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Spatially Balanced Sampling using the Halton Sequence
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Abstract

A spatial sampling design determines where sample locations are placed in a study area. The main
objective is to select sample locations in such a way that valid scientific inferences can be made to
all regions of the study area. A sample that is well-spread over the study area is called a spatially
balanced sample. Spatially balanced sampling designs are known to be efficient when surveying
natural resources because nearby locations tend to be similar. This paper shows how the Halton
sequence can be used to draw spatially balanced samples from environmental resources.

Key Words: Balanced acceptance sampling (BAS), environmental sampling, Halton iterative par-
titioning (HIP), over-sampling, SDraw

1. Introduction

A spatial sampling design determines where sample locations are placed in a study area.
The main objective of a spatial design is to draw sample locations in such a way that
valid scientific inferences can be made to all regions of the study area (McDonald 2014).
To achieve good estimates of population characteristics, the spatial pattern of the sample
should be similar to the spatial pattern of the population. However, the spatial pattern of
the response variable is usually not known. Fortunately, when sampling natural resources,
nearby locations tend to be similar because they interact with one another and are influenced
by the same set of factors (Stevens & Olsen 2004). This means sample efficiency can
be increased by spreading sample locations evenly over the resource. Stevens and Olsen
(2004) called well spread samples spatially balanced samples and measured spatial balance
using the Voronoi tessellation of a sample.

Consider drawing n sample locations from an continuous resource €2 < [0, 1)? with
A(©2) > 0, where X is the Lebesgue measure. Let m(x) = nf(x) be an inclusion density
function, where f(z) : [0,1)? — Rxq is a bounded probability density function such that

jﬂ f(x)dx = 1.

A sample, {1, x,...,x,} C §, is considered spatially balanced if
v; = j m(x)de ~1 foralli=1,2,...,n,
Wy

where w; is the Voronoi polygon for x;
w; ={ze[0,1)*: |z —x;| < |z — ;| forall j = 1,2,...,n}.

The spatial balance of n = 50 points drawn from 2 = [0, 1) is illustrated in Figure 1.
The spatial balance of a sample drawn from a discrete population is measured in a
similar way. Let U be a finite population of N points from [0, 1)? and let 0 < 7; < 1 denote
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Figure 1: (Left) a simple random sample (SRS) of n = 50 points drawn from 2 = [0, 1)2.
(Right) an equal probability BAS sample of n = 50 points drawn from €2 = [0, 1)2. In this
case, v; is proportional to the area of w; (shown in red). BAS has far better spatial balance
than SRS because the areas of each w; are more similar in size.

the inclusion probability of x; such that Zf\il m; = n. A sample, {x1,x9,...,x,} < U,
is considered spatially balanced if

vi= > mi~1 foralli=1,2,...,n,

TjEW;
where w; is the Voronoi set for x;
wi={xeU:|x—x;] < |z - forallj =1,2,...,n}.

Stevens and Olsen (2004) introduced the phrase spatially balanced sampling and pre-
sented the first spatially balanced design. Their design, called Generalized Random Tes-
sellation Stratified (GRTS), is a popular sampling design and it is frequently used in en-
vironmental monitoring (Kermorvant et al. 2019). GRTS can be applied to point, linear
and continuous resources and can draw unequal probability samples. Another useful prop-
erty of GRTS is its ability to dynamically add points from a spatially balanced over-sample
to the sample as non-target or inaccessible points are discovered (Stevens & Olsen 2004;
Larsen, Olsen & Stevens 2008). This feature is popular with field researchers because the
largest sample that their budget permits can be analysed, but it does not eliminate issues
associated with non-response (Robertson et al. 2018).

Spatially balanced sampling has been an active area research over the past decade and
a variety of designs have been proposed, where each design uses a different strategy to
achieve spatial balance. The Local Pivotal Method (LPM; Grafstrom, Lundstrém & Sche-
lin 2012), is an application of the Pivotal Method (Deville & Tillé 1998) that gives spatially
balanced samples. Grafstrom (2012) also modified correlated Poisson sampling (Bondes-
son & Thorburn 2008) to draw spatially balanced samples, called spatially correlated Pois-
son sampling (SCPS). LPM is algorithmically simpler than SCPS, but SCPS can achieve
a higher degree of spatial balance (Grafstrom & Schelin 2014). Benedetti & Piersimoni
(2017) presented a flexible class of spatially balanced designs that draw their samples
based on a within-sample distance. Balanced Acceptance Sampling (BAS; Robertson et
al. 2013), its modified version (Robertson et al. 2017) and Halton Iterative Partitioning
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(HIP; Robertson et al. 2018) all use the Halton sequence (Halton 1960) to draw spatially
balanced samples. This paper focuses on BAS and HIP, and how these designs use the
Halton sequence to draw spatially balanced samples.

The remainder of this paper is organised as follows. Section 2 introduces the Halton
sequence and describes properties of the sequence that are pertinent to BAS and HIP. The
sampling designs BAS and HIP are described in Section 3 and concluding remarks are
given in Section 4

2. Halton Sequence

The Halton sequence is a quasi-random number sequence which spreads points evenly
over the unit box in relatively low dimensions (d < 10). Quasi-random sequences have
been used as a substitute for random numbers in many fields, including numerical inte-
gration (Niederreiter 1978, 2003), numerical optimization (Sobol 1979; Torn & Zilinskas
1989; Price & Price, 2012; Robertson, Price & Reale, 2014) and environmental sampling
(Robertson et al. 2013, 2017, 2018). The Halton sequence is particularly useful in these
fields because it is simple, generates evenly spread points (see Figure 2) and has similar
spatial properties to a regular grid or lattice. However, unlike a regular lattice, points can
be added incrementally with no clumping of points.

The random-start Halton sequence {x;}}2, in [0, 1)4 is defined as follows. The ith
coordinate of the jth point in this sequence is (Price & Price 2012)

) _ o f|uitd 1
az§):2{{ 7 JmOdbi}pr’

p=0 i

where u; is a random non-negative integer, b; is a positive integer and |-| is the floor func-
tion. The bases b; are chosen to be small, co-prime integers to ensure the points are evenly
spread over the unit box. In this paper, the bases are the first d prime numbers. The random-
start Halton sequence is

0
{z}2, = {(x§1)7 x§-2), e ,:c§d))}j:1 _ (1)

Let B = Hf;l b;]i, where J; is any non-negative integer. It can be shown (Price & Price

2012; Robertson et al. 2017, 2018) that B consecutive points from (1) will have exactly

one point in each of the Halton boxes defined by

d
|maby 7, (mi+ 10,7, @)

=1

(2

where m; is an integer satisfying 0 < m; < b;]i, forallt =1,...,d (see Figure 2). The
sequence is also quasi-periodic (with period B) because points of the form x;,,p with
a=0,1,..., are in the same box (Robertson et al. 2017, 2018). Hence, contiguous sub-
sequences from (1) are also spatially balanced (see Figure 2).

3. BAS and HIP

Balanced acceptance sampling (BAS; Robertson et al. 2013, 2017) is a spatially balanced
sampling design that draws its sample using the random-start Halton sequence (1). Con-
sider drawing n sample locations from an continuous resource {2 < [0, 1]? with A\(Q2) > 0,
where X is the Lebesgue measure. An equal probability BAS sample is simply the first n
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Figure 2: (Left) A random-start Halton sequence of n = 216 points with 1, ..., xg inred
and x7,...,x3 in green. This colouring illustrates how contiguous sub-sequences from

(1) are also spatially balanced. (Right) Halton boxes (2) for B = 22 x 3 = 12 and B
consecutive points from (1), where each box has exactly one point.

points from (1) that fall within 2. However, if 1 ¢ 2, discard the sequence and generate
another (Robertson et al. 2017). Unequal inclusion probability samples can also be drawn
using a rejection sampling technique (Robertson et al. 2013). BAS is conceptually sim-
ple, computationally efficient, can be used to draw spatially balanced over-samples/master
samples (van Dam-Bates, Gansell & Robertson 2018) and performs well on continuous
resources (Robertson et al. 2018).

BAS can also be applied to point and linear resources. However, there are two potential
drawbacks when sampling these resources with BAS. First, acceptance/rejection sampling
is required to draw its sample, and hence targeted inclusion probabilities are not necessarily
achieved. Robertson et al. (2017) provided a simple modification to BAS that achieved
targeted inclusion probabilities in specific settings and reduced discrepancies in the general
setting. Despite this potential drawback, the actual inclusion probabilities can be computed
for unbiased estimation.

The second potential drawback of sampling point resources with BAS is the sampling
frame that BAS uses. BAS constructs its frame by replacing the N points in [0, 1)? with N
non-overlapping boxes of equal size, with one point in each box. The BAS sample of size
n is then drawn as follows. First, a random-start Halton sequence is defined

{231,172,-.-,33]@} o [0) 1)27 (3)

where k is chosen so that n boxes contain at least one point from (3). The points from
the resource within these n boxes define the BAS sample. However, if the point resource
is large or lacks grid structure, BAS can become inefficient because the boxes tend to be
small and k can be enormous (Robertson et al. 2018).

Halton iterative partitioning (HIP; Robertson et al. 2018) extends BAS to better handle
point resources. HIP iteratively partitions a resource into B > n nested boxes using the
quasi-periodic property of the Halton sequence. These boxes have the same nested struc-
ture as (2), but different sizes (see Figure 3). These boxes are then uniquely numbered
using a random-start Halton sequence of length B. The HIP sample is obtained by ran-
domly drawing one point from each of the boxes numbered 1,2, ..., n. This procedure is
illustrated in Figure 3. Unequal probability samples can be drawn by altering the inclusion
probability of each box (Robertson et al. 2018).

650



JSM 2019 - Biometrics Section

o3 I °
° 3
°
° L [ ) -
0?2 °
°
° o2
° ® °
ol ¢
° | °
°
‘ d el

Figure 3: (Left) Halton boxes for B = 22 x 3 = 12 and B consecutive points from (1). The
first three points from the sequence are numbered. (Right) A HIP partition fora N = 12
point resource using B = 12 boxes. This partition has the same nested structure as the
Halton boxes, but the boxes have different sizes. Using the box numbering from the left
figure, an equal probability HIP sample of n = 3 points from the resource is shown.

The HIP design is conceptually simple, computationally efficient on large /N point
resources, has a rapid implementation for equal probability sampling and is embarrassingly
parallel. It can be applied to continuous and point resources and achieves targeted inclusion
probabilities/density. HIP samples use the same ordering as the Halton sequence to ensure
contiguous sub-samples are spatially balanced. This feature makes HIP particularly useful
for spatially balanced over-sampling if non-target or inaccessible units are discovered.

BAS and HIP samples can be drawn using the SDraw package (McDonald 2016) in the
R programming language. This package allows spatially balanced samples/over-samples
to be drawn from point, linear and continuous resources.

4. Conclusion

Spatially balanced sampling designs are commonly used for sampling natural resources
and a variety of designs have been proposed. BAS and HIP are spatially balanced designs
that use the Halton sequence to draw their samples. BAS uses points from the sequence to
draw its sample and HIP uses properties of the sequence to partition the resource before the
sample is drawn. The potential advantages of these designs over other spatially balanced
designs include being conceptually simple, computationally efficient and being able to draw
spatially balanced over-samples. This makes them particularly useful for sampling natural
resources because imperfect sampling frames and accessibility problems result in fewer
units being observed than planned. Although spatially balanced over-sampling achieves
the desired sample size and is popular with field researchers, it will not eliminate the non-
response or the bias of an inference. BAS and HIP samples can be drawn using the SDraw
package in the R programming language.
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