+05 
0.05 0.1 50 9.01E+03 9.11E+03 8.68E+03 1.59E+04 1.62E+04 1.53E+04 
0.05 0.1 100 1.88E+03 1.97E+03 1.91E+03 2.92E+03 3.04E+03 2.93E+03 
0.05 0.1 150 1.19E+03 1.25E+03 1.19E+03 1.77E+03 1.85E+03 1.76E+03 
0.05 0.1 200 9.53E+02 9.68E+02 9.40E+02 1.39E+03 1.41E+03 1.36E+03 
0.1 0 20 1.30E+06 9.63E+05 7.31E+05 3.56E+06 2.73E+06 1.99E+06 
0.1 0 25 1.33E+05 1.24E+05 1.04E+05 3.20E+05 2.86E+05 2.34E+05 
0.1 0 30 3.88E+04 3.78E+04 3.32E+04 8.28E+04 7.77E+04 6.71E+04 
0.1 0 50 5.01E+03 5.16E+03 4.97E+03 8.58E+03 8.63E+03 8.32E+03 
0.1 0 100 1.53E+03 1.56E+03 1.56E+03 2.32E+03 2.35E+03 2.35E+03 
0.1 0 150 1.06E+03 1.07E+03 1.07E+03 1.55E+03 1.56E+03 1.56E+03 
0.1 0 200 8.70E+02 8.83E+02 8.88E+02 1.25E+03 1.27E+03 1.27E+03 
0.1 0.1 20 8.93E+05 6.73E+05 5.19E+05 2.40E+06 1.89E+06 1.39E+06 
0.1 0.1 25 9.82E+04 9.29E+04 7.84E+04 2.34E+05 2.13E+05 1.76E+05 
0.1 0.1 30 2.99E+04 2.95E+04 2.61E+04 6.06E+04 6.03E+04 5.24E+04 
0.1 0.1 50 4.16E+03 4.32E+03 4.17E+03 7.10E+03 7.19E+03 6.94E+03 
0.1 0.1 100 1.33E+03 1.35E+03 1.35E+03 2.01E+03 2.03E+03 2.03E+03 
0.1 0.1 150 9.27E+02 9.37E+02 9.40E+02 1.36E+03 1.36E+03 1.37E+03 
0.1 0.1 200 7.66E+02 7.78E+02 7.83E+02 1.10E+03 1.12E+03 1.12E+03 

In Table 5, the 𝐴𝑅𝐿𝑖𝑛 under the conditional perspective increase with decreasing 𝑝0, decreasing 
𝜀̃, decreasing m, decrease 𝜆 and increasing 𝐴𝑅𝐿0, for small and moderate sample sizes such as 20 ≤
𝜆 ≤ 30.  For moderate and extreme large sample size such as 𝜆 > 30, the maximum of the charting 
constants is at 𝜆 = 0.8.  Also, all 𝐴𝑅𝐿𝑖𝑛  are much greater than the 𝐴𝑅𝐿0  compared to those in 
section 2.1.1. 
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In summary, since the 𝐴𝑅𝐿𝑖𝑛  is much larger than the 𝐴𝑅𝐿0 , it is sensitive to the range of 
different constants under the conditional perspective even if the normality is satisfied.  Thus, it is 
unreasonable to continue to study the robustness using 𝐴𝑅𝐿𝑖𝑛. 

Next, we show an application using the charting constants under different perspectives. 

3 Application 

We illustrate the proposed charts with the data from Roes and Does (1995).  The data were 
collected from the MPS-R600 grinder measuring the wafer thickness, with a target thickness of 244 
μm. They were taken from 5 of 31 positions on the grinder.  We consider these data as Phase I data 
number of Phase I batches 𝑚 = 30 , each with 𝑛 = 5  observations, with the overall mean and 
standard deviation equal to 245.1 and 2.0367, respectively, so the correcting constant 𝑐4 is 0.9914 
in Montgomery (2009). Following this setting, we simulate 20 batches of Phase II data shown in 
Table 6.  

Table 6: Simulated Phase II sample for the example 

Batch Batch 
Mean 

Batch Batch 
Mean 

Batch Batch 
Mean 

Batch Batch 
Mean 

1 246.303 6 241.365 11 247.312 16 249.229 

2 246.558 7 246.395 12 251.285 17 245.730 

3 244.875 8 244.533 13 248.312 18 246.870 

4 244.168 9 244.516 14 248.620 19 249.853 

5 246.345 10 243.211 15 246.009 20 248.165 

The data are divided into 2  sets. The first set contains the first 10  observations with the 
distribution as same as Roes and Does (1995)’s sample, that is a normal (245.1, 2.0367). The last 10 
observations make up the second set which are from a normal (247.55, 2.0367) distribution, which 
has a 1% increase in the mean over that for the first set. The control charts are shown in Figure 4. 
Because we have two types of charting constants (unconditional and the conditional) that may be 
used in Phase II, two pairs of control charts (limits) are shown. First, under the unconditional 
perspective, for a nominal 𝐴𝑅𝐿0 = 500 and 𝜆 = 0.5, the value of charting constant is 2.8771 which 
can be found from Table 2, which leads to the lower and upper control limits, 241.6875  and 
248.5125 in the steady state, respectively. Second, given under the EPC perspective, the control 
limits are obtained as 240.3171 and 249.8829  for 𝐴𝑅𝐿0 = 500, 𝑝0 = 0.05, �̃� = 0.1  and 𝜆 = 0.5 , 
and the value of charting constant is 4.0325 from Table 4. Also, the reference control limits are 
shown, 241.4575 and 248.7425, calculated with the charting constant 3.071 in Lucas and Saccucci 
(1990). 
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Figure 2: EWMA chart for simulated data 

For the value of the charting constant 2.8771 obtained under the unconditional perspective, 
there is one possible signal, compared to no signal for those from Lucas and Saccuci (1990) and the 
conditional perspective. Thus, for the unconditional perspective, it can capture signals quicker than 
other methods. The limits under the conditional perspective are much wider. 

4 Conclusion 

Based on the results of our study, several conclusions can be made in terms of the Phase II 
EWMA chart for the random effects model as follows. 

a. The charting constants under the unconditional perspective are less than those in Lucas and
Saccucci (1990).  Thus, for the unconditional perspective is less.  Since the 𝐴𝑅𝐿𝑖𝑛 using
Table 2 is close to the 𝐴𝑅𝐿0, the 𝐴𝑅𝐿𝑖𝑛 using Lucas and Saccucci (1990) may be greater
than the 𝐴𝑅𝐿0 for the random effects model.

b. The performance of the EWMA chart under the unconditional perspective is more robust
with decreasing 𝜆.

c. The control limits under the conditional perspective is the widest, so the 𝐴𝑅𝐿𝑖𝑛 is extremely
large shown in Table 5.  To reach appropriate charting constants with more reasonable
𝐴𝑅𝐿𝑖𝑛, users may have to increase 𝒑𝟎, 𝜀̃ and m. That may lead to two results.  One is there
may be no guaranteed to perform well if 𝒑𝟎 and 𝜀̃ are unreasonably high.  Another is users
may be extremely costly if m is large.
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Appendix 
Lucas and Saccucci (1990) introduced an approximate approach to calculate the average run 

length of the EWMA chart using the absorbing Markov Chain theory.  Their results are close to 
those given in Crowder (1987) but more computationally convenient.  Chakraborti and Graham 
(2019) provide a thorough explanation of the Markov Chain approach used in SPC.  We describe it 
briefly here.  Let the region between the LCL and the UCL (where the process is in-control) be 
divided into an odd number of 𝑣 = 2𝑡 + 1 mutually exclusive transient states. The out-of-control 
state is the region below the LCL or above the UCL and these two regions together comprise the so-
called absorbing state. The 2𝑡 + 1  in-control states can be identified by 𝑘, 𝑙 = −𝑡,−𝑡 +
1,… ,−1,0,1, … , 𝑡 − 1, 𝑡.  The (2𝑡 + 2) × (2𝑡 + 2) transition probability matrix, 𝑀, is given by 

𝑀 = (

𝑄
−
0𝑡
   
|
−
|
   
𝑃
−
1
) 

where 𝑄  is the (2𝑡 + 1) × (2𝑡  + 1) sub-matrix called the essential transition probability matrix 
containing all the probabilities of going from one transient state to another, 𝑃 is the column vector 
with (2𝑡 + 1) probabilities of going from one transient state to the absorbing state, 0 is the column 
vector with (2𝑡 + 1) zero probabilities of going from the absorbing state to one transient state, and 1 
is the scalar value with the probability of going from the absorbing state to the absorbing state.   
Chakraborti and Graham (2019) showed the computation of the average run length for the EWMA 
chart using the absorbing Markov chain.  We get the conditional average run length using the similar 
method.  The conditional average run length is given by 

𝐶𝐴𝑅𝐿0 = 𝜉(𝐼 − 𝑄(𝑈, 𝑉; 𝜆, 𝐿))
−11 

where 𝜉 = [𝜉𝑘] is an 1 × (2𝑡 + 1) initial vector which contains the probabilities that the Markov 
chain starts in a given state conditioning on ∑ 𝜉𝑘

𝑡
𝑘=−𝑡 = 1 , 𝐼  is an (2𝑡 + 1) × (2𝑡 + 1)  identity 

matrix, 𝑄(𝑈, 𝑉; 𝜆, 𝐿) = [𝑞𝑘𝑙(𝑈, 𝑉; 𝜆, 𝐿)]  is the (2𝑡 + 1) × (2𝑡 + 1)  essential transition probability 
matrix, and 1 is a (2𝑡 + 1) × 1 vector with 1’s.  If 𝜆 > 0, the 𝑄(𝑈, 𝑉; 𝜆, 𝐿) matrix is given by 

𝑞𝑘𝑙(𝑈, 𝑉; 𝜆, 𝐿) = 𝑃(𝑆𝑙 ≤ 𝜆�̅�ℎ. + (1 − 𝜆)𝑍ℎ−1 ≤ 𝑆𝑙+1|𝑍ℎ−1 = 𝑇𝑘)
= 𝑃(𝑇𝑙 − 𝜏 ≤ 𝜆�̅�ℎ. + (1 − 𝜆)𝑍ℎ−1 ≤ 𝑇𝑙 + 𝜏|𝑍ℎ−1 = 𝑇𝑘)
= 𝑃(𝑇𝑙 − 𝜏 ≤ 𝜆�̅�ℎ. + (1 − 𝜆)𝑇𝑘 ≤ 𝑇𝑙 + 𝜏)

= 𝑃 (
𝑇𝑙 − 𝜏 − (1 − 𝜆)𝑇𝑘

𝜆
≤ �̅�ℎ. ≤

𝑇𝑙 + 𝜏 − (1 − 𝜆)𝑇𝑘
𝜆

) 

where 𝑘, 𝑙 = −𝑡,−𝑡 + 1,… , 𝑡 − 1, 𝑡. Also, the half width 𝜏 is given by 

𝜏 = 𝜏(�̂�; 𝜆, 𝐿, 𝜃) =
𝑈𝐶𝐿 − 𝐿𝐶𝐿

2(2𝑡 + 1)
=
𝐿�̂�√

𝜆
2 − 𝜆

(1 − (1 − 𝜆)2ℎ)

2𝑡 + 1
=
𝐿�̂�√

𝜆
2 − 𝜆

𝜃

2𝑡 + 1

where 𝜃 = 1 − (1 − 𝜆)2ℎ ∈ (0, 1] is a constant for the zero or steady state.  When 𝜃 = 1, the Phase 
II process is in the steady state.  When 𝜃 is less than 1, the Phase II process is in the zero state.  Also, 
𝜏(�̂�; 𝜆, 𝐿, 𝜃) is written as 𝜏 until it is necessary.  This midpoint 𝑇𝑘 of the 𝑘-th state can be derived 
from the cumulative half width function starting at the lower control limit as follow 

𝑇𝑘 = 𝐿𝐶𝐿 + (2(𝑡 + 𝑘) + 1)𝜏 

where 2(𝑡 + 𝑘) + 1 = 1, 3, 5, . . . ,4𝑡 + 1 is the number of the cumulative half widths.  Also, the 
lower and upper limits 𝑆𝑘 and 𝑆𝑘+1 of the 𝑘-th state are given by 
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𝑆𝑘 = 𝑇𝑘 − 𝜏 = 𝐿𝐶𝐿 + 2(𝑡 + 𝑘)𝜏 and 𝑆𝑘+1 = 𝑇𝑘 + 𝜏 = 𝐿𝐶𝐿 + (2(𝑡 + 𝑘) + 2)𝜏 

The midpoint of the 𝑘-th state can be derived further as follows 

𝑇𝑘 = 𝐿𝐶𝐿 + (2(𝑡 + 𝑘) + 1)𝜏 = �̅�.. − 𝐿�̂�√
𝜆

2 − 𝜆
𝜃 + (2(𝑡 + 𝑘) + 1)

𝐿�̂�√
𝜆

2 − 𝜆
𝜃

2𝑡 + 1

= �̅�.. +
2𝑘

2𝑡 + 1
(𝐿�̂�√

𝜆

2 − 𝜆
𝜃) = �̅�.. + 2𝑘𝜏 

and the difference between 𝑇𝑙 and 𝑇𝑘 is given by 

𝑇𝑙 − 𝑇𝑘 = �̅�.. +
2𝑙

2𝑡 + 1
(𝐿�̂�√

𝜆

2 − 𝜆
𝜃) − �̅�.. −

2𝑘

2𝑡 + 1
(𝐿�̂�√

𝜆

2 − 𝜆
𝜃) =

2(𝑙 − 𝑘)

2𝑡 + 1
(𝐿�̂�√

𝜆

2 − 𝜆
𝜃)

= 2(𝑙 − 𝑘)𝜏

So the lower limit of the element of 𝑄(𝑈, 𝑉; 𝜆, 𝐿) is given by

𝑇𝑙 − 𝜏 − (1 − 𝜆)𝑇𝑘
𝜆

=
1

𝜆
(𝑇𝑙 − 𝑇𝑘 − 𝜏 + 𝜆𝑇𝑘) =

1

𝜆
(2(𝑙 − 𝑘)𝜏 − 𝜏) + �̅�.. + 2𝑘𝜏

= �̅�.. +
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 − 1)𝜏

And the lower limit of the element of 𝑄(𝑈, 𝑉; 𝜆, 𝐿) can be transformed further as follow 

𝑇𝑙 − 𝜏 − (1 − 𝜆)𝑇𝑘

𝜆√𝜎2
−
𝜇2

√𝜎2
=
�̅�..

√𝜎2
+

1

𝜆√𝜎2
(2𝑙 − (1 − 𝜆)2𝑘 − 1)𝜏(�̂�; 𝜆, 𝐿, 𝜃)

=
𝑊

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 − 1)𝜏 (

√𝑌

𝑐4√𝑚 − 1
; 𝜆, 𝐿, 𝜃) − 𝛿

where 𝑊 =
�̂�−𝜇

√𝜎2/𝑚
∼ 𝑁(0,1), 𝑌 = (𝑚−1)�̂�2

𝜎2
∼ 𝜒𝑚−1

2  and 𝛿 = 𝜇2

√𝜎2
−

𝜇

√𝜎2
.  Similarly, the upper limit of 

the element of 𝑄(𝑈, 𝑉; 𝜆, 𝐿) for the zero state can be transformed as follow 

𝑇𝑙 + 𝜏 − (1 − 𝜆)𝑇𝑘

𝜆√𝜎2
−
𝜇2

√𝜎2
=
𝑊

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 + 1)𝜏 (

√𝑌

𝑐4√𝑚 − 1
; 𝜆, 𝐿, 𝜃) − 𝛿

So the elements of the conditional essential transition probability matrix are given by 

𝑞𝑘𝑙(𝑊, 𝑌; 𝜆, 𝐿) = 𝛷 (
𝑊

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 − 1)𝜏 (

√𝑌

𝑐4√𝑚 − 1
; 𝜆, 𝐿, 𝜃) − 𝛿)

− 𝛷 (
𝑊

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 + 1)𝜏 (

√𝑌

𝑐4√𝑚 − 1
; 𝜆, 𝐿, 𝜃) − 𝛿)

For the convenience of computation, let 𝑊 = 𝛷−1(𝑈) and 𝑌 = 𝐹𝜒𝑚−12
−1 (𝑉) where 𝑈 and 𝑉 are i.i.d.

from uniform distribution with minimum 0 and maximum 1. 𝛷−1  is the quantile function of the 
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standard normal distribution and 𝐹𝜒𝑚−12
−1  is the quantile function of the chi-square distribution with

degrees of freedom 𝑚 − 1. The elements can be rewritten as 

𝑞𝑘𝑙(𝑈, 𝑉; 𝜆, 𝐿) = 𝛷

(

𝛷−1(𝑈)

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 + 1)𝜏

(

 
√𝐹𝜒𝑚−12

−1 (𝑉)

𝑐4√𝑚 − 1
; 𝜆, 𝐿, 𝜃

)

− 𝛿

)

−𝛷

(

𝛷−1(𝑈)

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 − 1)𝜏

(

 
√𝐹𝜒𝑚−12

−1 (𝑉)

𝑐4√𝑚 − 1
; 𝜆, 𝐿, 𝜃

)

 − 𝛿

)

If the process for the steady state is in-control, 𝛿 = 0  and as ℎ → ∞ , 𝜃 → 1 , so the in-control 
elements are given by 

𝑞𝑘𝑙(𝑈, 𝑉; 𝜆, 𝐿) = 𝛷

(

𝛷−1(𝑈)

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 + 1)𝜏

(

 
√𝐹𝜒𝑚−12

−1 (𝑉)

𝑐4√𝑚 − 1
; 𝜆, 𝐿

)
)

− 𝛷

(

𝛷−1(𝑈)

√𝑚
+
1

𝜆
(2𝑙 − (1 − 𝜆)2𝑘 − 1)𝜏

(

 
√𝐹𝜒𝑚−12

−1 (𝑉)

𝑐4√𝑚 − 1
; 𝜆, 𝐿

)
)

where 𝜏 (
√𝐹𝜒𝑚−1

2
−1 (𝑉)

𝑐4√𝑚−1
; 𝜆, 𝐿) is the special case of 𝜏 (

√𝐹𝜒𝑚−1
2
−1 (𝑉)

𝑐4√𝑚−1
; 𝜆, 𝐿, 𝜃 = 1). 
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