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Abstract
The Department of Defense (DoD) is the largest employer in the United States of America with

2.15 million service members in 2019. The DoD must anticipate retention of service members to
effectively perform its mission. A team from the Institute of Defense Analyses began development
of the Retention Prediction Model (RPM), an application of a feed-forward neural network on a
novel dataset. The RPM is a tool that predicts retention of service members in the DoD and can be
used to inform DoD leadership about anticipated retention at the service member level. Prediction
on an out-of-sample set results in a concordance no worse than 0.78 for any given year or 0.73 for
the restricted mean survival time.
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1. Introduction

The Department of Defense (DoD) is the largest employer in the United States of America
with 2.15 million service members in 2019.[1] The DoD must have a sufficient number
of service members in the correct positions and anticipate retention to effectively perform
its mission. Thus, the DoD closely monitors the recruiting and retention of its service
members.[12, 19, 26] However, it can be difficult to make strategic personnel decisions
without high resolution, high accuracy retention forecasts. High quality retention forecasts
could provide DoD leadership with the information to decide priorities in recruiting and
staffing allocation.

Machine learning tools (including neural networks) have been deployed in many or-
ganizations and industries to predict retention and turnover of employees.[6, 20, 21, 23,
24, 27] More generally, machine learning has been broadly used throughout human re-
sources management to determine staffing, development, and performance management of
employees.[25]

Our team at the Institute for Defense Analyses (IDA) was tasked with building a tool
to provide retention forecasts for DoD service members. We trained a feed-forward neural
network on rich administrative records from 2000 to 2018 that can produce conditional
survival probabilities up to 18 years in the future for every active-duty service member in
the DoD. The model currently in development is called the Retention Prediction Model
(RPM). The RPM yields a concordance index no less than 0.78 for any given time horizon
and 0.73 for the restricted mean survival time (RMST) on an out-of-sample subset of the
data. The feed-forward neural network was chosen after considering alternative models
such as XGBoost, proportional hazards, random forest, and logistic regression.[4, 8]

For over three decades, the DoD has used a structural economic model called the Dy-
namic Retention Model (DRM) to produce “what-if” counterfactual predictions at the sub-
population level to inform policy decisions.[2, 7, 11, 17] The RPM serves a very different
purpose - providing in-sample predictions at the service member level under the current
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policy regime. In further work, we intend to complement the RPM with causal inference
methods and thereby inform policy changes.

Employing a neural network grants the RPM extraordinary flexibility over alternative
survival modeling methods. Whereas a proportional hazards model would assume the ef-
fect of features is constant over any time interval and a parametric hazards model would
assume the survival probabilities lie on a curve from a pre-specified parametric family, the
neural network allows arbitrary nonlinear and interactive relationships among features and
outputs. For example, a simpler model would not be able to capture an effect of age on
career duration being larger in the Navy than the other services without adding the proper
interaction term. While the researcher could add an interaction term between age and Navy
membership, the researcher would need to do so consciously, in advance, and for all suf-
ficiently plausible interactions. The RPM has the flexibility to capture arbitrarily complex
interactions without researcher prescience.

The primary drawback to such flexibility is the risk of overfitting (capturing relation-
ships that do not generalize to new data). We mitigate overfitting through dropout layers,
embedding regularization, and employing a shallow network specification. To estimate the
extent of overfitting, we compare model performance on the training and test sets over
training epochs.

1.1 How and Why People Leave

The goal of the RPM is to predict retention regardless of reason. However, understanding
reasons why service members leave the DoD is important for building a model with strong
predictive performance. A priori engineering features that are likely to predict retention
can improve neural network performance.

Individuals can join the DoD through enlisted or officer routes. Enlisted service mem-
bers sign a fixed-year contract that obligates them to a specified number of years of active
duty service. A common contract length is four years. As the contract nears its end, the
service member and the service jointly decide whether to renew the contract. If the service
member or the service decide not to renew the contract, then the service member is released
from active duty.

Individuals who join as officers, either commissioned or warrant, typically serve a fixed
year initial contract and then continue to serve until the service member or the service
decide to end the relationship. The initial contract length for commissioned officers is
commonly three or four years.

There are numerous other ways that service members can leave the DoD at contract
end points or intra-contract. Service members can be separated due to medical reasons,
such as physical injury or mental illness. Service members can also be separated due to
disciplinary or legal issues.

2. Data

We use annual observations from a 5% random sample of all active duty members of the
DoD from March 2000 through March 2018.1 The outcome of interest for a given person-
year observation is the number of consecutive future years observed for the same service
member. We observe 67,423 service members in 2018 but do not use those person-years
to train the model, since the outcome value for all 2018 observations is censored at zero
and therefore uninformative. From March 2000 through March 2017, our sample contains

1We use a 5% sample to reduce training time and increase the number of model iterations.
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1,281,471 observations of 216,037 unique service members. We reserve 75% of service
members for model training and the remainder for model testing.

We use 368 features on demographics, career, pay, and family. Features can be either
numeric (real-valued) or categorical. We identify a feature as numeric if it is a date (con-
verted to Julian) or has more than 1,024 unique numeric values; 53 features, including date
of birth, date of initial entry to the uniformed services, and various types of pay, meet this
criterion.2 The neural network can learn contract renewal periods because contract end
dates are provided as a feature. We identify all other features as categorical. Categorical
features include Service (Army, Navy, Air Force, or Marine Corps), assigned unit, and oc-
cupation. The criteria classify low-cardinality but naturally numeric features as categorical,
such as number of dependents and Armed Forces Qualification Test percentile. This choice
offers additional flexibility for the model to capture non-linear relationships.

Categorical features are encoded by mapping each unique value (including missing val-
ues) to a unique whole number and are then passed through an embedding layer (discussed
in the next section). Numeric features are min-max normalized to [-0.5, 0.5]. Missing
numeric values are set to -1 after normalization.[5, p. 102]

The entry and exit of service members from active duty service within the time frame of
the data produces an unbalanced panel. Of all unique service members, 37.9% are observed
in the most recent year of data and are thus right-censored. Right-censorship is a critical
complication of our research objective and requires survival modeling to address.

Forty percent of service members are observed in the first year of data, many of whom
were on active duty in earlier, unobserved years. This left-truncation impairs our ability to
engineer new features that depend on career history, such as number of deployments, but
does not impair our computation of the outcome.

3. Methods

We train a neural network that maps a given service member to a service member survival
curve represented by an 18-element vector of annual conditional survival probabilities. Ele-
ment t of the output vector represents the probability that the given service member remains
on active duty for at least t additional consecutive years. To address right-censorship of the
outcome, we use the survival loss function of Gensheimer and Narasimhan when training
the neural network.[9]

The neural network consists of a set of parallel embedding layers, one for each categor-
ical feature, followed by two consecutive sets of maxout and 25% dropout layers, then a
densely connected maxout layer, followed by a densely connected sigmoid output layer.[10]
Each embedding layer outputs a one-dimensional array. Thus each embedding layer is a
map from the set of natural numbers to the reals. We use one-dimensional embeddings
instead of higher dimensional embeddings for computational efficiency. We do not find
embeddings of greater dimensionality improve performance. We impose batch normaliza-
tion immediately prior to each maxout layer and the output layer. Each maxout layer has
256 maxout units and the activation of each unit is the maximum of four linear activations.

We use the AMSGrad variant of the Adam optimizer to train the neural network with a
learning rate of 0.001.[16, 22] We impose regularization on each embedding layer equal to
twice the sum of the squared elements of the embedding vector. We train on batches of 512
observations, randomly sampled without replacement, until test set loss does not improve
for four consecutive epochs. We then restore the model with the lowest test set loss (from
the fourth previous epoch), “freeze” the embedding layers (i.e., stop the embedding vectors

2Missing date of initial entry values are imputed with the date of the first observed record for service
members first observed later than January 2000.
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Figure 1: Training and test set loss by epoch

from updating in the upcoming training session), and continue training until test set loss
again does not decrease for four consecutive epochs. We then restore the model with the
lowest test set loss.

4. Results

Figure 1 presents the loss over epochs as the model is trained. The model trained for ten
epochs before failing to decrease test set loss for the next four epochs. The model then
trained for seven more epochs with frozen embedding layers before failing to decrease test
set loss for the next four epochs. The loss on the test set decreased substantially in the
first epoch after freezing the embedding layers and decreased marginally on average over
the next six epochs. While we may suppose that freezing the embedding layers prevented
those layers from overfitting, this supposition cannot explain the simultaneous drop in train
set loss. The value of the loss function on the train set decreased at a greater rate after
freezing the embedding layers which is counterintuitive since since freezing reduced the
parameter space, inhibiting fitting. Previous research has shown that freezing layers can
reduce training time with minimal increase in the loss, but we are unaware of any research
showing that freezing layers can decrease loss. We are curious for an explanation for this
counterintuitive result.[3]

An appropriate performance metric must address right-censorship of the outcome. For
a large share of observations, we do not observe the number of future years served but
a lower bound on that value (due to censoring).3 While we require a differentiable loss
function to train the model, we use a non-differentiable metric, Harrell’s concordance index
c, to measure performance. The c index has a more direct interpretation for retention than
the loss function.

3Typical metrics, such as mean squared error, require the observation of all outcome values over which the
metric is computed.
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Figure 2: C-index on test set for each prediction time horizon

The c index is measured over the RMST predicted for each test set observation.[13]
RMST is the expected value of the outcome over the maximum time interval of the predic-
tions (in this case, 18 years). RMST is restricted because the model is estimated on data
spanning only 19 years, so that the maximum possible observed value of the outcome is
18. If there was no censoring, then the estimate would be the mean number of years served
until departure from service. The RMST is an under-estimate of the mean. Among all
pairs of observations for which the smaller outcome value is uncensored, c measures the
share of such pairs for which the observation with the smaller outcome value has a smaller
predicted RMST.[14] Pairs for which the smaller outcome value is right-censored do not
permit comparison of the outcome values so are not used to compute c. A c value of 0.5
means the model is producing uninformative predictions and a c value of 1.0 means the
model is producing perfect orderings of predictions. Our model achieves a c of 0.725 on
the test set.

We can compute c not only over RMSTs but also over probabilities of serving t consec-
utive additional years. To do so, we must discard observations fewer than t years prior to
the most recent year (2018). Figure 2 plots c on the test set for each annual time horizon. c
is 0.887 for the 1-year time horizon and drops to 0.802 for the 4-year time horizon, but does
not drop much further for greater time horizons. c exceeds 0.78 for each time horizon. In
this application, c is equivalent to the area under the receiver operating characteristic curve
(AUROC).

To check that our model captures aggregate trends, we compare the actual survival
curve for the entire test set with the survival curve predicted by the model. Each point on
the predicted survival curve is the mean of the predicted survival probabilities over all test
set observations for the given time horizon. As desired, Figure 3 shows that the model
faithfully reproduces the actual survival curve.
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Figure 3: Predicted and actual aggregate survival probabilities

5. Conclusion

Using rich administrative data we began development of the RPM, a tool that can inform
DoD leadership about anticipated retention at the service member level. The RPM is cur-
rently an application of a feed-forward neural network on a novel dataset which yields a
c no worse than 0.78 for any given time horizon and 0.73 for RMST, on an out-of-sample
subset of the data.

With further development, the RPM could be used within a larger econometric frame-
work to provide counterfactual predictions at the service member level.[15] Future work
can also identify features that have strong predictive power.[18] Additionally, this dataset
can be used for methodological comparisons of various machine learning methods. Lastly,
the loss decreasing after freezing is perplexing and warrants additional investigation.
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