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Abstract

Leading, coincident and lagging indicators have long been used to analyze and assess the current

stage at which the economy stands. Official statistical agencies have generally applied linear filters

developed by Musgrave (1964) to produce preliminary estimates of the trend-cycle of these indi-

cators, but these estimates are subject to revisions as new observations are added to the series. To

reduce the revisions size, cascade linear filters developed by Dagum and Luati (2009) have been

recently used. However, only asymmetric filters related to the 13-term symmetric one are available,

whereas, due to more variability in the data introduced by major financial and global changes in

the economy, different filter lengths are needed to produce smoother estimates. We describe and

propose a new procedure to reduce the size of the revisions and make the indicators more timely.

These new filters significantly outperform their older counterpart. They offer substantial gains in

real-time by providing timely and more accurate information for detecting short-term trend turning

points.
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1. Introduction

The purpose of short-term economic statistics is to provide a comprehensive and timely

picture of economic processes, such as production, income distribution, financing and ex-

penditure, to evaluate the stage of the cycle at which the economy stands. Economic ana-

lysts and policy makers not only require accurate and timely information on the direction

and magnitude of the trend of main economic variables, but they must also have confidence

that these estimates are unlikely to change significantly as more complete data become

available. Therefore, the main aim of official statistical agencies is to find the best balance

among three main requirements, that is accuracy, timeliness and relevance of economic

statistics. Data revisions are important because they may affect policy decisions or the

manner in which such decisions depend on the most recent data.

The problem of identifying the direction of the short-term trend of seasonally adjusted

series contaminated by high levels of variability has become of relevant interest in recent

years. Financial and economic changes of global character have introduced a large amount

of noise in time series data, particularly, in socioeconomic indicators used for real time

economic analysis. Official statistical agencies generally rely on asymmetric filters that

were developed by Musgrave in 1964. However, the use of the latter introduces large revi-

sions as new observations are added to the series and, from a policymaking viewpoint, they

are too slow in detecting true turning points (see e.g. Dagum and Bianconcini, 2015, and

reference therein). To overcome these main limitations, Dagum (1996) developed a new

method that basically consisted of : (1) extending a smoothed seasonally adjusted series

(modified by extreme values with zero weight) with ARIMA extrapolations, and (2) apply-

ing the symmetric Henderson (1916) filter to the extended series using stricter sigma limits

for the identification and replacement of extreme values. The extension of the smoothed

seasonally adjusted series with ARIMA extrapolations was needed to reduce the size of the

revisions for the most recent estimates of the trend-cycle. A linear approximation of this
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filter has been proposed by Dagum and Luati (2009) based on the convolution of several

noise suppression, trend estimation (13-term Henderson filter), and extrapolation linear fil-

ters. This cascade linear filter is nowadays used by main statistical agencies around the

world to provide information on trend-cycle movements for several economic indicators.

Among others, Statistics Canada, US Bureau of Census, Eurostat use it in conjunction with

nonparametric seasonal adjustment software, such as the US Bureau of the Census X11

method (Shiskin, Young and Musgrave, 1967) and its variants, X11/X12ARIMA and X13

(Findley et al., 1998). However, only the symmetric filter of 13 terms and correspond-

ing asymmetric filters are available, whereas, due to the high variability present in current

seasonally adjusted data, different filter lengths are needed to produce smoother and more

reliable estimates.

In this paper, we propose a generalization of the cascade linear filter based on the Re-

producing Kernel Hilbert Space (RKHS) methodology that allows to derive cascade linear

filters of any length. We propose a new set of symmetric and asymmetric weights that pro-

vide more reliable short-term estimates in real time, which are more useful from a policy-

making viewpoint. We apply the new filters to leading. coincident and lagging indicators

of the US economy, which is known to be a key player from an international macroeco-

nomic perspective. We will concentrate on the reduction of revisions only due to filter

changes. and ignore those introduced by new innovations entered with new data. In other

words, the filter revisions depend on how close the asymmetric filters are with respect to

the symmetric one. Specifically, as proposed by Dagum and Bianconcini (2015), we select

time-varying bandwidth parameters, specific for each asymmetric filter, that minimize the

distance between the gain functions of asymmetric and symmetric filters. We show that

this method provides more accurate and reliable estimates of the short-term trend of major

socio-economic indicators and drastically reduces the time delay to signal the upcoming of

a true turning point.

2. Official statistical methods for short-term trend estimation

Research efforts by official statisticians have recently been devoted to improve existing

procedures for the analysis of current economic conditions. Until the last financial and

global crisis, recession and recovery analysis proposed by Moore (1961) was the main

approach used to assess the stage at which the economy was, through the study of per-

centage changes, based on seasonally adjusted data and computed for months and quarters

in chronological sequence. This was particularly effective to evaluate the behavior during

incomplete phases of the business cycle, but, nowadays, the period to period movements

of the seasonally adjusted series are highly influenced by the behavior of irregular fluctu-

ations. Hence, this approach has failed in providing reliable and clear information on the

main economic conditions. As a consequence, official statistical agencies have started to

publish trend-cycle estimates as a complement to seasonally adjusted data to help reveal

better the movements in the business cycle and the occurrence of turning points.

Linear filters developed by Henderson (1916) are the classical method to estimate the

trend-cycle component of seasonally adjusted economic indicators used in conjunction with

nonparametric seasonal adjustment software, such as the US Bureau of the Census X11

method (Shiskin, Young and Musgrave, 1967) and its variants, X11/X12ARIMA and X13

(Findley et al., 1998). Assuming that the input series {yt, t = 1, . . . , N} is seasonally ad-

justed where trading day variations and extreme values, if present, have been also removed,

it can be decomposed into the sum of a systematic component gt, usually called signal, plus

an erratic component ut, called the noise, such that

yt = gt + ut, t = 1, . . . , T.
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The signal gt represents the trend and cyclical components, usually referred to as the trend-

cycle for they are estimated jointly. The noise ut is assumed to be either a white noise,

WN(0, σ2
u). or, more generally, to follow a stationary and invertible autoregressive moving

average (ARMA) process.

The Henderson trend-cycle estimates ĝt for the central observations, t = m+1, . . . , N−m,

are obtained through a weighted moving average as follows

ĝt =
m
∑

j=−m

whend
j yt+j , (1)

where the weights whend
j , j = −m, . . . ,m. are derived by the Henderson ideal formula:

whend
j =

315[(m + 1)2 − j2][(m+ 2)2 − j2][(m+ 3)2 − j2][3(m+ 2)2 − 16− 11j2]

8(m+ 2)[(m + 2)2 − 1][4(m + 2)2 − 1][4(m + 2)2 − 9][4(m + 2)2 − 25]
(2)

j = −m, . . . ,m.

This is equivalent to assume that the trend-cycle gt, t = 1, . . . , T , is a smooth function of

time that can be locally represented by a polynomial of degree three in a variable j, which

measures the distance between yt and its neighboring observations yt+j, j = −m, . . . ,m,

estimated by minimizing the following function

m
∑

j=−m

Wj [yt+j − a0 − a1j − a2j
2 − a3j

3]2,

where the weighting penalty function is given by Wj ∝ {(m + 1)2 − j2}{(m + 2)2 −
j2}{(m+ 3)2 − j2}. The solution for the constant term â0 is the smoothed observation ĝt.

The Henderson weights have the property that fitted to exact cubic functions will re-

produce their values, and fitted to stochastic cubic polynomials they will give smoother

results than those estimated by ordinary least squares. As shown by Loader (1999), the

Henderson weights can be equivalently expressed by the product of a cubic polynomial

φ(j) and the weighting function Wj . For large m, Loader (1999) provided an equiv-

alent kernel representation of the weights by showing that Wj can be approximated by

the triweight function m6(1 − (j/m)2)3, such that the weight diagram is approximately

(315/512)(3 − 11(j/m)2)(1− (j/m)2)3.
Different kernel characterizations of the Henderson filter have been derived by Dagum and

Bianconcini (2008) based on the Reproducing Kernel Hilbert Space (RKHS) methodology,

according to which the symmetric filter weights are given by

whend
j =

K4(j/(m + 1))
∑m

j=−mK4(j/(m + 1))
, j = −m, . . . ,m. (3)

K4 is a third order kernel derived by biweight density function f0B(t) = (15/16)(1 −
t2)2, t ∈ [−1.1], and corresponding Jacobi orthonormal polynomials Pi, i = 0, . . . , 3, that

is K4(t) =
∑3

i=0 Pi(t)Pi(0)f0B(t), t ∈ [−1.1].
At the end (beginning) of the series. t = N −m, . . . ,N (t = 1, . . . ,m), asymmetric

weights need to be applied. The asymmetric Henderson smoothers currently in use were

developed by Musgrave (1964). They are based on the minimization of the mean squared

revision between the final estimates (obtained by the application of the symmetric filter)

and the preliminary ones (obtained by the application of an asymmetric filter) subject to

the constraint that the sum of the weights is equal to 1. The assumption made is that at

the end (beginning) of the series, the seasonally adjusted values follow a linear trend-cycle

plus a purely random irregular εt, such that εt ∼ IID(0, σ2).
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Dagum and Bianconcini (2015) introduced a RKHS representation of them. In this

framework, given the density function (in our case the biweight), once the length of the

symmetric filter is chosen, say 2m + 1, the statistical properties of the asymmetric filters

are strongly affected by the bandwidth parameter of the kernel function from which the

weights are derived. Dagum and Bianconcini (2008 and 2013) made the bandwidth pa-

rameters equal for all the asymmetric filters (global time-invariant bandwidth) to closely

approximate the Musgrave filters, whereas Dagum and Bianconcini (2015) have proposed

time-varying bandwidth parameters since the asymmetric filters are time-varying.

The selection of the length of the Henderson filters is based on the signal-to-noise ra-

tio computed on the seasonally adjusted series and, under common economic conditions,

the 13-term filter and corresponding asymmetric weights are often applied. These filters

have the excellent property of fast detection of true turning points, but the limitations of

producing large revisions to the most recent estimates when new observations are added

to the series, and introducing a large number of 10-month cycle (unwanted ripples) in the

final trend-cycle curve, that can be falsely interpreted as turning points. The problem of

the unwanted ripples is specific of the 13-term Henderson filter when applied to season-

ally adjusted series. The use of a longer Henderson filter, such as the 23-term, is not an

alternative because it is sluggish to detect turning points. To overcome these main limita-

tions, Dagum (1996) proposed a nonlinear semiparametric predictor to improve the 13-term

Henderson filter with the advantages of: (1) reducing the number of unwanted ripples, (2)

not increasing the time lag to detect turning points, and (3) reducing the size of the revi-

sions of the most recent trend-cycle estimates. This new method basically consisted of (1)

extending the seasonally adjusted series (modified by extreme values with zero weights)

with ARIMA extrapolations, and (2) applying the 13-term Henderson filter to the extended

series using stricter sigma limits for the identification and replacement of extreme values

(±0.7σ and ±1σ were recommended). The purpose of the ARIMA extrapolations was to

reduce the size of the revisions of the most recent estimates, whereas that of extreme values

replacement to reduce the number of unwanted ripples produced by the Henderson filter.

Dagum and Luati (2009) provided a linear approximation for both symmetric and asym-

metric components by means of the convolution of several noise suppression, trend esti-

mation, and extrapolation linear filters. This filter is currently applied by many official

statistical agencies and is called cascade linear filter.

2.1 The cascade linear filter

ARIMA extrapolations and stricter replacement of extreme values represent the two sources

of nonlinearity of the Dagum method. To determine the symmetric weights of the cascade

linear filter, Dagum and Luati (2009) approached the replacement of extreme values as

strong noise suppression in the input. The Symmetric Linear Filter (SLF) was derived

by double smoothing the residuals obtained from a sequential application of the 13-term

Henderson filter to the input data using the convolution of a 5-term weighted and a 7-term

non weighted moving averages. The matrix representation of the symmetric cascade linear

filter is given by

H[H+M7.(0.143)(IN −H)][H+M5.(0.25)(IN −H)], (4)

where H refers to the 13-term Henderson filter, M5.(0.25) is the matrix representative of

a 5-term moving average with weights (0.250.0.250.0.000.0.250.0.250), and M7.(0.143) is

the matrix representative of a 7-term filter with all weights equal to 0.143. The convolution

(4) produces a symmetric filter of 31 terms with very small weights at both ends. Dagum

and Luati truncated this filter to 13 terms, and normalized it such that the weights added
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up to unity. Renormalization was needed to avoid a biased mean output. To do so, the

total weight discrepancy (equal to -0.065) was distributed over the 13 weights, wj , j =
−6, . . . , 6, performing an ad-hoc mixed distribution given by

−0.103,−0.076,−0.076,−0.341,−0.127, 0.042, 0.364. (5)

The total discrepancy was mostly allocated to w0 (+36%),w3, and w−3 (−34% each). To

increase the amount given to the central point, the values of w3 and w−3 were reduced for

it is important to maintain as much as possible the area under the positive weights without

modifying the negative ones. The latter is a necessary but not sufficient condition for a

filter to be unbiased respect to a second/third degree polynomial trend, which is needed to

estimate properly points of maxima and minima.

Asymmetric filters were applied to the last six data points, which are crucial for current

analysis. They were obtained by the convolution of the symmetric filter with linear extrap-

olation filters for the last six data points. The extrapolations were made linear by fixing the

ARIMA model and its parameters values, chosen such as to minimize the size of revisions

and phaseshifts. The model selected was the ARIMA(0, 1, 1) with θ = 0.40.

2.1.1 Relationship with the Henderson filter

The mixed normalization (5) was performed in order to preserve the same area of the Hen-

derson filter under the positive and negative weights.

Proposition 2.1 For a Henderson filter of length 2m + 1, the weights whend
j are negative

(or null) if j = ±(
[

m
2

]

+ 1), . . . .,m, and positive if j = −
[

m
2

]

, . . . ,
[

m
2

]

.

Proposition 2.2 Independently on the filter length, the area under the positive Henderson

weights is approximately equal to 1.1, and, consequently, that under the negative weights

is almost 0.1.

To analyze the relationship between the SLF and Henderson filter, we have to study

regularities in the behavior of the SLF weight system when the ad hoc mixed normalization

(5) is not necessary. Hence, we consider the 23-, and up to 39-term SLF, whose weights

sum up to one (up to the third digit). The behavior of the 23-term SLF and Henderson filter

is compared in Figure 1, but it is the same for all the other filter lengths, with discrepancies,

especially in the central weight, that reduce as the filter length increases.

Specifically, the following regularities are observed:

Regularity 1. Both SLF and Henderson filter cover the same area under positive and nega-

tive weights, approximately equal to 1.1 and 0.1, respectively (independently on the

filter length, see Proposition 2.2).

Regularity 2. The Henderson weights whend
j are negative for j = ±

([

m
2

]

+ 1
)

, . . . ,m

(see Proposition 2.1). On the other hand, the SLF weights wSLF
j are negative when

j = ±
([

m
2

]

+ 2
)

, . . . ,m.

Regularity 3. The discrepancies (especially in the central weights) between the SLF and

Henderson filter reduce as the filter length increases.
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Figure 1: Weight systems of the 23-term SLF (red) and Henderson (black) filter.
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3. A reproducing kernel Hilbert space perspective of the cascade linear filter

To find a kernel representation of the SLF, we looked for a third order kernel within the

same family of the biweight kernel from which the Henderson filter is derived (Dagum and

Bianconcini, 2008 and 2015). Based on Regularity 1., it has to cover the same area under

positive and negative values as the third order biweight kernel, that is approximately 1.1

and 0.1, respectively. Furthermore, based on Regularity 2., it has to be negative starting

from a value greater than 1√
3
.

The third order biweight kernel belongs to the Beta kernel family based on the density

f0B(t) =
r

2B(s+ 1, 1/r)
(1− | t |r)s, t ∈ [−1, 1]. (6)

The corresponding third order kernel results

K3(t) =

(

µ4 − µ2t
2

µ4 − µ2
2

)

f0B(t), t ∈ [−1, 1],

where µ2 = 1
2B(s+1,1/r)

2Γ( 3+r
r )Γ(1+s)

3Γ(1+ 3

r
+s)

and µ4 = 1
2B(s+1,1/r)

2Γ( 5+r
r )Γ(1+s)

5Γ(1+ 5

r
+s)

. It assumes

negative (or null) values when the polynomial
(

µ4−µ2t2

µ4−µ2
2

)

is less than or equal to zero, that

is when | t |≥
√

µ4

µ2
, being µ4

µ2
=

3Γ( 5+r
r )Γ(1+ 3

r
+s)

5Γ( 3+r
r )Γ(1+ 5

r
+s)

. The third order biweight kernel is

obtained when r = s = 2, such that µ4

µ2
= 1

3 .

For different kernels within the Beta family, we determine the corresponding ratio µ4

µ2
,

looking for those combinations of r and s for which µ4

µ2
> 1

3 (see Table 1). This is satisfied

when r = 1, s = 0 (uniform kernel), r = 1, s = 1 (triangle kernel), r = 2, s = 1
(Epanechinov kernel), and also r = 3, s = 1 and r = 3, s = 2. Among these kernels,

to select the one that best resembles the behavior of the SLF, we compute the area under

positive and negative values as shown in Table 2.

The third order kernel within the Beta family that, respect to the biweight (r = s = 2),

satisfies the requirements of the SLF imposed by Regularities 1. and 2. is the third order

triangle kernel (r = s = 1), given by

KT
3 (t) =

(

12

7
−

30

7
t2
)

(1− | t |), t ∈ [−1, 1].
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Table 1: Value of the ratio µ4

µ2
of different kernels within the Beta family

r/s 0 1 2 3

1 3/5 2/5 2/7 3/14

2 3/5 3/7 1/3 3/11

3 3/5 9/20 81/220 243/770

Table 2: Area under negative and positive values of Beta kernels for which µ4

µ2
> 1

3

r s µ4

µ2
2
∫ 1
√

µ4
µ2

K3(t)dt
∫

√

µ4
µ2

−
√

µ4
µ2

K3(t)dt

1 0 3/5 -0.16 1.16

1 1 2/5 -0.10 1.10

2 1 3/7 -0.12 1.12

2 2 1/3 -0.10 1.10

3 1 9/20 -0.14 1.14

3 2 81/220 -0.12 1.12

Figure 2 compares it with the third order biweight kernel. Differently from Figure 1, the

maximum of the triangular kernel is greater than the biweight one. This means that, since

the symmetric Henderson weights are derived using a bandwidth parameter equal to m+1,

the bandwidth selected to derive the SLF weights from the triangle kernel should be greater

than m+ 1.

Figure 2: Third order triangle (red) and biweight (black) kernels.
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3.1 Bandwidth selection

When applied to real data, the symmetric filter weights are derived from the continuous

third order kernel KT
3 as follows:

wT
j =

KT
3 (j/b)

∑m
j=−mKT

3 (j/b)
, j = −m, . . . ,m.

where b is a time-invariant global bandwidth parameter (same for all t = m+1, . . . , N−m)

selected to ensure a symmetric filter of length 2m+1. The bandwidth parameter relates the

discrete domain of the filter, that is −m, . . . ,m, with the continuous domain of the kernel

function, that is [−1, 1], and its choice is a fundamental task.

For our purposes, the bandwidth b should be selected such that the central kernel weight

wT
0 reproduces the central SLF weight wSLF

0 in order to guarantee the kernel weights to be

equal to the SLF ones at least up to the third digit, for j = −m, . . . ,m. In particular, based

on the convolution matrix representation of the cascade filter given in eq. (4), a specific

formulation for the central weight as function of m is given by

w
SLF
0 =

8× 106[(m− 3)(m− 2)2(m− 1)(m− 0.5)2(m+ 0.5)(m + 1)3(m+ 2)]

(m− 0.5)3(m+ 0.5)3(m+ 1)(m+ 1.5)3(m+ 2)2(m+ 2.5)3(m+ 3)(m+ 3.5)3(m+ 4.5)3
+

+
1.5m15[m+ 10)(m+ 11)(m+ 12)(m+ 15)(m2 + 3m+ 54)]

(m− 0.5)3(m+ 0.5)3(m+ 1)(m+ 1.5)3(m+ 2)2(m+ 2.5)3(m+ 3)(m+ 3.5)3(m+ 4.5)3

On the other hand, the central kernel weight is given by

wT
0 =

KT
3 (0)

∑m
j=−mKT

3 (j/b)
=

12
7

∑m
j=−m

(

12
7 − 30

7

(

j
b

)2
)

(

1−
∣

∣

∣

j
b

∣

∣

∣

)

=
12b3

−12m(m+ 1)b2 + 15m2(m+ 1)2 + 12b3(2m+ 1)− 10m(m+ 1)(2m + 1)b
.

(7)

Hence, solving the equality wT
0 = wSLF

0 implies that the bandwidth parameter is ob-

tained by solving the following third degree equation

12[1−q(2m+1)]b3+12qm(m+1)b2+10qm(m+1)(2m+1)b−15qm2(m+1)2 = 0. (8)

being q = wSLF
0 . The three roots of eq. (8) can be real or complex. Among them,

based on the properties that the bandwidth parameter must satisfy, we select the greatest

value since it is (a) real, (b) positive, and (c) greater than m+ 1. The selected bandwidths

corresponding to the different filters are given in Table 3. The relationship between the

Table 3: Bandwidth parameters.

Filter length 23 25 27 29 31

m 11 12 13 14 15

b 12.37 13.28 14.20 15.11 16.02

bandwidth parameter b and the filter length m is strictly linear, such that, for all possible

values of m
b = 2.42 + 0.91m.
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Figure 3 illustrates the weight systems and the corresponding gain functions for the 23-

term triangle filters, based on b = 12.37, compared with the SLF. The behavior of the other

filters is similar, and not reported for space reasons.

Figure 3: Weight system (left) and gain function (right) of the 23-term triangle kernel

(black) and 23-term SLF (red).
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3.2 Asymmetric weights

The derivation of the symmetric triangle filter has assumed the availability of 2m + 1
input values centered at t. However, at the end of the sample period, that is t = N −
(m + 1), . . . , N , only 2m, . . . ,m + 1 observations are available, and asymmetric filters

of the same length have to be considered. Hence, at the boundary, the effective domain of

the kernel function KT
3 is [−1, q∗], with q∗ << 1, instead of [−1, 1] as for any interior

point. This implies that the symmetry of the kernel is lost, and it does not integrate to

unity on the asymmetric support (
∫ q∗

−1K
T
3 (t)dt 6= 1). Furthermore, the moment conditions

are not longer satisfied, that is
∫ q∗
−1 t

iKT
3 (t)dt 6= 0, for i = 1, 2, 3. To overcome these

limitations, Dagum and Bianconcini (2015) have suggested to follow the so-called “cut and

normalize” method, according to which the boundary kernels KTq∗

3 are obtained by cutting

the symmetric kernel KT
3 to omit that part of the function lying between q∗ and 1, and by

normalizing it on [-1, q∗]. That is,

KTq∗

3 (t) =
KT

3 (t)
∫ q∗

−1 K
T
3 (t)dt

, t ∈ [−1, q∗]. (9)

Applied to real data. the “cut and normalize” method yields the following formula for the

asymmetric weights

wq,j =
KTq∗

3 (j/bq)
∑q

j=−mKTq∗

3 (j/bq)
, (10)

for j = −m, . . . , q, and q = 0, . . . ,m − 1, where bq, q = 0, . . . ,m − 1, is the local

bandwidth, specific for each asymmetric filter. As before, bq allows us to relate the discrete

domain of the filter, that is {−m, . . . , q}, for each q = 0, . . . ,m − 1, to the continuous

domain of the kernel function, that is [−1, q∗]. Dagum and Bianconcini (2015) derive a

class of optimal asymmetric filters based on bandwidth parameters bq, q = 0, . . . ,m − 1,

selected as follows

bq,G = min
bq

√

2

∫ 1/2

0
|Gq(ω)−G(ω)|2dω, (11)
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where G(ω) is the gain function of the symmetric filter, whereas Gq(ω) is the one cor-

responding to the asymmetric filter wq,j, j = −m, . . . , q. In this study, we consider these

time-varying bandwidth parameters since they determine optimal filters that minimize revi-

sions and time lag to detect the upcoming of a true turning point (Dagum and Bianconcini,

2015).

4. Empirical application

To analyze the performance of the proposed filters compared with the 13-term cascade one,

we selected a sample of monthly series from U.S. economic and socioeconomic indicators

that would give a good cross section of the various sectors as well as provide us with a

representative sample of time series with regard to volatility. The volatility measure used

was the noise to signal ratio (I/C) computed in the X13 program. This is the ratio of

the average absolute change in the irregular and in the trend-cycle component. For the 40

analyzed series, 26 had I/C ratios below 1.0, and 14 were moderately volatile series in

the I/C range between 1.0 and 3.5. The span of the series extends from January 2000

to August 2018 and thus it covers important recessionary periods. It is evident that major

financial and economic global changes have introduced large variability in socio-economic

indicators, and, for the majority of them, the trend-cycle has to be estimated using filters of

length smaller than 13-term, as was done in the past. The data vintages are taken from the

Real-Time Data Set for Macroeconomists (RTDSM, Croushore and Stark, 2001), a large

dataset containing U.S. real-time data developed with cooperation between the Federal

Reserve Bank of Philadelphia and the University of Richmond, and the ALFRED dataset

developed by the St. Louis Federal Reserve Bank.

For the series with I/C smaller than one, we applied and compare the performance of

the 9-term triangle and Musgrave filters with the 13-term cascade one, since for the latter

this is the only available length. On the other hand, for series with higher I/C levels all

the applied filters were of 13-terms. The comparison is performed in terms of revisions and

time lag in detecting true turning points. Specifically, for the former, the reduction of the

revision size in real time short-term trend estimates is evaluated by comparing the relative

filter revisions between the final symmetric filter S and the last point asymmetric filter A,

that is

Rt =
St −At

St
, t = 1, . . . , N. (12)

For each series and for each estimator, we calculate the ratio between the Mean Square

Percentage Error (MSPE) of the revisions corresponding to the last point asymmetric filter

derived following the RKHS methodology, those corresponding to the last point Musgrave

filter, and those obtained by applying the last point asymmetric filter relate to the 13-term

SLF. The results, illustrated in Table 4, show that the ratio, for series that required 9-term

filters, is always smaller than one, indicating that the kernel last point predictor introduces

smaller revisions than the Musgrave filter and the SLF. Particularly, compared with the

latter, the ratios are smaller than 50%, indicating that it is necessary to select the appropriate

length as suggested by the I/C ratio. This implies that the estimates obtained by the

former will be more accurate than those derived by the application of the latter, when the

appropriate filter length is not 13-term. However, when filters of 13-term are required, the

triangle kernel still outperforms the cascade linear filter. It is important that the reduction

of revisions in real time trend-cycle estimates is not achieved at the expense of increasing

the time lag to detect the upcoming of a true turning point. A turning point is generally

defined to occur at time t if (downturn):

yt−k ≤ · · · ≤ yt−1 > yt ≥ yt+1 ≥ · · · ≥ yt+m
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Table 4: (Average) ratio of the MSPE of the revisions for the last point asymmetric filters

based on appropriate triangle kernel and the last point Musgrave filter, and the last point

filter related to the 13-term SLF, and (average) time lag in detecting true turning points for

series with I/C ratio below 1.0 (9-term filter appropriate) and with I/C ratio above 1.0

(13-term filter appropriate)

Revisions Lag TP detection

KT0

3

Musgrave

KT0

3

SLF
KT0

3
Musgrave SLF

Average - series with I/C ratio below 1.0 0.423 0.504 1.346 2.25 3.048

Average - series with I/C ratio above 1.0 0.437 0.936 1.429 2.846 2.143

or (upturn)

yt−k ≥ · · · ≥ yt−1 < yt ≤ yt+1 ≤ · · · ≤ yt+m.

Following Zellner et al. (1991), we have chosen k = 3 and m = 1 given the smooth-

ness of the trend-cycle data. To determine the time lag needed by an indicator to detect a

true turning point we calculate the number of months it takes for the real time trend-cycle

estimate to signal a turning point in the same position as in the final trend-cycle series. For

the series analyzed in this paper, the average time delays are shown in Table 4 for series

with I/C ratio below and above 1.0. The filters derived using the RKHS methodology

always perform better than the Musgrave filters, independently on the filter length, and it

outperforms the SLF also when 13-term filters are the most appropriate for the series under

investigation. It generally takes less than two months, on average, to detect a true turning

point.
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