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Abstract

Most survey sampling estimators derive their large sample properties by establishing an
asymptotic equivalenceto the Horvitz-Thompson (HT) estimator If the proposed estimator
is asymptotically equivalent to the HT estimator, then it inherits the HT estimator
asymptotic properties such as design consistency with a limiting normal distribution.
Although this approach is valid, it does not provide insights on the proposed estimator’s
efficiency in small samples. Asaresult, most papers include simulation studies to examine
these properties empirically.

We take a different approach and show that methods from classical asymptotic theory for
estimators as functions of random variables can be used to derive the asymptotic property
of survey sampling estimators. The focus of this approach is the discrete random vector of
the sample membership indicators as the only stochastic component of the estimator. The
use of discrete multivariate statistics and matrix operations reduces the derivation of the
expressions of the estimator and its asymptotic properties to an algebraic problem while
providing new insights into its properties. We illustrate these methods by deriving the
variance, variance estimator, and determining the sufficient conditionsfor the HT estimator
and its variance estimator to be design consi stent.

Keywords: Large sample theory, function of random variables, discrete multivariate
statigtics, finite population, sample design

1. Introduction

In this paper, we derive the large sample properties of survey sampling estimators using
the principle and tools from classical asymptotic theory (Polansky, 2011; Lehmann, 1999).
We extend an idea developed by Tillé (2006) and postulate that sample designs are
uniquely defined as a multivariate discrete random variable for the sample membership
indicator with an expected value and a variance-covariance matrix with specific properties
that determine the design. The observed sampleisarealization of thismultivariate discrete
distribution. Defining survey-sampling estimators as functions of the random sample
membership indicators facilitates the study of the large sample properties of current
estimators and the derivation of the expression of the variance and estimate of the variance
of new estimators. This approach requires familiarity with modern matrix notation and
matrix operations, and provides new insights into the performance of estimators without
the use of simulations.

The rest of this paper is organized as follows. In Section 2, we summarize the current

approach for studying the large sample properties of survey estimators based on the work
of Isaki and Fuller (1982). Section 3 presents the ideas for the proposed approach, while
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Section 4 and 5 describe the approach in detail. Sections 6 to 10 illustrate the use of the
proposed framework to study the large sample properties of the Horvitz-Thompson (HT)
estimator and derive the formulas of the variance and variance estimator. Section 11
presents the conclusions and final thoughts.

2. Current Framework for Studying the Asymptotic Properties of Survey
Sampling Estimators

Isaki and Fuller (1982) isthe seminal paper that established the standard for studying the
large-sample properties of estimatorsin survey sampling theory. Before summarizing their
approach, we introduce the concepts and notation of their approach (see Fuller, 2009).

Let F bethefinite population of known size N defined as the entire set ]—"z(yl,...,yN)

where y =(Y1,.... YN )T isthe variable of interest defined for all the elements of F where
each element is identified by the label U, where U ={1...,,N}. The population F is

sampled according to asingle-stage sampledesign p(s) whereasampleof size n isdrawn
without replacement. The sample design determinesthe first-order probability of inclusion
of each unit of the frame denoted as 7 €(0,1) for keU and A =[xy —mr; ]e RN is
the variance-covariance matrix of the sample design where 7y € R is the second-order
probability of inclusion of elements k and | defined as the probability that the 2-tuple
(k,1) are both selected in the sample.

We areinterested in estimating the population total of the y, definedas Y = Z Y- Inthe
keU
simplest case (without the use of any auxiliary information from the population), we can

estimatethetotal Y usingthe HT estimator defined as \?HT = Z de VS« Where dy isthe
keU

sampling weight computed as dy, =7 L and S¢ € {0,1} isthe sample membership indicator
where s, =1 if the unit k is selected in the sample and 5, =0 otherwise (Horvitz and
Thompson, 1952).

In the Isaki and Fuller (1982) theoretica framework for the asymptotic analysis of design-
based estimators, the existence of an indexed sequence of nested finite populations,

{FN}Ezl is assumed, with increasing sizes Ni,...Ny where F/Ac/Frc...cFy,

o]

N; <Ny <...< Ny, with labelsfor each element in the population {Uy = {1..., Ny }}, _; -

o0
N=1
where asampleisdrawn from each fine popul ation in the sequence according to a sequence

The framework also assumes that a sequence of associated probability samples {AN }

of sample designs {pN (AN =ay )}Ezl. Both the finite population size Ny and sample
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size ny increase to infinity but that the ratio is finite, since by definition,

d@wr:_Nz fy=fe(01).
N—o0

Isaki and Fuller (1982) show that the HT estimator meets the conditions stated in the
following two lemmas:

e Lemmal: \?HT,N -Yn =(9p(1/ n,a\,) for 6 >0.

e Lemma2: Thereis a sequence of sample designs {p(AN = ay )}Ezl with inclusion

probabilities 7y for ke(L...,N) suchas B(Yir n —Yn ) =O(L/ny).

The HT estimator is said to be design consistent because it meets these two conditions.

These lemmas are closely related to the definition of design-consistent estimator 6 for the
finite population parameter 6 given by Sérndal, Swensson, and Wretman (1992):

o The sequence of the estimator éN is asymptotically unbiased for the population
parameter éN if

lim [E(éN)—eN}o.

N—o0
e The seguence of the estimator éN is consistent for the popul ation parameter éN if for
any fixed £ >0,
lim PrUéN ﬁgN\>g}=o.

N—o0

Although these conditions define design-consistent estimators, whether an estimator is
design consistent does not only depend on the sequence of sample designs but also on how

the sequence of the outcome {Yy ={yi,... yn }}Ezl is specified as N — oo (Sérndal,
Swensson, and Wretman, 1992).

Breidt and Opsomer (2017) expand thisand provide two sufficient conditionsfor thedesign
consistency of the HT estimator that reflect the limiting behavior of the sequence of the

0

outcome {Yy fy_q-

e Assuming that lim ﬂ:fe(o,l), then for al N, Lnin;rkzlle and
N—o U

limsupn max |Ak,|<oo;and
Nooo  kileU ke

e Theoutcome variables y, for keU satisfy limsup N‘lz ylf <o,
N—o0 keU

If these conditions are met, then the upper bound of the variance of the HT estimator is

837



JSM 2019 - Survey Research Methods Section

(2.1)

2
a1

Ni 5 N PR N

k=1

which convergesto zero as N — . In other words, V(\?HT ) = O(%) (Fuller, 2009).

The previous results have used in the literature as the building block for deriving the
asymptotic estimators defined as functions of the HT estimator. This approach does not

address the situations where the sequence for the outcome {Yy }Ezl interacts with the

sequence of sample designs. For example, in nps sample designs (Sérndal, Swensson, and
Wretman, 1992), the probability of inclusion 7, may be afunction of auxiliary variables

related to the outcome vy, . Estimates from sample designswhere . is proportional to yj

are more efficient. An implicit assumption in (2.1) is that the probabilities of inclusion are
independent of the outcome vy, .

3. Alternative Framework for the Study of Survey Sampling Estimators

Most of the literature related to the large sample properties of more complex estimatorsis
based on the results of the HT estimator described in the previous section. However, these
proofs are lengthy and technically difficult (Knottnerus, 2009). Many proofsare done using
a piecewise approach where the properties of the components of the estimator are analyzed
separately using different criteria for upped bounds producing expressions such as
equation (2.1) that are be difficult tointerpret and to derivefor other estimators. The current
approach is aso not informative for the comparison of the asymptotic properties of
different estimators and sample designs. Consequently, most papers include simulation
studies to examine their properties empirically.

We propose a different framework for the study of the large sample properties of survey
sampling estimators. We combine and extend existing ideas to formalize the definition of
the sample design and survey sampling estimators. The proposed framework is based on
standard asymptotic theory to derive the dtatistical properties of finite population
estimators. Although in some textbooks this approach is called infinite population theory,
thisisamisnomer sincethistheory also address the asymptotic properties of finite discrete
random variables (see Polansky, 2011; Lehmann, 1999). The second idea is the extension
of the methods from the standard asymptotic theory proposed by Cornfield (1944) for
proving the properties of finite population estimators (see Section 2.9 in Cochran, 1977).
The proposed framework relies heavily on modern matrix notation and algebra. Thisidea
is suggested by Dol, Steerneman, and Wansbeek (1996), who show the convenience of the
use of a number of matrix-algebra results to determine the sufficient conditions for the
consistency and the rate of convergence of the HT estimator. We expand the matrix
notation to include element-wise operations (i.e., Hadamard operations such as product and
division). The use of matrix algebra reduces the derivation of the formulas for expected
values and variance to a simple algebraic exercise while providing new insights into the
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properties of the estimators. Finaly, we use Tillé€'s (2006) approach, which redefines the
concept of sample design as a multivariate discrete random vector of the sample
membership indicators.

The proposed framework is easily extended and can be used for deriving new estimators,
their variances, and variance estimators. Applications of this framework are described in
Flores Cervantes (2019). The framework can also be extended to include the effect of
nonresponse when it is modeled as a random variable with a well-defined distribution.

4. Alternative Definition of a Sample Design

We begin by defining single-stage sample designs where the sample is drawn without
replacement. Any sample design can be uniquely defined asfollows:
Let Se{0,1} N’ be avector-valued random variable with adiscrete multivariate distribution

consisting of N random sample membership indicators Sz(Sl,...,SN)T , With S, =5,
where s, istherealization of S, and S, =5, =1 if the unit k is selected in the sample,

and § =5, =0 otherwise. The probability mass function (pmf) of S for a single-stage
sample design without replacement is

p(S=9)=exp(r'S-a (2Q)), (4.)

where A eRN | Q isthe support of p(S), and a (2Q) isafunction that ensures that the

cumulative of p(S=s) isone. The expected value of S, ne(O,l)NXl, is
T
2=E(S)=| 3 Sp(S) Y SuP(SV)| =(rrmn)
Sie{01) Snel0l)

where =7 ] e(O,l]N is the vector of the first-order inclusion probabilities ) > 0* for

keU . The second momentof S, MeRN*N  as

n-g(ss")=[ry],

where II isthe matrix with the second-order probabilities of inclusion 7, of elements k

and | . Combining the previous results, the variance-covariance matrix of S, Ae RN<N ,

IS

A=E(SS")-E(S)E(S)

=l'[—mtT

L In order to be a Lebesgue measure, 7, > 0.
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where A =[Ay | =7y —7gm | for k1 eU .

Not all multivariate discrete random vectors S are useful sampledesigns. We areinterested
in those random vectors S such that = and IT, O< 7y <1 for keU and 7y >0 in II.
These two conditions define an estimable design. These conditions are needed because the
survey estimators (including variance estimators) are expanded by the inverse of 7, and

my of the sampled units. For example, the HT estimator and its variance estimator are

Yir =(yon)'s and V(Y1 )=(yosom)(Aom)(yoson)'

where the operators © and @ are the Hadamard-Schur or element-wise matrix product

and division (Horn and Johnson, 2013). The definition of an estimable design is similar to
the concept of a measurable design (Sérndal, Swensson, and Wretman, 1992).

In order to determine the regularity condition of the large sample properties of the
estimators, we rely on the properties of the covariance matrix A of estimable designs. A
isaHermitian matrix with the following properties:

(@) A real (square) symmetric matrix;

(b)) A norma matrix suchthat AAT =ATA;

(c) A matrix that can be diagonalized by a unitary matrix with real elements on the
diagonal (finite-dimensiona spectral theorem); and

(d) A matrix with real and linearly independent eigenval ues.

Additional properties of the variance-covariance matrix A depend on the type of sample
designs as described in the next section.

Example 1:

A commonly used sampling design is systematic sampling (Cochran, 1977), however,
although there is a pmf that defines systematic sampling, there are 2-tuples (k,|) with the

second-order probabilities of selection with O values. In other words, there are pairs of units

that are never selected in the same sample. Although the HT estimator \?HT = Z Scdi Yk
k=U
of the total of the population Y = Z yi for a systematic sample design is defined, the
k=U
estimator of the variance cannot be computed. In practice, practitioners assumed that the
sampleis drawn with replacement. In this case, the assumed design has a pmf with the off-
diagonals of II defined as 7y =7 | . The elements of the Hadamard divison A@ = is

Ay 7y~

when the eement is not in the diagonal is 0, or

Iy T

A 1- _
K =7[k( ﬂk)Zl—ﬂk otherwise.

[Ty Ty
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Example 2:

Suppose thereisasample design defined by the pmf of S for apopulation of size N =100,
where the E(S)=0 for k>90. In this example, the 90" to 100™ units of the population

do not have a positive value of selections. The HT estimator for thetotal Y = Z Yy isnot
kel
defined (i.e., division by zero for units with 7, =0) and this design is estimable. In

practice, the HT estimator can be computed for the subset of units with positive values,

however, in this case, the HT estimator produces an estimate of thetotal Y* = Z Y
ke{l,...,89}

which is abiased estimator of Y .

5. Typesof Sample Designs

We use the variance of the sum of the elements of S to classify the sample designs. Let
Z:RN 5 R bethe vector-to-scalar function defined as Z = Z(S) = 1"S. The variance of

Z is V(Z)=1"TA1, which is directly derived using the standard rules for variance

computation for random vectors (see Gallager, 2013). In this case, Z(S) is a linear

functionof S, for keU sinceit can be written as the linear combination of the elements
of the random vector S as

Z=2 AS=aS+-+anSy,

keU

where a =1 for keU .

The variance of the sample size, V(Z) , corresponds to the grand sum of A (i.e., the sum

of all the elements of A) and can be decomposed as the sum of the contribution of the
variances and covariance of the elements S, as

V(Z)=1"A1= Y V(S)+ > C(S.9). (5.2)

keU k,leU k=l

This expression has an intuitive meaning. Each element of S, S, contributes to the total
variance V(Z) through the variance component, V(Sk) , and the sum of the covariance

withtheother elements > C(S,§ ). When the sample design is Bernoulli or Poisson
leU k=l

sampling, then C(S,,S)=0 foral k=1 eU . Inthiscase, the variance of the sample size
is the sum of the contributions of the variance of each unit in the frame as

V(Z)= 2 (l-7k).

keU

841



JSM 2019 - Survey Research Methods Section

Therandomvector S representsafixed samplesizedesignif V (1T S) =0. Some examples

of fixed sample size designs are simple random sampling, Sampford, Midzuno-Sen,
Sumter, and Tillé sampling (see Tillé, 2006). These designs have the following properties:

@ A ispositive semidefinite.

(b) If Amin(A)<AN_1<..<Ap <Ama (A) are the ordered eigenvalues of A, then
Amin(A)=0; that is, the eigenvalues 4y (A) for keU are nonnegative.

() 1row, A=0 and 17 coly A=0 for keU , and Tr(IA)=0— that is, the sums of
rows, the sum of columns, and the total sum of the elements of A — is zero.

(d  Thesamplesizeisn=1"x.

When the sample sizeis fixed, the sum of the diagonal of A, Z 7 (1= ), hasthe same
keU

value as the sum of the off-diagonal elements, > >’ (y —mr; ). This equality can be
keU leU

proved using the properties of the variance-covariance matrix A for fixed-size sasmple

designs listed above.

The discrete random vector S with parameters E(S)=n and C(S)=A is a random

sample size design if V(lT S) # 0. Some examples of random size designs are Bernoulli,

and Poisson sampling, see Tillé (2006). Although this type of sampling is less frequently
implemented in practice, random size designs are especiadly useful for modeling
nonresponse. The properties of the random sample size designs are:

€) A ispositive definite with all eigenvalues Ay (A)>0 for keU .
(b) A =diag(n) because 7y =z in A for k,l eU k=l .
(©) The row and column sums are 17 row, A=m, lcol| A=x for k€U, and

Tr(IA): n, where n isthe expected sample size, an(lTS).
@  V(1"s)s1Tar=1"(ro(1-m)).

(e) Let SE{O,l}NXl be the vector of one redization of S, S=s, then the observed
samplesize n, is n, =1Ts.
) If Amin(A)<AN_1<..SA2<Am(A) are the ordered eigenvalues of the

variance-covariance matrix A , then the eigenvalues are the first-order probability

of inclusion = . The largest eigenvalue of A is A (A)=argmax{r} .
keU
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6. Functions of the Random Vector S

We now explore two basic functions of the random vector S using results from
multivariate standard statistical limit theory.

6.1 Function for the Mean Vector of Random Vectors

N
Let Z:RN - RN be avector-valued function defined as Z(S)z%ZSk where Sy is
k=1

the k -th redlization of the random vector S for k {L N} . Therandom vector Z isthe
average of N vectors S, of size N each. This function is a typical example found in
statistical limit theory textbooks (e.g., Polansky, 2011). Define {Z }0:1:1 as the sequence
of estimators Z . Then

(@ lim E(Zy |F)=mn.

N—o0

() V(Zy|F) isbounded, V(Zy |}‘)=O(%j.

(©) Following from (a) and (b), the sequence of estimators {Z N }01321 iscongistent for
n (weak convergence; Polansky, 2011).

6.2 Function for the Mean of the Elements of the Random Vector S

The second function is defined in terms of the elements of asingle vector Z that increases

insize N inthe sequence as N — o. Thisisin contrast to the first function in Section
6.1, where the number and size of the averaged vectors increases as the population size

increases. Let Z:RN > R be a vector-to-scalar valued function Z(S):%lTS. This

function differs from the one in the previous section because Z is the average of the N
elements S, of asinglerealization of S. Thefunction Z isthe expected overall sampling

rate. To study the asymptotic propertiesof Z, let {ZN }ﬁ:l be the sequence of estimators
Z . The expected value and variance of this sequence are

E(ZN)zﬁanN , and (6.1)
1
V(ZN)zml,T\]ANIN. (6.2)

Thefunction Z(S) isnot as common and the elements S, € S arenot required to have the
same expected value, thatis, E(S ) #E(S ) for k=1 and k,| eU , andthe 2-tuples (k)
can be correlated (they are not independent).
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In our approach, we can simplify these expressions depending on thetype of sampledesign.

If S isafixed sample size design, then IE,(Z):i R ="V _ ¢ wheren= > my is
N N
eU keN
the sample size, and f isthe overall sampling rate. In these designs, because V(Z):O,

0

there is no need to find an upper bound for the sequence of estimators {Zy ;-

N=1
converges to the expected sample size n. To obtain the upper bound of the variance
V(ZN ) we apply the standard rules for variances of random vectors, inequalities for

guadratic forms of Hermitian matrices, and inequalities for eigenvaluesin terms of matrix
norms. So

On the other hand, if S is arandom sample size design, then the sequence {Zy}

1

V(ZN)ZF]:II:IAN Iy

~ Lo, ) , 3

1 A A
SF/lmax (AN )”1N ”; ZM

where Qy (1y) :1L AN1y isthe quadratic form of the vector 1y with respect to the

matrix Ay, Amax (An) isthe maximum eigenvalue of the matrix Ay, and |1y ||§ is the

squared LZ-norm of the vector 1y, where |1 ||§ =Y 1*=N. The variance V(Zy) of
keN
the sampling rate is bounded by a function that depends on the largest eigenvalue of Ay,

Amax (AN ) -

In sample designs where the sample draws are independent (e.g., for k =1,k,l eU), then
the variance-covariance matrix is Ay =diag(nN o1y —nN)). Since for diagona
matrices the eigenvalues are the elements of the diagonal, the largest or maximum
eigenvalueis

Amax (An) = maxarg{ A | = maxarg{nN,k(l—ﬂ N,k)} : (6.4)
kEUN kEUN

The eigenvalue Apgq (Ay) is afunction of 7y . Sometimes it is desirable to have a

bound that does not depend on the first-order inclusion probabilities. This upper bound can
be found by noticing that A (A ) isthe variance of arandom variable with aBernoulli

distribution with the parameter 7 = maxarg {7r Nk (17 Nk )} . Since the possible val ues of
keU N
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 areconstrained between 0 and 1, then 7 (1) hasaglobal maximumat = :% . Then,

the upper bound of the variance of the sequence {Zy }f‘zl is
V(zy)< all =o(ij, (6.5)

where Ky =0.5. The expression (6.5) assumes that K =O(1), which is true since, by
definition, the vector S is an estimable design where lim A5 (Ay)>0 and
N—o0

lim Apax (An)<1forany N.

N—w

7. Linear Functionsof the Elements of the Random Vector S

We now introduce a constant vector ac RN in the function Z. Let az[ak]e]RN be a

vector of congtants, and let Z:RN — R be the function of S defined as Z(S):W Ts,

the linear combination of the sample membership indicators s, for keU of theform
1 1
Z(S)=—aS +...+—anSy -
(S) Nalsl N ENSN

To study the asymptotic properties of this estimator, we define the sequence of estimators
{Zn }Ezl and apply the rules used in Section 6. The expected value and variance of the

sequence {Zy |y, are
E(ZN):%aLnN,and (7.1)

2
1 1 A A a
V(ZN):Fa-II\-IANaN ZFQAN (aN)S max( N)” N||2 ’ (7.2)

N N

where |ay ||§ is the square of the L?-norm of ay, ||ay ||§ =" afy - The upper bound of
keN

V(Zy) is afunction of the largest eigenvalue of the variance-covariance matrix Ay .
Replacing Amay (An ) by KN =Amax (AN ) - the upper bound is

2
Kn [an]

V(Zny)S—
(zy) < SN

where Ky can be any vector-induced matrix norms for Ay . Instead of using the
matrix-induced norms, we can use the largest eigenvalue of Ay directly for these designs
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since the variance-covariance matrix is Ay =diag(ny ©(1-my)). The largest
eigenvalueof Ay is

Amax (AN ) = ”:(aeﬁafg{[ANw]} = ”:(aeﬁafg{[ﬂr\lk (1_7[Nk):|} : (7.3)

Asin the previous section, we can use an upper bound of the largest eigenval ue noting that
Amax (AN ) is the variance of a Bernoulli random variable with the parameter

= maxarg{;rN’k (1_”N,k)} , which has a global maximum at 7 =%. After combining
keUp

these results, the upper bound of the sequence of estimators Z (S) is

V(zy) SKWN”a:\\ll” =O[Nj o(1) =O[Wj , (7.4)

where K :1 . The upper bound of Z(S) isof theorder O 1 after applying Slutsky's
NT2 N

2
a
theorem and assuming that ” NN"2=(’)(1). The expression (7.4) assumes that

Amax (AN ) =0O(1) as N — o, whichistruesince, by definition, S isan estimable design.

8. TheHorvitz-Thompson Estimator asa Linear Function of the Elements of the
Random Vector S

We have aready derived some of the properties of the HT estimator of the population mean
\?:%fy , defined as

Z 1 T
because \?HT isthelinear function Z (S) from the previous section but with the vector of

constants a definedas a=d @y, where d e RN"? isthe vector with the sampling weights

d=10E(S)=107=n""=[d]=[7("],

o-1

where # is the Hadamard inverse of & or the Hadamard division of 1 by z, and

y e R™? is the vector with the outcome y =[y,] for keU . Let {\?HT N} be the
TIN=L

sequence of HT estimators defined in (8.1); then the expected val ue and variance are

E(YLHT’N)Z%].LyN ZV and (82)
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z 1
V(YHT,N):F(CIN QyN)TAN(dN OYn)- (8.3)

To study the large sample properties of the variance of HT estimator in (8.3), we
reparametrize it using the variable S, defined as follows:

Let S:RN 5 RN be a vector-to-vector valued function of S, where S=d©S. The
expected value of S is

E(S)=doE(S)=don=1. (8.4)

Since S is a random vector, we can compute the variance-covariance matrix of S,
Aé € RNXN , aS
V(S)=Ag=d"V(s)d
, (8.5)
—dAd" =A@ d®? {M—l}

dy

where d®? is the Hadamard product d©d. The variance of the sequence of HT

0

estimators, {\?HT,N} , can be rewritten interms of S as
N=1
V(Yur )=

: (8.6)
max (A ) Iyw 2

where Q, (YN ) isthequadratic form of thevector yy with respect tothematrix Ag .
and Ao (Ag N) is the largest eigenvalue of the matrix A s\ . Then the upper bound of

the sequence of HT estimatorsis afunction of A4 (A aN ) , the largest eigenvalue of the

reparametrized covariance matrix Ag . We can refine the upper bound by replacing

lmax(Aé,N) by its upper bound Ky Z/Imax(AS,N) using any of the matrix norms

induced by the vector 1-norm, co-norm, or Frobenius norm as
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Agn l—maxZ‘ASNkl‘ maxZ‘dedeNk, # 1- norm
1eUN k=1 UN k=1

Kn =1[Agn| = max Z‘ASNH‘ mex Z‘deledel # o0-norm
© keUnig Uniza

T 1/2 '
Asn| [tr(AS NAsN )J Frobenius norm

For random sample size designs, the matrix norm Ky, can be simplified to

Kn :argmax{AsN} =dn max —1> AN max -
kEUN

since Agy =diag(dy —1) for these designs. The upper bound of the sequence

~ o0
{YHT,N} ) isafunction of the maximum sampling weight dy \ , not the maximum 7

asinthe estimator in Section 7. The upper bound of the variance of {\?HT,N } is
N=1

AE Kn [¥nli :@(ij@(l):@(%j , (8.7)

where [y ||§ isthe square of the Euclidian normof yy, [lyn ||§ —yNYN - Theorder of the

variance of the HT estimator, V(Yyr ), is O(N_l) after applying Slutsky's theorem.

2
[ynlz

Two implicit assumptionsin (8.7) are Ky = O(1) and =0(1).

For random size designs, the matrix-induced norms are functions of the sum of the

N
elements; for example, for the 1-norm, these are sums by rows, Z‘dklNdLngllN —# , Of

HAS N Hl The terms to sum to determine the row with the largest value for the 1-norm are

listed in the Table 1.
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Table 1: Elements of the matrix Asn ‘

Column||
Row k 1 2 N
. dy -1 dind2n dndnN
N tio, N NN
) donOin Ao 1 donanN
do1N ' don N
d d
N N,N"LN — ‘dN,N —1‘
dniN

Since the summands are absolute values, the largest row sum corresponds to the row k

with the largest weight d, 5 = argmax {d N } . Then the upper bound or 1-normis
keU N

Kmax,N =

d d
—maxNZLN gl ...+‘dmaX’N —1‘+ ot
dmax1,N

Omax NANN
Amax NN

After rewriting the norm in terms of the inclusion probabilities, we abtain
T T
maxLN - maxN,N '
7T max,NT N,N

Tmax,NTLN
Since we assume that S is an estimable design where the sums by rowsof A are equal to
Ofor N — oo (see properties of Hermitian matrix for this design in Section 5), then 4

K max,N z‘dmax,N _1‘ +

convergesto 7\ N foral k=1eU . Thisequality is needed in order to maintain the
row sumin A as the population size increases. Combining these results, then the upper
bound of the 1-norm can be written as

Ky >argmax{dy } = dyax N -
kEUN

After substituting Ky, in (8.2), we obtain the same expression in (8.7) for the upper bound
of the variance of HT estimator for designs with random sample sizes.

Comparing the expression of the upper bound from Breidt and Opsomer (2017) in (2.1),

we notice that the first term matches (8.7), because O<Algkmi Ny = rlpax dy . Note that by
eU eU

definition S isan estimable design, then |, > 0 for al k €U ; therefore there is no need
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for the lower bound 4; to be greater than zero in the first term of the equation (2.1).
The second term of (2.1) is not needed becauseit goesto0as N — « .

9. TheDesign Consistency of the Horvitz-Thompson Estimator in Sample Designs
When n and y AreRelated

A more complete study of the asymptotic properties of an estimator requires examining the

limiting behavior of al the quantities that are used to compute the sequence of estimators

as N— o and n— . This is where the main difference arises between the current

approach and our approach. First, we do not consider the sequence of sample size

separately from the design because, by definition, the sample size is determined by the

design asthe sum of the probabilities of inclusion Z 7k N - Inother words, theincreasing
keUp

samplesizewhen n— o isnot arbitrary sinceit depends by the sasmpledesign S. Second,
the proposed framework for large simple analysis considersthree sequences: the popul ation
size, the outcome y , and thedesign S through the probability of inclusion (determined by
the design) that may be determined by a sequence of auxiliary variables x relatedto y .

However, to avoid inconsistencies resulting from multiple sequences converging to
infinity, we express al tow of these sequencesin terms of the order of the population size

2 x|
N; for example, Yy = > ykn=0O(N) and kENN = O{ N}/ZJ . Defining the
keUy
sequences as functions of the order of the population size N enables usto usethe algebraic
rulesfor the order of afunction © —the Bachmann-Landau order operator—when studying
the large sampl e properties of the estimators.

Theresultsfor the upper bounds of the variance of the HT estimator from the literature and
those presented in the previous section assume that the sample design S isindependent of
the outcome sample y. However, in practice samples are designed with the goal of

producing efficient estimates (with minimum variance) of the outcome of interest. A
stratified, pps (probability-proportional-to-size with replacement), or zps (n proportional
to size without replacement) sample designs may be preferable. These designs make use

use of an auxiliary varigble x e RN, x =[x] that isknown for all keU that is related

to the outcome; for example, Yy o xﬁ where y =0. Sampling design that produces

estimators with increased efficiency derive the first-order probabilities of inclusion =
based on the auxiliary variable x . For example, we can have avery efficient designswhen
Yk oc X if the probabilities of selection are be defined as

nznx/X,

where n isthe expected samplesize n= 1"n and X isthe population total of x computed
as X=1Tx.

850



JSM 2019 - Survey Research Methods Section

To study the properties of the HT estimator in designs with random sample sizeswhen y

and & are related, we use the general expression of the upper bound of the variance of the
HT estimator in (8.3), without separating the product y © dy in the quadratic form as

V(Yr )s%”(y@d)oz G)diag(ﬂ)”z. 9.1)

In the following designs, we assume that Xy = > %y =O(N) and m=nx/ X ; that
kEUN

is, the auxiliary variables are of the same order as the population size.

We examine first the case when y =1 and y, =cx, . In zps designs, designs with fixed
sample sizes, the variance of the HT estimator V(\?HT,N ) =0. In designs with random

sample sizes, the variance V(Yiyr v ) interms of y, after smplificationis

V(\?HT,N)g%kEU—z(O(EJ, (9.2)

2. %

keU
N

which converges to zero since, by definition, = (’)(1) . The sufficient conditionsin

expression (9.2) are more general than those in Section 2. When = isclosely related to vy,

the HT estimator is design consistent as to long as the first moment of the absolute values
of y isdefined and not the second moment asin (2.1).

We now examine the case where y =-1 and vy = £ The expression of the variance of
Xk
the HT estimator after smplification is

A

V(Yur ) < %kUT , 9.3)

A

which converges to zero when "EUT:O(l). The sufficient condition for the HT

estimator, in this case, is more constrained than in expressions (9.2) and in (2.1) in
Section 2. When = isinversely related to y , the estimator is design-consistent if the third

moment of the absolute values of y is defined.
Theresultsin (9.2) and (9.3) show that the sufficiency conditionsfor the HT estimator to

be design consistent when y and x are related depend on both orders of the sequence of
the outcome y and auxiliary information x when the latter is used to compute the
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probabilities of inclusion z . Theseresults are easier to derive using the proposed approach
presented in this paper.

10. TheVariance Estimator of the Horvitz-Thompson Estimator

Inthissection, wederive the variance estimator of the HT estimator. The variance estimator
of the HT estimator of the mean Y is derived from (8.7) after replacing A by A=AQ I
as

V(Y ) = N (y@d@S) A(yodos). (10.1)

The matrix A isthe sample expanded matrix A which is the element-wise division of A
by the probabilities of inclusion in II (i.e., a generaization of the HT estimator for

kalA

matrices). We reparametrize %A’(\?HT) as a sum of the new variable v
Ty 7|

expanded by 7, , similar to an HT estimator with the variable vy as

>y (10.2)

V(Y
( HT) N2 keU leU ”k|

We continue reparametrizing (10.2) using the following variables:

o yeRMN where y=(yon) A(yon), the matrix representation of v .
e S,e RNN 2 matrix with the sample membership indicators of the 2-tuples (k,I),
where E(S,)=1I, the matrix with the second-order probability of inclusion 7 .

22
° As, e RN™N" " the covariance matrix of S,, where As, =[7m ~ 7T m] and

7 mn 1S the fourth-order inclusion probability of the 4-tuples (k,I,m,n).
e To avoid tensor notation (i.e., multidimensional matrices), we vectorize y and IT as

N2 o-1 N2 e
vec(\u) eR™ , veclIl eR"™ (Magnus and Neudecker, 1999). The expression
of KA/(\?HT) with the reparametrized variablesis

V(Yur) =$vec(\y)T vec(HO_lcasz). (10.3)

The expected vaueis
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E(V(YHT )) = %vec(\y)T Il*](vec(H@_l ©) Sz))

(10.4)

Therefore, @(VHT) is an unbiased estimator of V(Y7 ).

To study the limiting distribution and bounds of the estimator V(Yr) as N — o, we

derive the expression of V(@’(\?HT )) following the same procedures from the previous

sections.
(7 o)) = et ves(s) -
L vexly o )" (v ec(y o)
=Ni4vec(\ll oM)' A, vec(y o 1)

1
= FQAsz (Vec(‘l’ % H))

_max(2s,) [y o
s =l DS

where 4 ,y,ax ():SZ ) isthe largest eigenvalue of the matrix

Is, =As, 0A% 0% o N,

2
(”kl —”kﬂl) (”kln’n‘”kl”mn).

mica 7

withtheelement Xy, s, =

An upper bound K z/lmax()lsz) is obtained using the vector induced matrix norms in

Eszas
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N
Ls, [, = max Z‘Egz,m ‘ 1- norm
leU | 4
N
S2le0 ™ ke IZ, S,
T V2 :
‘282 ‘F = [tr(zsz,kl Ls, )} Frobenius norm

The main difficulty of identifying an upper bound for K isthat it requires examining the
elementsof Xg, . Thethird- and fourth-order 7y gy, Of inclusion probabilities (7,

and 7,,) arenot available or are difficult to compute for some complex designs.

On the other hand, for random sample size designs, we can refine the value of K since

3
g, isadiagona matrix, where g =[(dk —1)3J:[(7r121—1) } K is the maximum

2
sampling weight which is equivalent to the smallest r, . Assuming that M =0(1),
then, after using Slutsky's theorem,

- oyl} 1 1
V(Y (Yar)) s%”yTZ = O[FJ 0(1)= O(FJ . (10.5)

V(Y ) is bounded in probability and ’\!iinw@(VHT,N)zl\!ianV(VHT,N)=O. The

2
exoresson| — lyoyls . o .
pression in (10.5) implicitly assumesthat ———= is (’)(1) . Thisratio can be written as
N 2 N

2 2 4

2 yOZ Z(Yk) z Yk
”y O y"2 _ H HZ _k=1 _k=1 — 0(1) , (106)

N N N N

which isthe fourth population moment of y.

Breidt and Opsomer (2017) do not provide an explicit expression for the upper bound of

V(Y1) similar to (10.5). However, they list two sufficient conditions, D3 and D4, for

design consistency of %A/(VHT) . The condition D3is argmin{r } >4, > 0, which hasthe
k,lEU N

parameter 1, asalower bound sothesmallest 7|y isnot zero. This parameter isnot needed

o0
N=1
mq >0 for all k,I eU . The condition D4 matches equation (10.6).

because the sample designs in the sequence {SN } are assumed to estimable; therefore
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Unlike the previous section, where we analyzed the sufficient conditions for consistency
by examining the relationship between y and =, we illustrate how the speed of

convergence varies and the situations where KA/(\?HT) does not become zero as N — oo.
We begin by substituting x2 by yit in ||y©y||§, then an upper bound of @'(VHT,N ), in
terms of the population mean Yy, is %AI(VHT,N)g KXZ =KyN2Y . If we define

{yN}E:1 as a sequence of real constants, yy e RN where Yy =(’)(NP), then the value

of p such as RA’(\?HT,N) does not converge, eg., \A/(\?HT,N)ZOp(l), is pz-%. If

3¢ p<—£, then V(Yyr ) converges at a sower rate than O (N_l); if p<—§,
4 2 : p 4

V(Yiyr N ) converges at afaster rate than (’)p(N‘l).

11. Final Thoughts

We have presented a systematic framework that facilitates the study of the large properties
of the survey sampling estimators by focusing on the sample design as a multivariate
random vector with the sample membership indicators with a well-defined pmf. The
proposed approach not only provides a systematic method for determining the sufficient
conditionsfor design consistency but a so facilitates the derivation of new estimators, their
variances, and variance estimators. In this framework, all survey estimators are functions
(linear or nonlinear) of these elements of the random vector of the membership sample
indicators, and standard statistical tools for functions of random variables can be used to
study their properties. Furthermore, the proposed framework enables us to extend the
sufficient conditions of the large sample properties of the HT estimator and its variance
estimator not reported in the literature. We have shown that the sufficient conditions for
HT estimatorsto be design consistent also depend on the relationship between the outcome
and the probabilities of inclusion when the later are derived using auxiliary variables
related to the outcome. Thisrelationship has not been accounted for in the current literature.
Analyses based on the presented approach of more complex estimators such as the H§j ek,
ratio, GREG (generalized regression), and poststratified estimators, among others, are
presented in Flores Cervantes (2019). Future research will address the extension to sample
designs with replacement and with multiple stages. Another research areais the extension
of the framework to address nonresponse weighting adjustments.
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