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Abstract 
Common practice of either ignoring non-detects (NDs) or replacing them with 
‘simple substitution’ values, e.g., half the reporting limit (RL), has led to calls for 
greater statistical sophistication via left-censored data models. Less clear is if the 
assumptions underlying a censored model are always satisfied, or whether such a 
model leads to more accurate results. 

Simple substitution of half the detection/reporting limit (RL) can be viewed as 
replacing each non-detect with its expected value under a mixture model that draws 
non-detects from a uniform distribution on the interval [0, RL]. We propose an 
extension to this model whereby non-detects are drawn with Monte Carlo sampling 
from one of a class of bounded distributions on [0, RL], e.g., uniform, beta, triangle. 
We also propose repeated draws from the mixture model to generate a series of data 
realizations, from which the statistical properties of any desired estimator can be 
computed. 

The benefits of this combined mixture model and computational strategy are 
explored, including algorithmic and computational feasibility, and better visualization 
and assessment of ND-associated uncertainty. 
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1.  Introduction and Background 
Statisticians are popularly teased as ‘anal-retentive.’ As the old joke goes, how many 
statisticians does it take to change a light bulb? Answer: 3.67 statisticians, on average. 
Yet making sense of mathematics, statistics, and evidence is complex. To understand 
how things actually work, as opposed to Just So explanations, mundane, nitty-gritty 
assumptions and models must be tested. 

So it goes with a ubiquitous issue in environmental data analysis: the little goblins 
known as non-detects. Ostensibly, non-detects are a statement of nature. A chemical 
or substance is tested and found lacking in a physical observation. In practice, 
laboratories can rarely make such a claim. Instead, due to analytical limitations and 
measurement imprecision, they assert that the measured value (e.g., concentration) of 
a non-detect is no greater than a threshold (e.g., detection/reporting limit [RL]). Thus, 
non-detects are akin to statistically left-censored observations, with ‘true’ value 
located in the interval [0, RL]. 

Statistically-minded observers may think the problem already solved under this 
conceptual framework. A quick reworking or extension of survival analysis methods 
for right- or interval-censored data ought to do the trick. Indeed, efforts have been 
made to apply more sophisticated censored-data models and survival techniques to 
non-detects. These have ranged from MLE estimates for left-censored data, to non-
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parametric and parametric adaptations of Kaplan-Meier, an alternative to Kaplan-
Meier known as regression on order statistics (ROS), to censored regression methods 
such as tobit regression, etc. (Cohen, 1959; USEPA, 2009; Helsel & Gilliom, 1986) 

Nevertheless, the little goblins refuse to go away. One problem is very practical and 
ingrained. For a long time, environmental scientists — sometimes due to lack of 
statistical training or perhaps not wanting to bother — have taken the path of least 
resistance. Spreadsheets and Excel do not easily accommodate censored-data models 
without significant effort. Much easier is simple substitution: replacing each ND by a 
single guesstimate (e.g., 0 or some fraction of the detection/reporting limit, say RL/2, 
but sometimes the RL itself). Though statisticians have hollered in protest (Helsel, 
2005) at the crudeness and probable bias associated with simple substitution — 
especially for smaller samples and larger proportions of non-detects — the practice 
has mostly gone on, unchanged. 

A second problem is the difficulty in accurately modeling the modern analytical 
measurement process. Chemists routinely but inconsistently use text-based 
‘flags’ (i.e., notations about the physical sample) to record additional information 
about measurements alongside their detection status and measurement threshold. An 
example is the contrast between a ‘U’ versus a ‘J’ flag. Both measurements might be 
reported with the same reporting limit (RL), yet ‘U’ often indicates an ‘undetected’ 
substance, while ‘J’ usually means the substance was probably detected yet still 
somewhere below the threshold. The reality can be fuzzier still. A ‘U’ flag may be 
interpreted as a value below the method detection limit (MDL), as opposed to a 
‘zero,’ while ‘J’ might represent a value between the MDL and the larger RL. 

Complicating matters, MDLs and RLs themselves are statistically-derived on the 
basis of repeated measurements of either ‘blank’ or ‘spiked’ physical samples. It is a 
probabilistic statement to say that a given measurement is assumed to be less than the 
MDL or RL, as the thresholds are not fixed or known physical properties of the lab 
apparatus. In fact, reporting limits can and do vary for the same substance measured 
by the same lab using the same analytical technique. And the variation may not be 
particularly or necessarily related to the distribution of the target substance. 
Measurements of a given chemical compound may suffer ‘interference’ by the 
presence of similar or ‘nearby’ compounds (e.g., on a spectrograph) or may be 
challenged by certain physical properties of the physical sample, such as high 
turbidity in groundwater or significant heterogeneity of grain size or composition in 
sediment and soil. 

Indeed, a special sort of problem arises with non-detects associated with high dilution 
factors, where the chemist may repeatedly dilute the physical sample in order to 
‘block out’ or ‘wash out’ interferences, only to determine that the target substance 
was not detected. Standard practice is to then ‘reverse’ or ‘back down’ the chain of 
dilutions before reporting the value, often resulting in unusually high reporting limit 
thresholds. 

The bottom line is that the goblins are quite real. From lab to lab, and dataset to 
dataset, it may not be clear precisely what non-detects represent or how they relate to 
the subset of detected values. With this lack of clarity or consistency, what is the best 
or most accurate way to handle non-detects in statistical estimates? Further, what is 
the impact of different statistical treatments or assumptions about non-detects, and 
does it really matter? These are the questions explored in this paper. 

2.  Framing the Problem 
While the ‘obvious’ statistical answer to non-detects is a left-censored data model, it 
is worth noting that censored models make strong assumptions, and usually require 
moderate to large samples for purposes of estimation. The strongest assumption is 
that non-detects occupy some portion of the lower tail of the overall measurement 
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distribution, so that, considered as random variates sans censoring, detects and non-
detects are identically distributed. In other words, if one could ‘peek behind the 
curtain,’ the ‘actual’ values of non-detects would be consistent with those of the 
detected observations. 

A reasonable (if ‘anal-retentive’) question might be: is this assumption typically 
valid? And, even if true, how would we check it? In extremely rare instances, labs 
have been convinced to report the ‘raw,’ unqualified instrument readings that are 
typically guarded prior to post-processing and flag assignment, via quality assurance 
and quality control (QA-QC) checks. More typically, non-detects are reported simply 
as ‘less thans’ (e.g., <5) or, somewhat better, as ‘J’-flagged observations that may 
have an attached numerical estimate. The current best-case scenarios are probably 
one or both of the following: 

1. the presence of numerical J-values combined with variation in the reporting 
limits for these same non-detects; 

2. a degree of intermixing in nominal measurement levels between detected 
observations and the set of reporting limits. 

The first scenario provides at least a crude look at the distribution of some portion of 
the non-detects. Comparing these values against projected estimates from a left-
censored model where all the non-detects are assumed to be ‘less thans’ may offer a 
small test of the left-censored assumption. The second scenario extends this argument 
to include some portion of the detected values. Though this latter has the 
disadvantage of not providing alternate values for the non-detects (e.g., a J-value of 
1.3 vs. <2), it does suggest that the ‘less thans’ may have actual values similar to 
those detected measurements with which the levels are intertwined. 

The difficulty in all this is that the observed measurement distribution depends not 
simply on the underlying presence or concentration of a substance, but also crucially 
on the sampling, collection, and handling procedures used to gather the physical 
samples and also the field or lab measuring process. As noted earlier, labs use various 
criteria to decide whether to censor a given observation. These criteria include and 
are influenced by: 

• sample purity, homogeneity, and interferences from other chemicals or 
constituents; 

• sample dilutions; 

• contractual precision requirements; 

• analytical and extraction methods, as well as instrument calibration. 

On balance, a key question remains: how often do real data meet the assumptions of 
left-censored data models? If a left-censored model does not fit well, are there 
reasonable alternatives? And a related question: even if a left-censored model does 
apply, might an alternative model provide comparable performance? 

Although left-censored models have gotten the most attention from environmental 
statisticians, lesser known models have been proposed and used. These generally fall 
under the umbrella of mixture models, including the delta and modified delta 
methods. Both propose treating non-detects distinctly from detects, with their own 
discrete distribution. The classic delta model attributed to Aitchison (1955) places a 
’spike’ at zero to represent NDs, with a lognormal distribution governing the detected 
data. More generally, the modified delta (see, for instance, Smith, Kahn, and 
Cameron, 1993) models the subset of non-detects as a discrete distribution with 
positive mass located at a (fixed) fraction of each distinct reporting limit, and with the 
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detected data governed by a separate continuous distribution (not necessarily 
lognormal). 

In practice, simple substitution falls under the modified delta umbrella, with non-
detects replaced by their expected values under the discrete portion of the mixture 
model. Whether the modified delta is any more valid than a left-censored model is as 
difficult to verify as the latter, though there seem to be circumstances under which a 
mixture model is at least as plausible as a left-censored approach. Further, the 
modified delta is quite easy to implement; simple substitution is used all the time and 
can be computed even on tiny samples. 

Nevertheless, when a left-censored model holds, estimating all non-detects at, say, 
half their reporting limits can lead to an artificial ‘clumping’ of the NDs, a potentially 
substantial degree of statistical bias, and mis-estimation of the sample variance. So 
the question remains: even when misspecified, do the outcomes from assuming a 
mixture model differ substantially from assuming a left-censored model? And, might 
the practical benefits of mixture models tend to outweigh a more technically precise 
censored model? 

3.  A Modest Proposal 
Due to deficits in the approaches to date, we propose an extension of the mixture 
model. Instead of ‘clumping’ non-detects at a fixed fraction of their reporting or 
detection limits, consider each non-detect as distributed continuously throughout the 
range [0, RL]. A variety of bounded models might govern the non-detects, including, 
for example, the uniform, triangle, or beta distributions, and potentially others (see 
Figure 1). 

Figure 1. Some Bounded, Continuous Models: Triangle, Beta(2,2), Beta(4,2) 

The choice of model (and the model parameters) could be informed by similar 
datasets, specific features of the measurement process, or perhaps its anticipated 
‘closeness’ to the left-censored model, etc. In fact, a sensitivity analysis could be 
conducted on multiple mixture models to assess the impact of model choice. 

But whichever mixture module is selected, we propose to apply Monte Carlo 
imputation to the non-detects. That is, we invoke repeated Monte Carlo sampling 
from the bounded model governing the non-detects to impute a series of realizations 
for the non-detect subsample. For each realization, we construct or compute the 
statistical estimate or test of interest, and then appropriately average the results across 
realizations to generate a final outcome. 

The benefits associated with the Monte Carlo imputation strategy are several: 

1. With modern computing power, ubiquity, and speed, it is very doable and 
practical; 

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
x

y

0.0

0.5

1.0

1.5

0.0 0.5 1.0
x

y

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
x

y

 
768



2. It is relatively easy to program or automate, even for non-experts in statistical 
programming; 

3. It is easy to explain and interpret how non-detects are being manipulated; 

4. It can avoid the bias and criticisms of simple substitution, while remaining 
relatively easy to implement; 

5. Results can be better than using a left-censored model, and may be more 
appropriate in many real-life datasets; 

6. Results can be comparable to using a left-censored model in cases where the 
censored model is properly specified. 

4.  Method 

To illustrate the utility of the Monte Carlo imputation strategy, we consider some 
comparisons and simulation study results for two common techniques: (1) visualizing 
exploratory box plots with non-detects; and (2) constructing Student-t confidence 
intervals around the mean. The comparisons include the following methods for 
treating non-detects: 

• Simple substitution of either zero, RL/2, RL for each non-detect; 

• Kaplan-Meier for left-censored data, in order to non-parametrically estimate 
the relevant statistical quantities (e.g, lower quartile for a box plot, mean for a 
confidence interval); 

• Two variants of (robust) regression on order statistics (ROS). ROS imputes 
non-detects by fitting a linear regression to the detected values on a Q-Q plot 
and then extending this line to the censored portion of the overall distribution. 
Once imputed, relevant statistical estimates are calculated on the joint set of 
detected and imputed values; 

• For confidence intervals, an order statistic-based, nonparametric interval 
around the median; 

• Monte Carlo imputation of each non-detect, using each of five bounded 
models on the interval [0, RL], including the uniform distribution, the triangle 
distribution centered at RL/2, and three variants of the beta distribution, with 
shape parameters (2, 2), (2, 4), or (4, 2). 

So that the comparisons would not naturally favor the mixture model, an R function 
was developed to generate underlying data according to either a left-censored normal 
or lognormal distribution with varying coefficients of variation (CV). The mechanism 
saves each uncensored realization, but then censors the data using a pre-specified 
number (1+) of increasing reporting limits (RL), along with a set of pre-specified 
mixing probabilities. Each mixing probability governs the chance that a generated 
measurement below a given RL will be observed (i.e., reported as is) or censored by 
the RL and reported as a ‘less than.’ This allows for more realistic modeling of 
intermixed samples of detects and non-detects. 

The simulation study employed a range of sample sizes from 5 to 30, two confidence 
levels (0.9, 0.95), the two underlying distributional models discussed above with CV 
equal to either 0.5, 1, or 1.5, one to three distinct reporting limits ranging from 50% 
to 150% of the model mean, and a decreasing set of mixing probabilities (0.8, 0.6, 
and 0.4), designed to reflect the notion that larger-valued observations should be less 
likely to be censored than smaller observations. Simulations were repeated 100 times 
for each combination of parameters. The generating mechanism created samples with 
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censoring levels ranging from 0 to 100%, with a median of 40% censoring across 
1,260 simulation runs representing distinct permutations of the input parameters. 

5.  Box Plot Results 
For exploratory box plots, simple substitution methods can lead to one of more of the 
following: visual artifacts, less apparent variation, and/or poor coverage of the 
uncensored median (see Figure 2). Very few left-censored model alternatives exist in 
standard software, though it would not be difficult to implement an approach using 
either Kaplan-Meier or ROS to estimate the needed summary statistics prior to 
plotting. With substantial fractions of non-detects, Kaplan-Meier and ROS estimates 
tend to break down. Helsel (2005) also recognized the large uncertainties associated 
with highly non-detect samples, suggesting ‘erasing’ or ‘graying out’ that portion of 
any box plot below the highest RL in the data. But this, of course, entails significant 
loss of information when there are non-detects with large dilution factors or a 
substantial fraction of detected measurements below the highest RL. 

Monte Carlo imputation is an elegant but imperfect solution, avoiding many of the 
pitfalls of simple substitution, allowing construction of box plots regardless of non-
detect percentage, while also providing a better visual sense of variation. 
Computationally, the number of Monte Carlo realizations can be varied to suit one’s 
impatience. Further, for small to moderate sized samples, it can be helpful to overplot 
the data, including RLs for NDs, to aid in visual evaluation. 

Figure 2. Example Box Plot Comparisons for N=5, Normal Model, Two RLs  
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In the simulation study, two measures were employed to compare box plots 
constructed under the 11 distinct treatments of non-detects: (1) coverage of the 
underlying model median (i.e., testing whether the interquartile range includes the 
true median), and (2) the root mean square discrepancy (RMSD) of the treatment-
estimated lower quartile (LQ), median (Med), and upper quartile (UQ) versus the 
same statistics computed from the uncensored sample (e.g., LQ0), as given by 
equation [1]. 

(1) !  

The methods were then ranked by average coverage and average RMSD across the 
set of simulations, both overall and broken down by specific factors (e.g., sample 
size, percentage censored, etc.). Lower (better) ranks corresponded to higher average 
coverage and lower average RMSD. Tables 1 to 3 shows the rankings across sample 
sizes, models, censoring levels, and confidence levels for cases of one, two, or three 
distinct reporting limits. Despite all the data being generated according to a left-
censored model, the lowest average RMSD values were associated with the Monte 
Carlo imputation methods almost uniformly, followed by the ROS methods in two 
cases. The Kaplan-Meier strategy ranked no higher than sixth of 11, but always fared 
worse than simple substitution of RL/2. Simple substitution of zero or the RL ranked 
last across the board. 

Table 1. Average Rankings of Box Plot ND Treatments, Single Reporting Limit 

Table 2. Average Rankings of Box Plot ND Treatments, Two Reporting Limits 

R MSD =
1
3

[(LQ − LQ0)2 + (Med − Med0)2 + (UQ − UQ0)2]

Treatment RMSD Rank Coverage Rank
Uncensored 1.00 1.00

MC_Uniform 4.15 1.03
MC_Beta(2,2) 4.28 1.11
MC_Triangle 4.79 1.13
MC_Beta(2,4) 5.77 1.16
MC_Beta(4,2) 5.80 2.00
ROS_Helsel 6.29 1.76

ROS 6.32 1.36
RL/2 6.61 1.89
KM 7.97 1.84
Zero 8.67 1.43
RL 8.94 5.44

Treatment RMSD Rank Coverage Rank
Uncensored 1.00 1.00

MC_Uniform 4.32 1.00
MC_Beta(2,2) 4.73 1.04
MC_Triangle 5.39 1.04
MC_Beta(4,2) 5.63 2.12
ROS_Helsel 6.42 1.48

ROS 6.73 1.48
RL/2 7.33 1.20

MC_Beta(2,4) 7.56 1.00
KM 7.93 2.69
RL 10.13 6.33

Zero 10.80 1.28
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Table 3. Average Rankings of Box Plot ND Treatments, Three Reporting Limits 

Similar outcomes were seen for the average coverage of the model median. Four of 
the five Monte Carlo imputation methods ranked best, with some jostling among the 
simple substitution and censored methods. The Monte Carlo imputation methods also 
generally fared best when ranked separately by model (normal vs. lognormal) or 
sample size (see Figures 3 and 4), though results for the censored methods were 
rather similar to Monte Carlo imputation for the largest sample size (n = 30).  

On balance, the simulation study supports the premise that Monte Carlo imputation 
offers advantages over simple substitution methods as well as over censored model 
techniques, especially for smaller sample sizes and heavier censoring. Note, however, 
that the most common form of simple substitution, RL/2, on occasion ranks better or 
similarly to the censored methods and some of the Monte Carlo imputation variants. 

Figure 3. Box Plot RMSD Comparisons by Model and Sample Size, Two RLs  

Treatment RMSD Rank Coverage Rank
Uncensored 1.00 1.00

MC_Beta(2,2) 4.43 1.10
MC_Uniform 4.67 1.10
MC_Beta(4,2) 5.00 2.17
MC_Triangle 5.07 1.27

RL/2 6.33 1.87
KM 7.00 2.83

ROS_Helsel 7.53 3.50
MC_Beta(2,4) 7.83 1.83

ROS 8.53 3.20
RL 9.90 7.03

Zero 10.70 3.07
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6.  Confidence Interval Results 
For samples with large fractions of non-detects, simple substitution has been dinged 
for underestimating the variance, and in turn, biasing interval width and coverage. 
These problems do not simply vanish when censored model techniques are used. For 
instance, nonparametric, rank-based methods must choose how to impute/estimate the 
lower confidence limit (LCL), as there is typically no way to explicitly rank the non-
detects. This limitation can also impact or bias coverage and interval width (see 
Figure 5). 

Resampling methods are not immune either. A percentile bootstrap or jackknife must 
rely on some combination of simple substitution, Kaplan-Meier, ROS, etc. to estimate 
the desired statistic (e.g., mean) within each bootstrap or jackknife replicate. 
Parametric bootstrapping of model parameters or sufficient statistics faces the same 
challenge. 

Monte Carlo imputation entails a slightly greater computational burden, but the 
imputed non-detects can be easily combined with parametric (or nonparametric) 
estimation formulas for each Monte Carlo realization. Subsequently, confidence 
limits can be averaged across realizations. (Though not explored in this paper, one 
could alternatively calculate an extreme percentile across the Monte Carlo 
realizations to maximally account for non-detect uncertainty. This would be akin to 
the difference between beta-expectation vs. beta-content tolerance limits.) 

Figure 4. Box Plot RMSD Comparisons by Model and Sample Size, Three RLs 
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We could also combine a bootstrap or jackknife approach with Monte Carlo 
imputation, where each Monte Carlo realization serves as the basis for a series of 
bootstrap or jackknife samples and estimated confidence interval. The resulting 
interval limits can again be averaged to get a final estimate. Note, in addition, that for 
heavily-censored samples, some bootstrap replicates may include too many non-
detects to readily or accurately apply Kaplan-Meier or another censored-model 
technique. Monte Carlo imputation can always be computed, no matter what the 
composition of a bootstrap replicate or how many copies of specific non-detects it 
includes. 

Although a hybrid resampling-Monte Carlo imputation approach was not tested in the 
present simulation study, Student-t intervals were compared across the same suite of 
ND treatments as applied to the box plot study, along with a rank-based 
nonparametric interval. Three measures were employed to compare confidence 
intervals constructed under the 12 distinct treatments of non-detects: (1) coverage of 
the underlying model mean, (2) coverage of the underlying model median, and (3) the 
root mean square discrepancy (RMSD) of the treatment-estimated lower confidence 
limit (LCL) and upper confidence limit (UCL) versus the same statistics computed 
from the uncensored sample (e.g., LCL0), as given by equation [2]. 

(2)  !  

As with the box plots, the methods were then ranked by average coverage and 
average RMSD across the set of simulations, both overall and broken down by factors 
like sample size, degree of censoring, etc. Lower (better) ranks were assigned the 
higher the average coverage and the lower the average RMSD. Tables 4 to 6 show the 
rankings across sample sizes, models, censoring levels, and confidence levels for 
cases of one, two, or three distinct reporting limits. 

Figure 5. Example Conf. Int. Comparisons, N=10, Normal Model, Single RL 
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Table 4. Average Rankings of Conf. Int. ND Treatments, Single Reporting Limit 

Table 5. Average Rankings of Conf. Int. ND Treatments, Two Reporting Limits 

Table 6. Average Rankings of Conf. Int. ND Treatments, Three Reporting Limits 

Treatment RMSD Rank Mean Coverage 
Rank

Median Coverage 
Rank

Uncensored 1.00 3.93 4.30
MC_Beta(2,2) 4.86 4.00 3.91
MC_Uniform 4.96 3.35 3.37
MC_Triangle 5.23 4.35 4.23
MC_Beta(2,4) 6.16 6.73 4.16

RL/2 6.20 5.74 5.65
ROS_Helsel 7.01 8.53 9.02

MC_Beta(4,2) 7.23 4.32 7.17
KM 7.94 9.29 9.98
ROS 7.95 6.87 6.39
Zero 8.96 8.46 5.33
RL 10.84 8.21 10.96

NP_Rank 12.65 5.52 6.70

Treatment RMSD Rank Mean Coverage 
Rank

Median Coverage 
Rank

Uncensored 1.00 3.87 4.13
MC_Beta(2,2) 4.70 4.58 3.92
MC_Uniform 4.90 3.76 3.14
MC_Triangle 4.99 4.98 4.25

RL/2 5.76 6.73 5.93
MC_Beta(2,4) 6.35 7.65 4.62
MC_Beta(4,2) 6.38 4.43 6.87
ROS_Helsel 7.51 9.36 9.50

KM 8.01 9.78 10.39
ROS 8.88 8.22 6.99
Zero 9.05 9.55 6.36
RL 11.43 9.61 12.10

NP_Rank 12.04 2.98 7.69

Treatment RMSD Rank Mean Coverage 
Rank

Median Coverage 
Rank

Uncensored 1.00 3.33 3.73
MC_Beta(2,2) 4.22 4.78 3.83
MC_Triangle 4.60 5.17 4.12
MC_Uniform 4.62 3.60 2.63

RL/2 5.73 6.93 5.88
MC_Beta(4,2) 6.30 3.92 6.47
MC_Beta(2,4) 6.68 8.05 5.28

KM 6.83 8.78 9.33
ROS_Helsel 8.10 9.70 9.53

Zero 9.50 10.18 7.50
ROS 10.08 9.78 8.52
RL 11.43 10.12 12.43

NP_Rank 11.90 3.15 8.20

 
775



Similar to the box plot results, the lowest average RMSD values were associated 
mainly with the Monte Carlo imputation methods, although simple substitution of 
RL/2 also ranked fairly highly, sometimes better than the non-centered beta Monte 
Carlo imputation methods, and consistently better than the censored model methods 
or other simple substitution strategies. 

Figure 6. Conf. Int. Mean Coverage by Model, Sample Size; Three RLs  

Average rankings of coverage of the mean and median again tended to favor Monte 
Carlo imputation, with one notable exception. The nonparametric rank-based 
confidence interval ranked better than all the other methods with respect to covering 
the mean, when there were two or three reporting limits, but towards the rear of the 
pack when covering the median. It seems possible that this result is partially an 
artifact of the method used to compute the interval. To enable its computation when 
the LCL (and occasionally the UCL) would be chosen from among a subset of non-
detects, the censored data were treated ‘as is,’ i.e., reporting limits were used as 
nominal measurements, akin to simple substitution of the reporting limit. This tends 
to bias the interval upward, negatively impacting coverage of the median, but perhaps 
positively impacting coverage of the mean in the lognormal case. 

Overall, the results of the simulation study again validate the robustness of the 
extended mixture model approach, even when data are generated according to a left-
censored model.  The Monte Carlo imputation methods generally fared best when 
ranked separately by model (normal vs. lognormal) or sample size (see Figures 6 and 
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7), though again it must be noted that simple substitution of RL/2 ranked surprisingly 
well given the criticisms leveled against it. 

Figure 7. Conf. Int. RMSD Comparisons by Model, Sample Size; Single RL 

7.  Other Applications 
The two examples studied in this paper are merely the tip of iceberg. Almost any 
statistical approach involving data with non-detects could be massaged with Monte 
Carlo imputation. Furthermore, some estimates are quite difficult if almost impossible 
under a left-censored approach. Consider for instance regression or trend estimates 
and their associated confidence bands. The distributional assumptions of standard 
linear regression relate to the residuals around the regression or trend line — since the 
response variable (Y) is not stationary — but the distribution of censored residuals is 
harder to fit within the usual left-censored model framework (e.g., the interval of 
censoring is distinct and often non-positive for each residual depending on the 
difference between the fitted estimate at a given X or point-in-time and the reporting 
limit of a non-detect at that point). 

Tobit (censored) regression can be applied to left-censored data, or perhaps the 
Akritas-Theil-Sen (ATS) nonparametric method (Akritas, Murphy, and Lavalley, 
1995). The first of these assumes a normal linear model of the uncensored 
measurements, and tends to be less robust to model mis-specification. ATS is more 
computationally expensive, requiring careful tracking of potentially censored 
residuals and an iterative search for a slope estimate which makes Kendall’s tau-b 
correlation as close to zero as possible. 
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Simple substitution is commonly used in these cases for all the reasons outlined in the 
Introduction, but can easily lead to artificially ‘clumped’ trend or regression 
estimates, with underestimated local variance and biased confidence bands. 

Monte Carlo imputation, on the other hand, is straightforward. It can be combined 
with standard parametric or nonparametric trend or regression methods. For each 
Monte Carlo realization, a regression line or trend and associated confidence band 
can be computed, and then the results averaged across realizations. Some examples 
are shown in Figure 8. 

Figure 8. Linear Conf. Bands Using Monte Carlo Imputation, Beta(2,2) Model 

Another easy application is two or multi-sample comparisons (e.g., t-tests, ANOVA). 
Rank-based tests (e.g., Wilcoxon-Mann-Whitney, Kruskal-Wallis) treat non-detects as 
‘tied values,’ even though the justification for such an assumption can get a bit messy. 
Under a left-censored framework, not only is the pair (<5, <5) considered a ‘tie,’ but 
in some sense so must the pair (<5, 3). With varying reporting limits and intermixing 
of the detects and non-detects, this can lead to overlapping subsets of differently tied 
values where portions of each subset may be tied with part but not all of other subsets 
(e.g., (<10, 7) and (<10, <5) are tied pairs, but (7, <5) is not).  

One could alternatively use Gehan’s test or similar, involving a partial ranking of the 
data, but again Monte Carlo imputation is probably more straightforward and 
practical, and possibly more powerful. The relevant test statistic can be computed on 
each Monte Carlo realization and then averaged prior to assessing significance. 
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8.  Conclusion 
Non-detects continue to be the little goblins of environmental data analysis. Simple 
substitution of a fixed fraction of the reporting or detection limit has been the 
common solution, but this has been roundly criticized. Ingenious, but sometimes 
complicated, methods have been developed to accommodate non-detects under a 
model of left-censoring. Unfortunately, the censored model may not be realistic or 
practical in many situations, and standard software may or may not provide 
appropriate censored model techniques. 

We propose instead an extended mixture model in which non-detects are modeled as 
bounded, continuous variates on the interval [0, RL]. Practical computation with this 
model entails repeated Monte Carlo imputation of the non-detects. This strategy 
offers several practical and empirical benefits: 

• Ease of algorithmic description and implementation; 

• Doable with modern computing power/speed; 

• Ease of interpretation; 

• Useful even with very large censoring fractions and/or very small data sets; 

• At least sometimes more realistic than a left-censored model; 

• Provides similar or better results than left-censored techniques, even when 
data are generated according to a censored model; 

• Better accounts for uncertainty due to non-detects than common simple 
substitution methods; 

• Flexible enough to adapt to a variety of measurement process models and 
censoring mechanisms. 

We encourage environmental scientists, statisticians, and statistical software 
developers to implement and offer this approach. Let the little goblins be vanquished! 
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