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Abstract 
Nuclear safeguards at declared facilities aim to verify that nuclear material (NM) is used 
exclusively for peaceful purposes. To ensure that States honor safeguards obligations, 
measurements of NM inventories and flows are needed. Statistical analyses used to support 
conclusions require uncertainty quantification (UQ), usually by estimating the relative 
standard deviation (RSD) in random and systematic errors of each measurement method.   
A model is used for the normal (no facility misuse) data, and for the effects of NM misuse 
so that detection probabilities (DPs) for misuse scenarios can be estimated. This paper 
reviews statistical methods for UQ of measurements, for constructing tolerance intervals 
for setting pass/fail criteria for monitored data streams, and for estimating DPs for specified 
NM misuse scenarios at declared facilities. UQ for measurements is done both empirically 
using data collected for metrology studies and from applying error variance propagation to 
all steps in the assay (physics-based).  Approximate Bayesian computation (ABC) is used 
for both the empirical and physics-based UQ. The estimated measurement error RSDs are 
then used to estimate the SD of the NM mass balances that are analyzed sequentially over 
time. 
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1. Introduction and Background 
 
     The nuclear industry must account for NMs such as items that contain plutonium-239, 
uranium-233, or uranium enriched in the 235 or 233 isotopes. Such materials are 
expensive, plus play a role in weapons production, so there are national and international 
security considerations. Domestic safeguards (note that “safeguards” can be singular or 
plural) protects NM and monitors for possible NM loss. International safeguards monitors 
for possible NM loss or diversion.  Prominence of safeguards issues has generated 
attention by the general press such as the Wall Street Journal, New York Times, and 
Science; also, many papers on statistical methods and applications to safeguards 
problems have appeared in various journals [1-25]. 
     Domestic safeguards has two main components: physical security to monitor and 
control access to NM, and accounting procedures to monitor the flow and location of NM 
quantities. Analogously, the banking industry also uses physical security (guards, 
cameras, locked vaults, etc.) together with accounting procedures to monitor money flow. 
However, monitoring NM is more complicated due to the multitude of physical forms 
and chemical compositions of NM in bulk quantities, resulting in measurement errors. In 
international safeguards, inspectors recognize that the facility could divert NM and alter 
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the accounting records to try to mask the diversion. In contrast, domestic safeguards does 
not include the possibility that the facility might alter the accounting data to mask NM 
diversion. And, in contrast to domestic safeguards, international safeguards makes no 
attempt to control the NM. 
     NM control and accountability have been a concern since the beginning of the atomic 
era. Establishment of the International Atomic Energy Agency (IAEA) in 1957 
represented a landmark in international safeguards cooperation. The IAEA, by 
international agreement, provides verification to monitor and ensure the peaceful use of 
nuclear materials and technology around the world. An account of the evolution of 
international safeguards is given by Willrich [24]. A more recent account [21] describes 
evolution of the “state-level” concept that resulted from advancement of safeguards 
concepts after discovery of an undeclared nuclear facility in the early 1990s (which lead 
to expanded country-wide monitoring to monitor for undeclared NM activities).  
     In nuclear material accountancy (NMA) at declared facilities, the material balance (MB) 
is defined as  MB = Ibegin + Tin − Tout − Iend, where Tin is transfers in, Tout is transfers out, 
Ibegin is beginning inventory, and Iend is ending inventory. The measurement error standard 
deviation of the MB is denoted σMB. The key quantities in NMA are the MB and σMB. If 
the MB at a given time (“balance period”) exceeds k σMB with k in the 2-to-3 range, then 
the NMA system “alarms.” Considerable effort is aimed at assessing measurement 
uncertainties (“uncertainty quantification,” UQ) to estimate σMB [1-4,6-9,13-23]. Choosing 
k in the 2-to-3 range for a low false alarm probability is based on an appeal to a central 
limit theorem effect arising from combining many measurements to justify assuming the 
measured MB is approximately Gaussian distributed around the true MB [1-5,14,18,20].  
The IAEA must “trust, but verify,” which means that a sample of the operator’s declared 
and measured items will be re-measured by inspectors, often using portable non-destructive 
assay (NDA) methods based on detecting and interpreting gamma and/or neutron emissions 
from the item [1,7,8]. 
    This paper reviews statistical methods for UQ of measurements (Section 2), for 
constructing tolerance intervals for setting pass/fail criteria for differences between 
operator declarations and corresponding inspector measurements (Section 3), and for 
estimating DPs for sequences of MBs at declared facilities (Section 4).  
 

2. UQ 
2.1 Measurement Error Models 
     Statistical analyses used to support conclusions require UQ, usually by estimating the 
relative standard deviation (RSD) in random and systematic errors associated with each 
measurement method [1-9]. UQ for measurements is done both empirically using data 
collected for metrology studies and from applying error variance propagation to all steps 
in the assay (physics based). Approximate Bayesian computation (ABC) can be used 
effectively for both the empirical and physics-based UQ (see below).  
     A defensible measurement error model for operator and inspector data must account 
for variation within and between groups, where a group is, for example, a calibration 
period, inspection period, item, or laboratory. In this paper, a group is an inspection 
period. A typical model that assumes additive errors for the inspector’s measurements 
(𝐼"#) (and similarly for the operator	𝑂"#) is 

𝐼"# = 𝜇"# + 𝑆*" + 𝑅*"#                     (1), 
      

where for item k (from 1 to n) in group j (a group is an inspection period in this paper, from 
1 to g), 𝐼"# is the inspector’s measured value of the true but unknown value 
𝜇"#,	𝑅"#~𝑁(0, 𝜎2*3 ) is a random error in the inspector (I denotes inspector) measurement, 
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and 𝑆*"~𝑁(0, 𝜎5*3 ) is a short-term systematic error that arises due to metrology changes, 
the most important of which is recalibration between inspection periods [1-3,14,26,27]. For 
a fixed value of 𝜇"#,	the total variance of the inspector measurement is 𝜎*3 =5*3 + 𝜎2*3 , 
assuming that random and systematic errors are independent. This paper combines all 
inspector measurements into one “inspector” group, even if there are two or more 
inspectors. 
     The measurement error model in Eq. (1) sets the stage for applying ANOVA with 
random effects [2,16-19]. Neither 𝑅*"# nor 𝑆*" are observable. If the errors tend to scale 
with the true value, then a typical model for multiplicative errors (with relative standard 
deviations (RSD) 𝛿5 and 𝛿2)	is 

𝐼"# = 𝜇"#(1 + 𝑆9*" + 𝑅:*"#) (1) 

where 𝑆9*"~𝑁(0, 𝛿5*3 ),	𝑅:*"#~𝑁(0, 𝛿2*3 ). As explained below, for a technical reason, the data 
model in Eq. (1) is slightly modified to use truncated normal distributions instead of normal 
distributions in the IAEA application. Let 𝛿23 = 𝛿2;3 + 𝛿2*3 	and 	𝛿53 = 𝛿5;3 + 𝛿5*3 , where 
again “O” denotes operator and “I” denotes inspector. For a fixed value of 𝜇"#,	the total 
variance of the inspector measurement is 𝜎*3=𝜎5*3 + 𝜎2*3 = 𝜇"#3 (	𝛿5*3 + 𝛿2*3 ) . Let 𝑂"# =
𝜇"#(1 + 𝑆9;" + 𝑅:;") and 𝐼"# = 𝜇"#(1 + 𝑆9*" + 𝑅:*"). Subsequently, the assumed model for 
the relative difference between operator and inspector is 

𝜇"#(1 + 𝑆9;" + 𝑅:;"#) − 𝜇"#(1 + 𝑆9*" + 𝑅:*"#)
𝜇"#

= 𝑆9" + 𝑅:"# (2) 

for the operator’s declared value of item 𝑘 from group  𝑅:"# = 𝑅:;"# − 𝑅:*"#~𝑁(0, 𝛿23).	 
is the net random error and 𝑆9" = 𝑆9;" − 𝑆9*"~𝑁(0, 𝛿53) is the net short-term systematic 
error. In practice, while assuming no data falsification by the operator, Eq. (2) can be 
calculated using the relative differences, 𝑑"# =

;@AB*@A
;@A

 where 𝑜"# is used in the 

denominator to estimate𝜇"#, because typically	𝛿5;3 + 𝛿2;3 ≪ 𝛿5*3 + 𝛿2*3 , with 𝛿E; =

F𝛿5;3 + 𝛿2;3 	always being very small, 0.02 or less, in the IAEA application. The technical 

issue mentioned above is that a ratio of normal random variables has infinite variance [3, 
21]. To define a ratio that has finite variance, a truncated normal can be used as the data 
model in Eq. (2) for 𝑜"# in 𝑑"# = 1 − *@A

;@A
, which is equal in distribution to 1 −

G@A(HIJKLMN)
G@A(HIJKOMP)

, which involves a ratio 𝑅 = (HIJKLMN)
(HIJKOMP)

 
of the independent normal random 

variables 𝑧Hand 𝑧3 (for the case of one measurement per group; multiple measurements 
per group is treated similarly). Because 𝛿E; is so small, usually 0.02 or less, such 
truncation (at approximately 50 times 𝛿E; = 0.02 for example) has no noticeable effect, 
but ensures that the ratio 𝑅 has finite moments [4]. 
 
2.3 UQ for NDA 
     NDA uses calibration and/or modelling to infer NM mass using detected radiation such 
as neutron and gamma emissions.  Three issues in UQ for NDA are: 

1. NDA is applied in challenging settings because the detector is brought to the 
facility where ambient conditions can vary over time, and the items are often 
heterogeneous in some way. Because of such challenges, dark uncertainty [26] 

j,
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can be large, as is evident whenever bottom-up UQ predicts smaller RSD than is 
observed in top-down UQ. 

2. There is no UQ guide for NDA that is analogous to the GUM [27]. But, the GUM 
is typically followed for the error variance propagation steps in UQ, and each 
NDA method has a specific and documented implementation of UQ (for 
example, ASTM C1514 [28] for the EMP). 

3. NDA is often used when test items differ substantially from calibration items; 
therefore, the concept of item-specific bias is important, and is addressed in 
Section 5. 

     In NDA, error variance propagation is used as a component of bottom-up UQ by 
propagating errors in inputs. Bottom-up UQ is often approached by using the GUM’s 
measurement equation, expressed as  

                                    𝑌 = 𝑓(𝑋H, 𝑋3, … , 𝑋W)                                        (4)  

for measurand 𝑌 and inputs	𝑋H, 𝑋3, … , 𝑋W. The GUM applies the delta method to Eq. (4) to 
propagate error variances in the 𝑋X  to estimate the standard deviation in 	𝑌 . The input 
quantities can include, for example, measured count rates, estimates of calibration 
parameters or other measurands, such as measured values in steps an assay method. The 
delta-method assumes that 𝑓(𝑋H, 𝑋3, … , 𝑋W) in Eq. (4) can be well approximated by a first-
order Taylor series expansion around the mean values of each 𝑋X , and then the linear 
approximation to 𝑓(𝑋H, 𝑋3, … , 𝑋W)   can be used to estimate 𝜎Y3given estimates of the 
variances for each  (and, correlations between the 𝑋X  can be accommodated).  If the 
first-order Taylor series is not sufficiently adequate, the GUM recommends Monte Carlo 
simulation. Note that Eq. (4) implies that 𝑌 is random, so the GUM implicitly adopts a 
Bayesian viewpoint (Section 4) without explicitly stating a prior distribution for 𝑌 [7,8,10]. 
     Recently, the NDA community is recognizing a need for more comprehensive bottom-
up UQ that thoroughly addresses uncertainty in model-based adjustments of test items to 
calibration items [7,8]. Toward that goal, several U.S. national laboratories and the 
standards (ASTM) committees are working on UQ for NDA. One possible outcome of 
these collaborations is better guidance on bottom-up UQ for calibration data that allows 
for both errors in predictors and for item-specific bias. It is also possible that approaches 
for better bottom-up UQ will be provided in the next version of the GUM [29]. 
2.3 ABC for top-down UQ 
     Bayesian ANOVA such as could be applied to data generated from Eq. (1) has been 
studied [30]; however, Bayesian ANOVA using ABC has not been well studied. In any 
Bayesian approach, prior information regarding the magnitudes and/or relative 
magnitudes of 𝛿2*3  and	𝛿5*3  can be provided.  If the prior is “conjugate” for the likelihood, 
then the posterior is in the same likelihood family as the prior, in which case analytical 
methods are available to compute posterior prediction intervals for quantities of interest.  
So that a wide variety of priors and likelihoods can be accommodated, modern Bayesian 
methods do not rely on conjugate priors, but use numerical methods to obtain samples of 
𝛿2*3  and	𝛿5*3 from their approximate posterior distributions [31]. For numerical methods 
such as Markov Chain Monte Carlo [31], the user specifies a prior distribution for 𝛿2*3  
and , and a likelihood (which need not be normal). ABC does not require a likelihood 
for the data (but this section provides clarification regarding the need for a likelihood in 
this NDA context), and, as in any Bayesian approach, ABC accommodates constraints on 
variances through prior distributions.   
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     The “output” of any Bayesian analysis is the posterior distribution for each model 
parameter, and so the output of ABC for data generated from Eq. (1) is an estimate of the 
posterior distributions of	𝛿2*3  and	𝛿5*3 . No matter what type of Bayesian approach is used, 
a well-calibrated Bayesian approach satisfies several requirements. One requirement is 
that in repeated applications of ABC, approximately 95% of the middle 95% of the 
posterior distribution for each of 𝛿2*3  and	𝛿5*3 should contain the respective true values. 
That is, the actual coverage should be closely approximated by the nominal coverage.  A 
second requirement is that the true standard deviation of the ABC-based estimates of  𝛿2*3  
and	𝛿5*3 should be closely approximated by the standard deviation of the ABC-based 
posterior distributions of	𝛿2*3  and	𝛿5*3 .   
     Inference using ABC can be summarized as follows: 
 

 

 

 

 
 
Experience with ABC suggests that the ABC approximation to 

 
improves if 

step (3) is modified to include a weighting factor, so that trial values of 𝜃 simulated from 
𝑓[\X]\(𝜃) that lead to very small distance 𝑑(𝑆(𝑥_), 𝑆(𝑥)) are more heavily weighted in 
the estimated posterior [32-36]. In step (2), the model can be analytical or, for example, a 
forward transport model. 
     In ABC, the model has input parameters 𝜃 and outputs data x(𝜃) and there is 
corresponding real data xobs.  For example, the model could be Eq. (1), which specifies 
how to generate synthetic I (or O) data, and does require a likelihood; however, the true 
likelihood used to generate the data need not be known to the user. Synthetic data is 
generated from the model for many trial values of 𝜃, and trial 𝜃 values are accepted as 
contributing to the estimated posterior distribution for 𝜃| yobs if the distance d(xobs, x(𝜃)) 
between xobs and x(𝜃) is reasonably small. Alternatively, for most applications, it is 
necessary to reduce the dimension of xobs to a small set of summary statistics 𝑆 and accept 
trial values of 𝜃 if 𝑑(𝑆(xobs), S(x(θ)) 	< 	ε,	where ε is a user-chosen threshold. Here, for 
example, 𝑥]hi = 𝑑\jk =

;B*
;

 data in each inspection group, and  𝑆(xobs) includes within 
and between groups sums of squares Specifically, the ANOVA-based estimator of 𝛿2*3  in 
Eq. (1) is	𝛿l23 =

H
mnBn

∑ ∑ (𝑑"# − 𝑑̅")3m
#qH

n
"qH , and  the usual estimate of 𝛿53 is 	𝛿l53 =

∑ (rs@Brt)P
u
@vN

(nBH)
− 	Jwx

P

m
, where  𝑑̿ = H

mn
∑ ∑ 𝑑"#m

#qH
n
"qH  is the overall unweighted average. The 

quantities 	𝛿l23and 	𝛿l53are therefore good choices for summary statistics for ABC. Recall 
that because trial values of 𝜃 are accepted if 𝑑(𝑆(𝑥z{|), S(x(θ)) 	< 	ε an approximation 
error to the posterior distribution arises that several ABC options attempt to mitigate. 
Recall also that such options weight the accepted 𝜃 values by the actual 
distance	𝑑(𝑆(xobs), S(x(θ))) (abctools in R [36,37]). 
     To summarize, ABC applied to data following Eq. (1) consists of three steps: (1) sample 
parameter values of 𝛿23 and	𝛿53and from their prior distribution pprior(𝜃) where θ = (𝛿23, 𝛿23); 
(2) for each simulated value of 𝜃 in (1),  simulate data from Eq. (1); (3) accept a fraction 

fposterior (θ | x)

ABC Inference 
 For i in 1, 2, …, N, do these 3 steps: 
(1)Sample  from the prior, . 
(2) Simulate data  from the model   
(3) Denote the real data as . If distance 

 

θ θ ~ fprior (θ)
′x ′x ~ P(x |θ)

x
d(S( ′x ),S(x))≤ε,  accept θ as an observation from fposterior (θ | x).
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of the sampled prior values in (1) by checking whether the summary statistics computed 
from the data in (2) satisfy 𝑑(𝑆(xobs), S(x(θ)) 	< 	ε.	If desired, aiming to improve the 
approximation to the posterior, adjust the accepted 𝜃 values on the basis of the actual 
𝑑(𝑆(xobs), S(x(θ))	 value. ABC requires the user to make three choices: the summary 
statistics, the threshold ε,and the measure of distance 𝑑.                                                      
     Reference [11] introduced a method to choose summary statistics that uses the estimated 
posterior means of the parameters based on pilot simulation runs.  Reference [32] used an 
estimate of the change in posterior 𝑝posterior(𝜃) when a candidate summary statistic is added 
to the current set of summary statistics.  Reference [34] illustrated a method to evaluate 
whether a candidate set of summary statistics leads to a well-calibrated posterior, in the 
same sense used here; that is, nominal posterior probability intervals should have 
approximately the same actual coverage probability, and the posterior variance should 
agree with the observed variance in testing.  
 
2.4 ABC for bottom-up UQ 
     This section describes ABC for the enrichment meter principle (EMP), that is based 
on the count rate of a 185.7keV gamma-ray. The mass of 235U in an item can be estimated 
by using a measured net weight of uranium U in the item and a measured 235U enrichment 
(the ratio 235U/U). Enrichment can be measured using the 185.7 keV gamma-rays emitted 
from 235U by applying the EMP. The EMP aims to infer the enrichment by measuring the 
count rate of the strongest-intensity direct (full-energy) gamma from decay of 235U, which 
is emitted at 185.7 keV [7,8,28,38]. The EMP assumes that the detector field of view into 
each item is identical to that in the calibration items (the “infinite thickness” assumption), 
that the item must be homogeneous with respect to both the 235U enrichment and 
chemical composition, and that the container attenuation of gamma-rays is that same as 
or similar to that in the calibration items so that empirical correction factors have modest 
impact and are reasonably effective. If these three assumptions are met, the known 
physics implies that the enrichment of 235U in the U is directly proportional to the count 
rate of the 185.7 keV gamma-rays emitted from the item.  
     It has been shown empirically that under good measurement conditions, the EMP can 
have a random error RSD of less than 0.5 % and a long-term bias of less than 1 %, 
depending on the detector resolution, stability, and extent of corrections needed to adjust 
items to calibration conditions.  Some bottom-up UQ examples for the EMP in 
[7,8,28,38] have estimated random error RSD ranging from less than its 0.5% target to 
approximately 1.0% (because of item-specific biases arising due to container thickness 
variations and other effects,) but less than the 2% to 4% reported from corresponding top-
down UQ for the  235U mass in UO2 drums. Also, top-down UQ reports total error RSD 
(random and short-term systematic) of 4% to 20% for some items analyzed in [28] (the 
RSD tends to be larger for lower values of enrichment). 
     The known nominal enrichment in each of several standards can be fit to observed 
counts in a few energy channels near the 185.7 keV energy as the “peak” region and to 
the counts in a few energy channels somewhere below and above the 185.7 keV energy 
but outside the peak area to estimate background (two-region EMP method), expressed as 

 
                                                            𝑦 = 𝛽𝑁 + 𝑅Y                                               (5),  

where Y is the enrichment, N is the peak count rate near 185.7keV,  is random error. 
Figure 1 is an example low-resolution (NaI detector) gamma spectrum near the 
185.6keV. The gross count and the two background ROI counts can be combined into 
one net count, resulting in one predictor as in Eq. (5), which can be fit using least squares 

YR
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regression. For example, if the same number of energy channels are used for both the 
peak and background ROI, then Net count rate = Peak count rate – Background count 
rate. There is usually non-negligible error in N, so errors in predictors cannot be ignored 
[39]. Alternatively, both peak and background counts can be used as predictors 
[7,8,28,39]. There will be measurement errors in the gross and background count rates 
and there will often be correction factors applied, for example, to adjust test item 
container thickness to calibration item container thickness. There is much literature 
regarding errors in predictors and whether to fit Y as a function of N (reverse calibration) 
or to fit N as a function of Y and invert to solve for Y (inverse calibration). Both options 
should be investigated using simulation, because analytical approximations have been 
shown to not be sufficiently accurate either to decide between options or to assess the 
uncertainty in the chosen option [14,27]. However, the root mean squared prediction 
error of reverse calibration (Eq. (5) is an example of reverse calibration) has been 
generally found to be the same as or smaller than that of inverse calibration. 
     Calibration data is used to generate the estimate 𝛽lHof the model parameter 𝛽H. The 
variance of 𝛽 is not necessarily well-approximated by the usual least squares expression 
because of errors in N [7,8,39,40]. Therefore, [14,27] suggest that the root mean squared 
error (RMSE) in 𝑌�	be estimated by simulating the calibration procedure, which allows for 
errors in N arising from Poisson counting statistics, and also arising from other sources, 
such as container thickness (with or without an adjustment for the measured container 
thickness) varying among test items. Errors in N due to imperfect adjustment for 
container thickness can manifest as item-specific bias. The ABC strategy below 
illustrates how item-specific bias can be understood and estimated. The RMSE in 𝑌�is 
defined as usual, as	𝐸 ��𝑌� − 𝑌�\�j�

3� = 𝐸 ��𝑌� − 𝐸(𝑌�)�3� + ((𝐸�𝑌�� − 𝑌�\�j)3 = 
variance + bias2. 
One can express the calibration Eq. (5) as in Eq. (4), where X1 is 𝛽lH and X2 is N, with    
var (𝛽

lH) estimated by simulation, so GUM’s Eq. (4) could be used to estimate var(𝑌�H) and 
cov𝑌�H, 𝑌�3), although [22] points out that GUM’s Eq. (4) is not actually designed to be 
applied to calibration applications, regardless of whether there are errors in the predictors.  

  
Figure 1. Example low-resolution (NaI detector) gamma spectrum near the 185.6keV peak 
with two background regions (one region below the 185.7 keV peak and one region above 
the 185.7 keV peak). 
 
In general, item-specific bias can arise due to item-specific effects, expressed as 
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�2
�
= 𝑔(𝑋H,	𝑋3,… , 𝑋W)                                              (6), 

where CR is the item’s neutron or gamma count rate, M  is the item SNM mass, g is a 
known function, and 𝑋H , 	𝑋3,… , 𝑋W are N auxiliary predictor variables such as item 
density, source SNM heterogeneity, and container thickness, which will generally be 
estimated or measured with error and so are regarded as random variables . To map Eq. 
(6), to GUM’s Eq. (2), write  

                         𝑀 = �2
n(�N,�P,…,��

) = ℎ(𝑋H,	𝑋3,… , 𝑋�)                                         (7), 
where the measured CR is now among the M = N+1 inputs. Note that Eq. (7) is the same 
as Eq. (2), but some of the Xi account for item-specific departures from reference items 
used for calibration. More specifically, Eq. (5) can be re-expressed as  

                                                       𝑦 = 𝛽X�j�𝑁 + 𝑅Y                  (8), 

where the calibration “constant” denoted 𝛽X�j�  varies across items. Equation (8) is a 
random-coefficient regression equation, and real and/or simulated data generated from Eq. 
(8) can be used to estimate the average value of	𝛽X�j�. Eq. (8) is a model that can explain 
item-specific bias, which is usually regarded as a random error (across items). Many NDA 
examples adjust test items to calibration items using some type of modelling [2,14]. In the 
EMP, an additional input variable X3 could be an adjustment for container thickness to be 
applied to the detected net count rate in Eq. (8).  And, one way to model the effect of 
imperfect adjustment for each item’s container thickness is to include another random error 
in the net count rates rather than to modify𝛽H. In practice, net count rates are sometimes 
adjusted to account for the measured container thickness, using Beer’s law, which states 
that the gamma intensity after passing through a container with density , attenuation 
coefficient  and thickness t is multiplied by 𝑒BG��). Note that errors in N have the same 
impact as errors in 𝛽X�j�because the term 𝛽X�j�𝑁 appears in Eq. (8). 

 
2.4 ABC applied to the EMP for bottom-up and top-down UQ 
     ABC applied to the EMP for bottom-up UQ can be implemented in the following 
seven steps. (1) Estimate the average regression coefficient in Eq. (8) using available real 
calibration data, typically consisting of approximately 3 to 5 (Y,N)  pairs. The example 
real calibration data used here are Y = 0.355, 0.80, 2.175, .305, 5.0 (235U enrichments of 5 
standards) and the corresponding N= 0.062, 0.139, 0.37, 0.575, 0.866 net count rates. (2) 
Use the estimate  𝛽lH from (1) to generate many (S = 105 or more) synthetic calibration 
runs using to generate synthetic sets of 5 paired (Y,N) values, with run i producing the 
estimate 𝛽lH,X. This example generated the 𝛽X�j�values randomly and uniformly from 0.85 
to 0.95. (3) Specify a prior distribution for the true enrichment 𝜇Y. If little is known about 
the true enrichment values, then, for example, specify a uniform prior ranging from the 
lowest possible true enrichment to the highest possible true enrichment. This example 
used a wide uniform distribution from 0.355 to 5.0, which avoids extrapolating outside 
the range of the true enrichments.  (4) Specify a background count rate 𝜇� (this example 
used 𝜇�= 0.05) and use the estimated regression coefficient 𝛼�H from the regression 
equation 𝑁 = 𝛼H(𝑖𝑡𝑒𝑚)𝑌 + 𝑅W to generate a true mean net count rate that corresponds to 
a 𝜇Yvalue sampled from its prior distribution.  This example used an RSD in Y of 0.1% 
and in of 5%.  (5) Specify a count time (this example used 600 seconds) t, simulate 
𝐵~Pois(𝜇�𝑡), and 𝐺~Pois(𝜇�𝑡), and compute a net count rate (this example assumes the 
same number of energy channels for the peak and background ROIs) 𝑁 = �

�
− �

�
 (6) 

r
µ
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Repeat (4) and (5) many (105 or more) times to construct a large collection of simulated 
true enrichments 𝜇Y	and corresponding net count rates N. The net count rate N is an 
effective summary statistic. (7) For each simulated test case,  simulate a value of from its 
prior, use steps (4) and (5) to generate 𝑁�ji�, and compute the distance 𝑑(𝑁�ji�, 𝑁X) =
|𝑁�ji� − 𝑁X|from 𝑁�ji�to each of the i = 1, 2, …, 105 realizations from step (6), and 
accept those generated in step (6) that correspond to = |𝑁�ji� − 𝑁X| ≤ 𝜀	 as observations 
from the posterior 𝜇Y|𝑁 (which in this case is somewhat complicated to specify 
analytically) weighting inversely by the distance |𝑁�ji� − 𝑁X|if desired.  Linear 
regression was not used in this ABC implementation for predicting 𝜇Yfor each simulated 
test value of N, although it could have been, and note that regression is used in step (2) to 
generate the 105 pairs of (𝜇Y,N) in the training data for ABC.  
     To assess ABC performance, the two criteria mentioned can be used: the estimated 
standard deviation of the posterior should be in good agreement with the observed 
standard deviation across test items, and the nominal probability interval coverage should 
be in good agreement with the actual coverage.  The analysed data were generated using 
the steps just given to apply ABC for both operator and inspector data, assuming for 
simplicity that both used the EMP and both recalibrated at the beginning of periods 1, 2, 
and 3.  The estimated standard deviation of the 𝑑\jk=

;B*
;
	which includes both within and 

between group standard deviations) from top-down data (also using ABC for the top-
down ANOVA) is 0.11, which is very close to that predicted from the bottom-up ABC-
based (0.12 as explained in the next paragraph) posterior standard deviations for O and I. 
Recall that the usual ANOVA-based estimator of  𝛿23(using the multiplicative form of Eq. 
(1) for both operator and inspector) is  𝛿l23 =

H
mnBn

∑ ∑ (𝑑"# − 𝑑̅")3m
#qH

n
"qH ,and  the usual 

estimate of 𝛿53 is 𝛿l53 =
H

mnBn

∑ (rs@Brt)P
u
@vN

(nBH)
− 	Jwx

P

m
. The quantities, 𝛿l23and 𝛿l53are therefore good 

summary statistics for ABC, and were used to implement ABC for top-down UQ. 
     The 0.12 bottom-up prediction for the RSD 𝛿r of (computed here as the SD of 
𝑑\jk=

;B*
;

) is illustrated by plotting the posterior for O for a particular N value in Fig. 2, 
which has a total (random plus systematic) RSD of 0.08 (from the 7-step procedure). 
Because this example assumes both O and I made the same type of EMP measurements, 
the bottom-up prediction of the RSD for 𝑑\jk=

;B*
;

is given by√0.083 + 0.083 = 0.11. 
The 0.12 top-down estimate of the RSD of 𝛿r (see Fig. 3, which is based on g = 3 groups 
and n = 10 paired measurements per group) is the RSD of the ABC-based posterior 
distribution for 𝛿rfrom top-down UQ. The 0.12 estimate has a SD of 0.03, and an 
approximate 95% probability interval for 𝛿ris 0.07 to 0.21. The estimated posterior for 
𝛿rhas approximately the same mean and SD regardless of whether the data are generated 
from Eq. (1) or from the bottom-up-based measurement method. Figure 4 combines 
Figures 2 and 3 to show that the bottom-up and top-down posteriors for 𝛿rare in good 
agreement. 
     One advantage of having a probability interval for both the bottom-up and top-down 
estimate of 𝛿r	is that one can assess whether differences between the top-down and 
bottom-up estimates of 𝛿rare significant. In this example, bottom-up UQ using ABC 
agrees well with corresponding top-down UQ using ABC that used simulated O and I 
values as in Fig. 1. Trial and error was used to select 𝜀 = 0.01 to obtain good agreement 
between the ABC-based predicted standard deviation and the observed standard 
deviation. Coverages of the ABC-based probability intervals were checked and, as 
mentioned, excellent agreement between nominal and actual was observed. Specifically, 

d
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the 99%, 95%, and 90% probability intervals contained approximately 99%, 95%, and 
90%, respectively of the true values of 𝜇Y. 
     Because bottom-up RSD estimates are often compared to top-down RSD estimates to 
look for unmodeled effects (“dark uncertainty” [26]), it is important for RSD estimates to 
include information regarding uncertainty in the estimated RSDs. In this example, ABC 
provides estimates of the uncertainty in the parameter estimates (in this case, the 
estimated RSDs) in the same manner that any Bayesian analysis does, by providing a 
posterior distribution for each parameter. Because the top-down and bottom-up RSD 
estimates are essentially the same in this example (Fig. 4), there is no evidence of dark 
uncertainty (and there should not be, because no dark uncertainty was simulated). 
     A normal distribution is not always a good approximation for the actual distribution of 
;B*
;

values used in top-down UQ. So, regarding robustness of ABC in top-down UQ, it has 
been found that the actual coverages are essentially the same (to within simulation 
uncertainty) as the nominal coverages, at 90%, 95%, and 99% probabilities, for a normal 
distribution and all of the non-normal distributions investigated (uniform, gamma, 
lognormal, beta, t, and generalized lamba with thick or thin tails) for the distribution of 
the random error term in Eq. (6).  Regarding robustness of ABC in the bottom-up 
context, a key aspect of ABC is the ease with which different forward models linking 
model parameters (such as the true RSDs in Eq. (2)) to model output and corresponding 
summary statistics.  For example, the Poisson model used in the ABC implementation for 
the EMP can be easily replaced with an overdispersed Poisson model if exploratory 
analysis of real data suggests overdispersion. 

 

Figure 2.  The bottom-up ABC-based estimate of the posterior 𝛿E*(or 𝛿E;).  

YR
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Figure 3. The top-down ABC-based estimate of the posterior for 𝛿rwith mean 0.12 and 
RSD of 0.03. 

 

 

Figure 4. The bottom-up and top-down ABC-based posterior estimates of 𝛿r. 
 

 
3. Tolerance Intervals 

     To monitor for possible data falsification by the operator that could mask nuclear 
material diversion, paired (operator, inspector) data are assessed. These paired data are 
declarations usually based on measurements by the operator, often using destructive assay, 
and measurements by the inspector, often using NDA.  Statistical tests are applied one-
item-at-a-time, and also to assess for a possible trend by computing the overall difference 
of the operator-inspector values using the D statistic, typically defined as 𝐷¡hi =
W
m
∑ (𝑂"m
"qH − 𝐼"), or as 𝐷\jk =

W
m
∑ ;@B*@

;@
m
"qH , where j indexes the sample items,	𝑂"  is the 

operator declaration, 𝐼"is the inspector measurement, n is the verification sample size, and 
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N is the total number of items in the stratum. The D statistic and the one-item-at-a-time 
tests rely on estimates of operator and inspector measurement error RSDs that are based on 
top-down UQ from previous inspections. Inspector NDA measurements are made using 
portable neutron and gamma detectors taken into the facility, which involves challenges 
for UQ (Section 3). Such an assessment depends on the assumed measurement error model 
(for example, if the errors scale with the true value then a relative error model is 
appropriate) and associated uncertainty components, so it is important to perform effective 
UQ [2,3,4,8,9].  

Many applications involve testing for a shift in the mean of a probability distribution 
for a random quantity, with a false alarm probability (FAP) and a failure-to-detect-the-shift 
probability. The IAEA verification data that are collected to monitor for possible nuclear 
material diversion is the example used here [1,4]. Such verification data from IAEA 
inspections often consist of paired data (usually operators’ declarations and inspectors’ 
verification results) that are analyzed to detect the significant differences. Any significant 
difference could arise due to a problem with the operator and/or inspector measurement 
systems, or due to the operator falsifying the data in an attempt to mask diversion; such a 
falsification would cause a mean shift between the operator declaration and the 
corresponding inspector measurement. Paired data from past inspections are used to 
estimate the alarm limits, and each inspection period is regarded as a group within which 
the measurements are assumed to have the same systematic error. due to calibration and 
other effects [1–3]. The corresponding FAP depends on the assumed measurement error 
model and its random (within-group) and systematic (between-group) error variances, 
which are estimated while using data from previous inspections [3].  

Reference [4] reviewed parametric, semi-parametric, and non-parametric options for 
setting alarm thresholds in such grouped data. If both the within-group and between-group 
measurement errors have approximately normal distributions, then a parametric option that 
involves tolerance intervals [4-11] for one-way ANOVA can be used. If either or both error 
distributions are not close to normal, then a semi-parametric method that is based on a 
Dirichlet process mixture [4] can be applied. A non-parametric method [4] could be used 
if there is enough data. 
 
3.1 Parametric approach 

TI construction methods for one-way ANOVA continue to be improved. In some 
applications, all four error variance components in 𝑑"# from Section 2 must be 
estimated [1–3,17–19], but in this application, only the aggregate variances 𝛿53 and 
𝛿23 need to be estimated. This paper’s focus is on the total relative variance, 𝛿E3 =
𝛿53 + 𝛿23 , because 𝑑"#~𝑁(0, 𝛿E3 (approximately, due to using 𝑑"# =

]@ABX@A
]@A

  rather 

than𝑑"# =
]@ABX@A
G@A

). The estimated variances 𝛿l23  and𝛿l53  are used to compute 𝛿lE3 =

𝛿l53 + 𝛿l23, so that 𝛿lE  can be used to set an alarm threshold for future  values. 

Specifically, in future values of the operator-inspector difference statistic 𝑑 = ]BX
]

, 
if |𝑑| > 𝑘𝛿lE  (in two-sided testing), then the i-th item selected for verification leads 

to an alarm, where 𝛿lE = F𝛿l53 + 𝛿l23 (with 𝛿lE the total RSD, 𝛿5	the between-period 

short-term systematic error RSD, and 𝛿2	the within-period reproducibility) and k 
= 3 is a common current choice that corresponds to a small 𝛼 of approximately 
0.003 if 𝛿lE = 𝛿E. Therefore, the focus in [4,25] is a one-way random effects ANOVA 

reld
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[30]. Regarding jargon, note that the short-term systematic errors are fixed within 
an inspection period, but they are random across periods, so this is called a 
random effects ANOVA model [30]. Due to the estimation error in 𝛿lE, the actual 
FAP can be considerably larger than 0.05, as shown in [10,25]. 
The usual ANOVA decomposition is 

∑ ∑ (𝑑"# − 𝑑̅̅)3m
#qH

n
"qH = ∑ ∑ (𝑑"# − 𝑑̅")3m

#qH
n
"qH + 𝑛∑ (𝑑̅". − 𝑑̅̅)3

n
"qH =SSW + SSB = 

𝑆¤3 + 𝑆�3 
(9) 

where 𝑑"# = 𝑜"# − 𝑖"#   for additive models and 𝑑"# =
]@ABX@A
]@A

  for multiplicative 

models as assumed from now on (to avoid cluttering the notation, the “rel” 
subscript in 𝑑\jk =

;B*
;  is omitted). In Eq. (9), SSW is the within group sum of 

squares, and SSB is the between group sum of squares. For simplicity, Eq. (9) 
assumes that each group has the same number of measurements n. As usual in 
one-way (one grouping variable) random effects ANOVA, 𝐸�∑ ∑ (𝑑"# −m

#qH
n
"qH

𝑑̅")3� = (𝑛𝑔 − 1)𝛿23 and 𝐸 � m
nBH

∑ (𝑑̅". − 𝑑̅̅)3
n
"qH � = 𝑛𝛿53 + 𝛿23  from which it follows 

that reasonable estimators are 𝛿l23 =
5¥
P

n(mBH)
and	𝛿l53 =

H
m
( 5¦

P

nBH
− 5¥

P

n(mBH)
). 

For data sets in which 𝑑"#	 appears to have approximately a normal 
distribution, key properties (such as the variances) of the estimators 𝛿l23 and 𝛿l53 are 
approximately known [30]. However, biased estimators can have smaller mean 
squared error (MSE), so other estimators should be considered. Additionally, 
again assuming normally distributed R and S values, an exact confidence interval 
(CI) can be constructed for 𝛿23 using the  distribution, but there are only 

approximate methods to construct CIs for	𝛿23, because the distribution of 𝛿l53	is a 
difference of two independent random variables. Kraemer [41] proposes a 
modified CI construction method for 	𝛿53  and investigates impacts of non-
normality.  

Many readers are probably more familiar with confidence intervals (CIs) than 
tolerance intervals (TIs). A CI is defined as an interval that, on average, includes a 
model parameter, such as a population mean with a stated confidence, often 95%. 
A TI is very similar to a CI, but it is defined as in interval that bounds a percentage 
of the population with a stated confidence, often bounding 95% of the population 
with confidence 99%. In the IAEA application, an alarm threshold is used that is 
assumed to correspond to a small false alarm probability (FAP), such as 5%, so the 
TI-based threshold bounds the lower (one-sided testing) or middle (two-sided 
testing) 95% of the population. Therefore, TIs are needed to control the FAP with 
high confidence (such as 99%) to be 5% or less. 

Historical differences, such as	𝑑H ,		𝑑3, … , 	𝑑mn  are often used to estimate an 
alarm threshold for future measurements that has a small nominal 𝛼, such as 𝛼 =
0.05. Accordingly, instead of requiring a CI for the true value 𝜇 the need is to 
estimate a threshold denoted , which is the 0.95 quantile of the probability 

χdf=g (n−1)
2

χ2

0.95T
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distribution of d corresponds to 𝛼 = 0.05 in one-sided testing. In contrast to a CI, 
a TI is an interval that bounds a fraction of a probability distribution with a 
specified confidence (frequentist) or probability (Bayesian approach) [4,10,31], in 
this paper, for the model 𝑋 = 𝜇 + 𝑆 + 𝑅, where 𝑋 = ;B*

;
 as computed with paired 

(O,I) data. 
It is helpful to first review inference in a simpler setting without data being 

grouped by an inspection period. Suppose that data 		𝑥H, 𝑥	3, … , 	𝑥m, 	𝑥mIH  are 
collected from a distribution that is approximately normal with unknown mean 𝜇 
and standard deviation , so 𝑋~𝑁(𝜇, 𝜎). Assume that is test data and that 
	𝑥H, 𝑥	3, … , 	𝑥m are the training data used to estimate 𝜇 and , while using the usual 

estimates 𝜇̂ = 𝑥̅ = ∑ ©ª«
ªvN
m

and 𝜎� = √𝑠3 = F∑ (©ªB©̅)P«
ªvN
mBH

, respectively. When 

constructing intervals of the form 𝑥	­ ± 𝑘𝜎�, the multiplier k can be chosen in order 
to have any user-desired confidence that the interval 𝑥	­ ± 𝑘𝜎� will include the true 
parameter 𝜇 Specifically, for the commonly-used t-based CI, 
𝑘 = 𝑡HB¯P

	(𝑛 − 1)	where 1 − 𝛼  is the desired confidence and 𝑡HB¯P
(𝑛 − 1)  denotes 

the   
1 − °

3
	quantile of the t distribution with n-1 degrees of freedom. For example, if n 

= 10, 20, or 30, then 𝑘 = 𝑡HB¯P
(𝑛 − 1) = 2.26, 2.09, or 2.05, respectively. Note that the 

well-known t-based CI is appropriate for ungrouped data. Or, if 𝜎 is known, then 
𝑘 = 𝑧HB¯P

, where 𝑧HB¯P  is the 1 − °
3

 quantile of the normal distribution (the 

commonly-used z-based CI). 
The previous paragraph adopted a frequentist viewpoint ( 𝜇  and 𝜎  are 

unknown constants), so the intervals are referred to as CIs. In repeated 
applications of training on n observations of X, a fraction of approximately 1 − 𝛼 
of these CIs for 𝜇  will include the true value of 	𝜇  (and similarly for 	𝜎 ). The 
Bayesian viewpoint regards 𝜇 and 𝜎 as random variables. A prior distribution is 
assumed for both 𝜇 and 𝜎 and the training data are used via Bayes theorem to 
update the prior to produce a posterior distribution [31-35,37], which is used to 
produce an interval that includes the true parameter with any user-desired 
probability (assuming that the data 𝑥H, 𝑥3, , , 𝑥m,  are approximately normal and the 
prior distributions for 𝜇  and 𝜎  are appropriate). The Bayesian approach is 
subjective, unless there is some objective means to choose the prior probability 
[31]; however, in the context of this paper, there are simple options to validate that 
the Bayesian approach is calibrated. 

Moving from inference about 𝜇  and 𝜎  [ref] introduced methods to use 
to calculate a threshold 𝑇�HB°such that 𝑃(𝑇�HB° ≥ 𝑇HB°), where 𝑇HB° is 

the true 1 − 𝛼  threshold of the distribution of x. Frequentist TIs and Bayesian 
prediction intervals were developed, which include a specified fraction of at least 
1 − 𝛼 of future data, with p being the specified confidence in the frequentist TI 
approach and p being the posterior probability in a Bayesian approach [10]. The 

s 1nx +
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frequentist TI estimators that are presented have the form 𝑇�´.µ¶ = 𝜇̂ + 𝑘𝜎�, where 
𝑘	is the coverage factor that depends on the sample size. In any Bayesian approach, 
probabilities are calculated with respect to the joint posterior distribution 
𝑓[]i�j\X]\(𝜇, 𝜎)  for given  [22]. In this context, in the Bayesian 
approach, 𝜇  and 𝜎  are random unknown parameters, so 	𝑃(𝑇�´.µ¶ ≥ 𝑇 .µ¶)  = 
𝑃G,·(𝑇�´.µ¶ ≥ 𝑇 .µ¶) is computed with respect to 𝜇 and 𝜎 for given . The 
Bayesian approach that was used in the IAEA application generates observations 
𝜇 and 𝜎 from the posterior probability, which can be used to compute the posterior 
means 𝜇̂ and 𝜎� (the hat notation is somewhat non-standard in Bayesian literature, 
but it denotes the respective point estimate), which can then be used to 
numerically search for a suitable value of 𝑘  to estimate 𝑇�´.µ¶ = 𝜇̂ + 𝑘𝜎� . In the 
frequentist approach, 𝜇̂ and 𝜎�are random, while 𝜇 and 𝜎 are fixed unknowns, so 
𝑃�𝑇�´.µ¶ ≥ 𝑇 .µ¶� = 𝑃�N,�N,…,�«�𝑇�´.µ¶ ≥ 𝑇 .µ¶�   is computed with respect to random 
samples of size n. A frequentist TI has an associated confidence, which is the long-
run relative frequency that an interval such as (0,	𝑇�´.µ¶ = 𝜇̂ + 𝑘𝜎�  will include a 
future observation X from the same distribution as the training data used to 
estimate 𝜇̂ and 𝜎�. 

An exact expression for a TI is only available in the one-sided one-component 
Gaussian case [4,10]. However, good approximate expressions for many other 
cases are available [4]. Alternatively, TIs can be estimated well by using a 
simulation to approximate an alarm threshold that is designed to contain at least  
1 − 𝛼 percent of future observations with a specified coverage probability   

For the case 𝑋~𝑁(𝜇, 𝜎), in one-sided testing, [4] the exact upper limit for a 1-p 
TI upper bound is 𝑈 = 𝑥̅ + 𝑘𝑠where 𝑘 = 𝑡HB°(df = 𝑛 − 1,ncp = 𝜆)/𝑛where the 
noncentrality parameter 𝜆 = 𝑧[√𝑛, and 𝑧[denotes the pth quantile (p = 0.99 here) 
of the standard normal (mean 0, variance 1). For example, with n = 10, 20, or 30, k 
= 3.74, 2.81, and 2.52, respectively. Note that these values of k are larger than the 
corresponding values in a 1 − 𝛼 CI for  (2.26, 2.09, or 2.05, from above). results 
in order to illustrate the simulation approach. 

In the ANOVA setting, the factor 𝑘 required in 𝑇�´.µ¶ = 𝜇̂ + 𝑘𝜎� depends on the 
unknown ratio ·À

·x
, so approximations are needed. As an example, if one assumes 

𝛿lE = 𝛿E,	then choosing = 1.65  corresponds to 𝛼 = 0.05 (one-sided testing with 
the Gaussian approximation); however, if n = 10, paired measurements in each of 
g = 3 prior inspection periods are available, and ·À

·x
= 1, then choosing = 1.65 leads 

to an actual FAP of 0.05 or less, with a probability of only 0.38. Therefore, one must 
choose a larger value of k than 𝑘 = 1.65 in order to ensure a large probability p that 
𝛼 ≤ 0.05 [4,10]. Unlike the single-component Gaussian case above, the required 
value of  k depend on the ratio ·À

·x
, which is unknown in practice, so approximate 

methods are used. If one desires a high probability p = 0.99  that the actual FAP is 
as small as the nominal FAP (0.05), then simulations in R [20] indicate that the 
required k values are 2.52, 2.94, or 4.23, for 𝜎5 = 0.25𝜎2,	1𝜎2, 4𝜎2 respectively. Not 

x1,  x2 ,  …,  xn

x1,  x2 ,  …,  xn

.p

µ

k
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surprisingly, the required k value increase as  ·À
·x

 increases. Reference [4,40 ] have 

more detail on parametric TI construction for ANOVA. 
 

3.2 Semiparametric approach 
 

A semiparametric approach lies between the parametric and nonparametric extremes. 
For example, one semiparametric option is bspmma (which uses a dirichlet process prior) 
that can be compared to the parametric case, and for a two-sided interval expressed as 

, requires k = 4.2 for the example data in Fig. 5 simulated from Eq. (1). The R 
code bspmma [42] can be used in one-way random effects ANOVA to estimate the 
posterior distribution of S. The acronym bspmma stands for Bayesian semiparametric 
models for meta-analysis [42], and the R code uses model selection that is based on the 
Radon–Nikodym derivative. The posterior distribution of R can be obtained by any of 
several common approaches. The k = 4.2 result for the S + R distribution used a parametric 
bootstrap [4], in which sample i from the posterior distribution of S + R used bspmma to 
generate the S value and from to generate the R value. The standard deviation 

is sampled from the posterior distribution of . 

 
Figure 5. Simulated verification measurement data with 𝛿5 = 𝛿2 = 0.01. The relative 
difference 𝑑 = ]BX

]
 is plotted for each of 10 paired (o,i) measurements in each of three 

groups, for a total of 30 relative differences. The mean relative difference within each 
group (inspection period) is indicated by a horizontal line through the respective group 
means of the paired relative differences. The 3 sets of 10 d values (multiplied by 100 
for ease of reading) are {(−0.52, 1.72, −0.66, −0.15, −0.06, 0.35, 1.70, −0.35, −0.17, 
2.35), (−1.14, −2.38,0.40, −1.12, −1.36, −1.28, −1.67, 0.52 −1.65, −0.03), (−1.12, 
−1.04, −0.63, −1.19, 0.19, −1.63, 0.07, −0.34, −1.43, −1.50)}. 

 
The semi-parametric approach that was used in this context assumes that R has a 

normal distribution and S has an arbitrary (unknown) distribution. Interestingly, in this 
case, the covariance between MSB and MSW is 0, because cov(𝑀𝑆𝐵,𝑀𝑆𝑊) =

0± kσ̂T

N (0,σ̂R i
)

σ̂R i
σR i
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GÅ,xBÆ·x
Å

mn
where 𝜇Ç,2 

is the fourth central moment,	𝜇Ç,2 = 𝐸(𝑅Ç) , and then because 𝜇Ç,2 =
3𝜎2Ç	for a normal distribution [30], cov(𝑀𝑆𝐵,𝑀𝑆𝑊)=0.  

 
3.3 Nonparametric approach 

 
The nonparametric approach requires one or more observations from each of the 130 

groups (inspection periods), which are far too many groups and observations to be 
practical. The basis for the nonparametric result of n = 130 is an application of order 
statistics [4], and the expression for the required sample size n from the S + R distribution 
in model 2 is 1 − 𝑛𝑝mBH + (𝑛 − 1)𝑝m , where p is the desired probability. If the 
requirement is 95% probability that the tolerance interval that is based on that the interval 
𝑋(m) − 𝑋(H) = max – min contains at least 95% of future values, then n = 93. Raising the 
requirement from 95% probability to 99% probability increases the required n to n = 130, 
as given. 

 
 
 

4. Detection Probabilities 
 
     NMA requires measuring facility input transfers , output transfers , and 
inventory I to compute a material balance defined for balance period j as

where  

is the book inventory. Typically, many measurements are combined to 
estimate the terms Tin, Ibegin, Tout, and Iend in the MB; therefore, the central limit effect and 
years of experience suggests that MBs in most facilities will be approximately normally 
distributed with mean equal to the true SNM loss µ and standard deviation sMB, which is 
expressed as X  ~ N(µ,sMB ), where X denotes the MB [5,14].  Therefore, a sequence of n 
MBs are assumed to have approximately a multivariate normal distribution, 𝑋H,	𝑋H,…, 

𝑋H~MVN(𝜇, Σ) where the n-by-n covariance matrix Σ = Í
𝜎HH3 𝜎H33 …	𝜎Hm3

𝜎3H3 𝜎333 … . 𝜎3m3…
𝜎mH3 					𝜎m33 	… . 𝜎mm3

Î.   

     The magnitude of 𝜎MB determines what SNM loss 𝜇 leads to high detection 
probability (DP). For example, suppose the facility tests for SNM loss only, not for SNM 
gain, and assume that X	~	N(0, 𝜎MB)  is an adequate model. Then, if a false alarm 
probability of 𝜎MB= 0.05 is desired, the alarm threshold is 1.65 𝜎MB. Or, if the facility 
tests for loss or gain, then the alarm threshold is 1.96 𝜎MBIn the case of testing for loss 
only, it then follows that the loss detection probability 1- 𝛽	for 𝜇 = 3.3 𝜎MBand 1 –	𝛽	> 
0.95 if 𝜇  > 3.3𝜎MB, where 𝛽	is the nondetection (false negative) probability. The factor 
3.3 arises from symmetry of the Gaussian, requiring  FAP = 𝛼= 0.05, and the fact that 
1.65=3.3/2 is the 0.95 quantile of the N(0,1) distribution.  If the facility tests for loss or 
gain, then 1 –	𝛽 > 0.95 if 𝜇 > (1.65+1.96) 𝜎MB=3.61𝜎MBB . The DP of other safeguards 
measures such as enhanced containment and surveillance with smart cameras and/or 
remote radiation detection is difficult to quantify and is outside the scope.   
One common goal is for the loss detection probability DP=1 − 𝛽 to be at least 0.95 if      
𝜇 1 SQ (significant quantity, which is 8 kg for Pu), which is accomplished if             𝜎MB 

 SQ/3.3.  If  𝜎MB  > SQ/3.3, this can be mitigated either by reducing the typical 

Tin Tout

MB j  = (I j−1 + Tin,j  -Tout,j) - I j = book inventory-physical inventory,

1 in,j out,j(I T  -T )j- +

³
£

 
569



magnitude of measurement errors to achieve 𝜎MB  SQ/3.3 (if feasible), and/or by closing 
the balances more frequently so there is less nuclear material transferred per balance 
period, which reduces 𝜎MB. It is important to recognize that large throughput facilities 
cannot typically achieve DP ≥ 0.95 for a loss of 𝜇 1 SQ over a long time period such as 
one year. And, NRTA is not a panacea, because, as shown in [ref], if a facility slowly 
diverts NM over, for example, one year, then a single yearly statistical test has larger DP 
than frequent statistical testing during the year. Of course if the facility diverts NM 
abruptly, such as over one day, then NRTA will have much larger DP than a single 
annual statistical test.  It is therefore generally accepted that NRTA is a valuable 
safeguards measure, despite leading to slightly smaller DP than in using annual MBs for 
protracted loss detection. Most safeguards studies assume that a yearly decision is made, 
corresponding to the time of the annual scheduled physical inventory. But, if the facility 
diverts, for example, SQ/2 in year 1 and SQ/2 in year 2, then the DP is lowered; however, 
the diversion time is longer than one year. See Figure 6; however, the required diversion 
time would be longer than one calendar year, in this figure, lasting from period 7 to 18.  
 
 

 
Figure 6. MB sequences over 36 months using fixed-period (annual) decision periods. 
 
 

4.1 Propagation of Variance to Estimate S 
     The following is a simplified example [14, 43] of estimating S  using a model of a 
generic electrochemical facility with one input stream, one output stream, and two 
inventory items is as follows. First, each individual measurement method is modelled with 
a measurement error model. A typical model for multiplicative errors for the operator (O) 
is 𝑂X = 𝜇X(1 + 𝑆;X + 𝑅;X) with 𝑆;X~𝑁(0, 𝛿5;3 )  and 	𝑅;X~𝑁(0, 𝛿2;3 ) , where 𝑂X  is the 
operator’s measured value of item i, 𝜇X is the true but unknown value of item i, 𝑅;X is a 
random error of item i, 𝑆;X + 𝑅;Xis a short-term systematic error for item i.  Then, the 
diagonal terms of S are calculated as 

£

³
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The off-diagonal terms S are calculated as: 

 

In the last two terms, the random error of the inventory term is only applied if the 
condition is true.  
 
4.2 Sequential Testing 
     The assumption 𝑋H 𝑋3,… , 𝑋W~MVN(𝜇, Σ)  implies that 𝑌 = ΣBH/3𝑋~𝑀𝑉𝑁 �ΣB

N
P𝜇, 𝐼�, 

where I is the identity matrix. The transform  	𝑌 = ΣBH/3𝑋 is known in safeguards as the 
standardized-independently-transformed MUF (SITMUF, where MUF is another name 
for the MB), which is most conveniently computed using the Cholesky decomposition 
[14,20,43]. There are two main advantages of applying statistical tests to Y rather than to 
X. First, alarm thresholds depend only on the sequence length n for Y, and not on the form 
of the covariance matrix . Because it is best to calculate thresholds using simulation, 
this is a logistic advantage.  Second, the variance of the Y sequence decreases over time, 
so particularly if a diversion occurs late in the analysis period, the DP is larger for the Y 
sequence than for the X sequence. Note that one cannot claim higher DP for the Y 
sequence than for the X sequence in general, because the true loss scenario is never 
known, and the DP can be larger for X than for Y for some loss scenarios, which is 
demonstrated in Section 4. 
     The value of  can be calculated using	𝑌 = ΣBH/3𝑋, but more intuitively as the 
residual from the X sequence, 𝑌X=𝑋X − 𝐸(𝑋X|𝑋H 𝑋3,… , 𝑋XBH	)	where E denotes the 

expectation and the standard deviation 𝜎Xis given by 𝜎X = F𝜎XX3 − 𝑓ΣBH𝑓Ewhere 𝑓 =

ΣX,H:(XBH), the 1 to (i-1) entries in the ith row of Σ. 
     Several reasonable statistical tests have been evaluated in [14,19,23,43], and are 
included in the simulation study in Section 4, including: 
4.2.1  MUF test. This compares each x = MUF value to a threshold, which is the same as 
a Shewhart test. The test alarms on period I if �ÒÓª

·ÔÕÖ,ª
≥ 𝑇for some threshold 𝑇. 

4.2.2 SITMUF test.  This compares each SITMUF value to a threshold, which is the same 
as a Shewhart=1 test in QC. The test alarms on period i if *E�ÒÓª

·ÀLKÔÕÖ,ª
≥ 𝑇for for some 

threshold T, where 𝜎5*E�ÒÓª = 1. 
4.2.3 Page applied to MUF. Page’s test [14,15,19,43,44] to test for loss is a sequence of 
sequential probability ratio tests, defined as 𝑃X = max	(0, 𝑃XBH +

©ª
·ª
− 𝑘). Alarm on 

period t if 𝑃� > ℎ.  The parameter 𝑘 is a control parameter that is optimal for detecting a 
shift from zero loss to loss L if	𝑘 = Ù

3
. The alarm threshold ℎ is chosen so that the FAP 

per analysis period (usually one year) is 0.05 or whatever FAP is specified. 
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4.2.4 Page applied to SITMUF. Page’s test to test for loss is a sequence of sequential 
probability ratio tests, defined as𝑃X = max	(0, 𝑃XBH + 𝑥𝑦X − 𝑘).. The alarm threshold h is 
chosen so that the FAP per analysis period (usually one year) is 0.05 or whatever FAP is 
specified. 
Page’s test with a large value of k and small value of h has good DP for abrupt loss, and 
with a small value of k and large value of h has good DP for protracted loss. Therefore, a 
reasonable option is to use a combination of two Page’s tests, one with large k and one 
with small k. 
4.2.5 Apply combined Page’s tests to MUF. Choose a relatively large value of k and 
small value of h to tune Page’s test to have large DP for abrupt loss, or a small value of k 
and large value of h to have large DP for abrupt loss. Use the combination as a test. 
4.2.6 Same as 4.2.5, but apply to SITMUF. 
4.2.7 Sequential CUMUF.  At period i,  CUMUFX = ∑ 𝑥"	H

"qH is the sum of all MUF values 
from period 1 to i. 
4.2.8 GEMUF.  It has been shown that if the loss vector 𝜇 is known, then the Neyman-
Pearson test statistic is 𝜇EΣBH𝑥, which is known as a matched filter in some literature.  
The GUMUF statistic substitutes 𝑥Efor	𝜇E, so  𝐺𝐸𝑀𝑈𝐹 = 	𝑥EΣBH𝑥.  In simulation 
studies, 𝜇 is known, so the NP test statistic is useful for calculating the largest possible 
DP. Geschatzter is “estimated MUF” in german, and GEMUF is the same as the 
Mahalanobis distance from the 0 vector, and Hotelling’s multivariate T statistic, which 
are used in multivariate process control 
4.2.9 A nonsequential version of the Neyman-Pearson test, 𝜇EΣBH𝑥,  is useful to calculate 
the largest possible DP for a given Σ and	𝜇. 
4.2.10 A nonsequential CUMUF (the annual CUMUF), which is often included in a suite 
of tests. 
 
The SITMUF transform is recommended for two reasons. First, simulation is typically 
used to select alarm thresholds, and it is convenient to always work on the same scale 
when selecting alarm thresholds, so the fact that 𝑌 = ΣBH𝑋~MVN(ΣB

N
P𝜇, 𝐼) is convenient.  

Note that alarm thresholds could be selected on the basis of exact or approximate 
analytical results for some, but not all, of the tests. For example, there are approximate 
expressions for h and k (Brook and Evans). Second, the standard deviation 𝜎X	is given by 

𝜎X = F𝜎XX3 − 𝑓ΣBH𝑓Ewhere 𝑓 = ΣX,H:(XBH), is the 1 to (i-1) entries in the ith row of	Σ, so 

the standard deviation of the MUF residuals decreases in the later periods.  Therefore, the 
independence transform is analogous to a bias adjustment, leading to smaller prediction 
variance in later periods, which tends to increase the DP for SITMUF compared to MUF 
(there are exceptions where the DP for MUF is larger than the DP for SITMUF; see 
Section 4 results). 
Remark 4.1. Thresholds can be chosen in many ways [13,14,18,20,43-45], and can be 
assumed to be constant for each period or not. 
Remark 4.2. Performance criteria. The main performance criterion for comparing tests is 
the DP. But, the average time to detection and robustness to misspecifying the covariance 
matrix S are also important. 
Remark 4.3. There are other tests in the literature [16,17,23]. A few other tests have been 
proposed for NRTA, including the power one test and the scan statistic. The power one 
test is not relevant in the context of fixed-period decision making. 
Remark 4.4.  Several simulation studies have been published [14,15,19,23,43]. 
 
4.3 Hybrid testing of NM and process monitoring data 
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Options to quantify the benefit of PM data by using P(alarm|diversion scenario) as  the 

figure of merit are described in [15], while using both PM and NMA residuals in the alarm 
rule. A key assumption is that the safeguards approach includes model-based predictions 
that can be compared to corresponding measurements, resulting in time series of residuals. 
The requirement for high-quality predictions leads to technical challenges in safeguarding 
either aqueous or electrochemical reprocessing facilities.  
For example, there is ongoing work aimed at high-quality modeling of the electrorefiner in 
an electrochemical facility [14, 43]. Strictly speaking, our approach leads to high SNM loss 
detection probability only for the specified diversion routes; however, there is also high 
loss detection probability for any type of abrupt loss.. Also, in the context of international 
safeguards, there is not yet an approach to authenticate operator PM data; authentication 
will depend on facility type and is under investigation. 

In general, we propose to estimate the DP of the safeguards system by estimating the 
system DP from PM combined with NMA using the following two steps: 

a) Describe diversion scenarios to inform how PM data should be evaluated to 
provide a means of event detection, and 

b) Evaluate P(alarm|diversion scenario), the conditional probability of an alarm 
for a given scenario. The alarm rule operates on p residuals r1, r2, …., rp 
which include MB values from NMA, plus residuals from monitoring “wait” 
and “transfer” modes in tank SM data. The probability P(alarm|diversion 
scenario) is a function of the true states of nature, the measurement system, 
and the alarm rule. 

To illustrate, Figure 7 plots example PM data from which residuals (measurement minus 
prediction) can be calculated [15]. Figure 8 plots PM residuals and the MBs from NMA. 
Figure 8 plots example DPs from the maximum of all the Page’s cusums and the average 
of all the Page’s cusums for (a) a localized in time and space loss, and (b) a non-localized 
in time and space loss. 
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Figure 7.  Process monitoring data from an input accountability tank (IAT), buffer1 
tank, feed tank, receipt tank, waste, buffer2 tank, product accountability tank, and 
from comparing predicted to measured holdup (material that is in the process in 
difficult-to-measure form). 
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Figure 8. Example simulated MB and PM data to which sequential testing can be 
applied. 
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Figure 9. Example DPs from the maximum of all the Page’s cusums and the average of all 
the Page’s cusums for (a) a localized in time and space loss, and (b) a non-localized in time 
and space loss. 

 
4. Summary 

This paper reviewed statistical methods for UQ of measurements, for constructing 
tolerance intervals for setting pass/fail criteria for monitored data streams, and for 
estimating DPs for specified NM misuse scenarios at declared facilities. UQ for 
measurements was done both empirically using data collected for metrology studies and 
from applying error variance propagation to all steps in the assay (physics-based).  
Approximate Bayesian computation (ABC) was used for both the empirical and physics-
based UQ. The estimated measurement error RSDs were then used to estimate the SD of 
the NM mass balances that are analyzed sequentially over time. 
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