
Predicting Lattice Reduction on Ideal Lattices (PeRIL)

Bryan Ek∗ Emily Nystrom Peter Curry Jamie Lyle Scott Batson
Bryan Williams

Abstract
The shortest vector problem (SVP) is at the core of many applications of lattices. Lattice reduction

algorithms output a lattice basis containing a short vector and are a common approach to the SVP.
The research conducted by the PeRIL team supports an investigation of the performance of lattice
reduction algorithms when applied to lattices from the ideal case versus lattices from the general
case. The foundational work of Gama and Nguyen provided empirical results for the case of general
lattices. Since their 2008 publication, experimental results have been published for various aspects
of lattice reduction algorithms, including some results for the case of ideal lattices (only). Although
the implications of understanding the impact of lattice class on lattice reduction algorithms have
been referenced in the literature, to our knowledge, a systematic, empirical investigation of the
impact of the class of lattices (e.g., ideal vs. general), in relation to its impact on lattice reduction
algorithm performance, has not been previously published. We address that gap in this paper.

Key Words: ideal, lattice, reduction, root hermite factor, runtime, experimental

1. Background and Definitions

Lattice-based cryptography is widely conjectured to be a candidate for post-quantum
cryptography [GN08, PS13, Bat15]. In general, lattices take significant space and time to
maintain and manipulate. Using ideal lattices instead of general lattices allows for storage
and computation savings [Bat15, PS13]. Many sources have posed the question of whether
ideal lattices are as secure as general lattices [PS13,dP12,SB10]. To our knowledge, we are
the first paper to provide a comparison of the performance of lattice reduction algorithms
when applied to ideal versus general lattices.

Our experiments focus on the performance of lattice reduction algorithms, particularly
with respect to the root Hermite factor and the algorithm runtime. Section 1 provides
definitions and descriptions pertinent to our later discussion of experimental setup (Section
3) and results (Section 4). Section 2 provides a short summary of results from the literature.
Our main results are summarized in our conclusion (Section 5) and supported by the data
in Appendix B. The background descriptions in this report are intended to provide a
brief description to facilitate a working understanding of the purposes and performance
quantifiers for lattice reduction algorithms. A detailed account, which includes extensive
references as well as discussion of related algebraic theory, is provided in [Bat15].

∗Naval Information Warfare Center Atlantic (NIWC)

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

427

1.1 Definitions

Definition 1 (Lattice). A lattice is the integer span of independent vectors

L=

{
∑

1≤i≤n
αibi : αi ∈ Z

}
.

The set of vectors B = {b1, . . . ,bn} is a basis. The volume of the fundamental
parallelepiped of L is given by Vol(L) = det(L) =

√
det(BBT) and is invariant

of basis choice [SBL09].

If the basis (B) of linearly independent columns is full rank (i.e., n= d, making B square
and nonsingular; that is, if L is of full-dimension), then det(L) = |det(B)|. In this paper, we
represent vectors as columns and only full-rank lattices will be considered. Thus, we use n
exclusively as the dimension of a lattice. See Figure 1 for a depiction of a 2D lattice (n = 2).

Definition 2 (Ideal Lattice). An ideal in a ring, I CR, is a subgroup of R with the
additional restriction that ∀i ∈ I,r ∈ R, we have ir,ri ∈ I. If R has an additive group
isomorphic to Zn, then an ideal, I, can be embedded as a lattice L ⊆ Zn with the
mapping

(α0, . . . ,αn−1) ∈ L↔ α0 + · · ·+αn−1xn−1 ∈ I,

where n is the dimension of the lattice. A lattice is ideal if it corresponds to some
ideal of a ring.

We consider ideals in cyclotomic quotient rings: I CZ[x]/Φm(x); m is the cyclotomic
index. In this scheme, the dimension of the embedded lattice is n = φ(m) (the Euler-Totient
function). Ideal lattices can be constructed from more than solely cyclotomic polynomials
or even other quotient rings. Of note, the lattice in Figure 1 corresponds to an ideal in a
non-cyclotomic ring. Our restriction is because ideals of cyclotomic quotient rings are
known to be full rank. See [Bat15] for more discussion on ideal lattices.

General lattices exhibit a group structure, whereas ideal lattices exhibit a ring structure.
To describe a general lattice, a full matrix of n2 data points is required; to describe an
ideal lattice, only the n values of a vector and the n+ 1 values of a divisor polynomial
are needed. Computation is also faster in an ideal lattice since manipulating the structure
involves polynomial multiplication as opposed to matrix multiplication in a general lattice.
The O(n2)→ O(n) memory and computation savings are the driving force behind using
ideal lattices for cryptography [Bat15, PS13]. The driving force behind this paper is to
empirically verify that these storage and computation savings do not compromise security.

Definition 3 (Lattice Minima). The ith lattice minima, λi(L), is defined as the radius
of the smallest zero-centered ball containing at least i linearly independent lattice
vectors. I.e. λi(L) = min{r | dim(span(Bn(r)∩L)) ≥ i}, where Bn(r) is the n-
dimensional hyperball of radius r.

The lattice reduction algorithms analyzed in this paper have the goal of finding the first

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

428

lattice minima: λ1(L).

The root Hermite factor (RHF) measures the quality of a lattice reduction algorithm.
Reduction algorithms are designed with the goal of producing the vector with the shortest
possible length given a basis. See Figure 1 for an example of bases with different RHF. The
RHF measures the “shortness” in such a way that allows for comparison of the algorithm’s
success between different lattices.

Definition 4 (Root Hermite Factor). The root Hermite factor (RHF) for a given basis
B of a lattice L is defined as

γHermite = n

√
‖b1‖

[det(L)]1/n , (1)

where n denotes the dimension of L, and b1 denotes the shortest vector of B (see
[SBL09], [GN08]).

It is important to note the difference between “Hermite factor” and RHF. The Hermite
factor facilitates comparison of lattice reduction performance on lattices (or simply different
lattice bases) across the same dimension. Because current algorithms, in particular LLL and
BKZ, are only able to produce exponential Hermite factors in polynomial time [FSW14], it
is fitting to consider the RHF, which allows for comparisons across different dimensions.

Original basis (red). RHF= 1.899.(
9 15
6 11

)
Reduced basis (blue). RHF= 1.(

3 0
1 3

)
Both bases span the same set of points in
Z2. In addition, this lattice corresponds to

the ideal generated by (3+ x) in
Z[x]/(x2− x−3).

b1

b2

2b1−b2

3b2−5b1

Figure 1: A lattice with two matrix representations, an ideal representation, and a visual
representation.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

429

1.2 Lattice Reduction Algorithms

Problem 5 (SVP). Given an arbitrary basis for a lattice L, the shortest vector
problem is the task of finding the vector of shortest length. This problem is NP-
hard in the random lattice case [Ajt96, Ajt98].
The approximate short vector problem (α-SVP), requires finding a vector v such that
‖v‖≤α‖λ1(L)‖. There are polynomial time algorithms for solving the approximate

case with α =
(√

4
3

)n
[SB10, GN08, SBL09].

Lattice reduction algorithms are typically concerned with finding a highly orthogonal
basis and a short vector. A first estimate of the length of the shortest vector is the Gaussian
heuristic: the length of the shortest vector is roughly the radius of an n-dimensional ball of
volume Vol(L) [Che16]. This gives us the estimate

λ1(L)

Vol(L)1/n ≈
1

Vol(Bn(1))1/n =
Γ(1+n/2)1/n

√
π

≈
√

n
2πe

.

Thus, a reasonable goal to expect is to find an RHF with value ĝ :=
(n

2πe

)1/(2n). For n≤ 17,
ĝ < 1; we have a goal below 1 in lower dimension. The heuristic is maximized at n = 46:
ĝ = 1.0108.

Whereas some lattice reduction algorithms perform an exhaustive search and identify
an exact solution to the SVP, other algorithms return an approximate solution. In this report,
we consider two common approximation lattice reduction algorithms: LLL and BKZ.

1.2.1 LLL

Created in 1982 by Lenstra, Lenstra, and Lovasz [LLL82], the LLL algorithm is the “first
polynomial-time basis reduction algorithm” [dP14]. The LLL algorithm produces an LLL-
reduced basis (see [LLL82], [FSW14], and [SBL09]).

Definition 6. Let δ ∈ (1/4,1]. A basis B = [b1, ...,bn] of a lattice L(B) is δ -LLL
reduced⇔

• It is size reduced (i.e., |µi, j| ≤ 1
2 for all 1≤ j < i≤ n), and

• it satisfies the Lovasz condition (i.e., δ ‖b∗k‖2 ≤ ‖b∗k+1‖2 + µk+1,k‖b∗k‖2 for
1≤ k < n),

where b∗k denotes the Gram-Schmidt orthogonalization of vector bk and µi, j =
bT

i b∗j
‖b∗j‖

.

δ = 1 corresponds to solving the exact SVP. We use the standard of δ = 0.99 for
an accurate comparison to others’ work [GN08, SB10, PSZ13, FSW14]. For a detailed
description of the algorithm, see [LLL82, PSZ13, SE94].

LLL provably achieves [GN08, Ngu17]

‖b1‖ ≤
(

4
3

)(n−1)/4

Vol (L)1/n , where n denotes dimension. (2)

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

430

This is an approximation factor of / (4/3)(n−1)/2 ≈ 1.155n and RHF / n
√
(4/3)(n−1)/4 ≈

1.075. As seen in Table 1, LLL typically does much better than this upper bound. However,
“the approx factor (4/3+ ε)(n−1)/4 [based on Eq. 2] is tight . . . only for worst-case bases
of certain lattices” ([Ngu17] slide 43). Schneider et al. [SBL09] produced a probabilistic
analysis that gave a good estimate (see Table 1) of what to expect in the random case.

1.2.2 Blockwise Korkine-Zolotarev (BKZ)

(Schnorr and Euchner, 1994; [SE94]): The BKZ algorithm is a blockwise generalization
of LLL. “Each of the local blocks defines a lattice. Each iteration looks at one block and
ensures that the first vector of the block is the shortest vector inside the lattice spanned by
this block” (p.8, [Ham13]). For a blocksize of 2, BKZ is equivalent to LLL. For a blocksize
of n, BKZ is equivalent to HKZ (see below). For a detailed description of the algorithm,
see [SE94, CN11].

The best known bound for the shortest basis vector in a BKZ-β reduced basis is given
by

‖b1‖ ≤
√

γβ

(n−1)/(β−1) ·λ1(L), (3)

where γβ is the Hermite constant in dimension β [SB10, SBL09, GN08, HPS11, Ngu17].1

From this, and bounds on γβ , an RHF bound (for β = 20) of 1.1461 is obtained, which
is worse than the already applicable LLL bound. However, the algorithm performs much
better empirically than theoretically. The probabilistic analysis of Schneider et al. [SBL09]
provides a good estimate (see Table 1) of what to expect in the random case of BKZ-20
reduction.

1.2.3 Additional Variants

We chose to focus on LLL and BKZ as they are the most common reduction algorithms in
use. Other lattice reduction methods are listed below.

1. Hermite-Korkine-Zolotarev reduction (HKZ) [Ham13]: Essentially BKZ with
blocksize equal to dimension.

2. Floating Point LLL (fplll) [SE94]: There is an heuristic version (FP) referenced in
[PSZ13] as well as a standard version (L2).

3. Adaptive Precision Floating Point LLL (ap-fplll): (Plantard, Susilo, and Zhang; 2013;
[PSZ13])

4. Pot-LLL [FSW14]: potential LLL. Adds a “potential energy” function that the
algorithm attempts to minimize.

5. Deep LLL [FSW14]: “expected to improve the Hermite factor and the approximation
factor of LLL, but no provable upper bound is known (except essentially that of
LLL)” ([GN08] p.5).

6. BKZ 2.0: (developed by Chen & Nguyen; see [dP14] for summary or [CN11] for
more detail)

1 [SB10, SBL09] do not include the √ while [GN08, HPS11, Ngu17] do. [HPS11] includes a proof.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

431

7. BKZ Simulation Algorithm: (developed by Chen & Nguyen; see [Ham13] for
summary or [CN11] for more detail). Among other things, this algorithm can be
used to simulate the runtime of the BKZ algorithm.

2. Experimental Results in the Literature

2.1 RHF

Table 1 lists experimental results for RHF with LLL or BKZ from the literature. Some of
the included sources list results for additional algorithms other than those considered in this
paper (LLL/BKZ). See additional variants in Section 1.2.

RHF Source

Algorithm [SB10] p.6 [GN08] p.8 [FSW14] p.10 [SBL09] p.8/11 [PS13] p.12

LLL 1.0162∗ 1.0219 1.0212 1.0193 1.022†

BKZ-5 1.0156∗ – 1.0164 – –
BKZ-10 1.0146∗ – 1.0145 – 1.014†

BKZ-20 1.0126 1.0128 – 1.0157 1.013†

BKZ-28 1.0111 1.0109 – – –
BKZ-30 1.0107∗ – – – 1.011†

Table 1: ∗extrapolated results based on Eq. (4). †rough values pulled from Figure 4 in
[PS13] p.12. All algorithms were run with δ = 0.99, as is standard. [FSW14] includes
confidence intervals in their graph of RHF, which appear to have widths < 0.0001. [SBL09]
are probabilistic results based on experimentation. [SB10, GN08, FSW14, SBL09] contain
data for general lattices and [PS13] contains data for ideal lattices.

A Hermite factor of 1.01n in high (around 500) lattice dimension is within reach (as
of 2008), but “a Hermite factor of 1.005n in dimension 500 looks totally out of reach”
([GN08] p.9). Gama and Nguyen based their estimates on using BKZ-25. A sharp increase
in runtime occurs at this blocksize; see discussion in Section 2.2 or [GN08] p.16.

Results have been published for considering the performance of lattice reduction
algorithms for general lattices (e.g., [GN08, SB10, SBL09, FSW14]) as well as for ideal
lattices [PS13]. The work of the PeRIL project team allows for a comparison of the
performances of lattice reduction algorithms using ideal lattices versus using general
lattices.

Based on their experimental results, [SB10] (p.246) reported the following relationship
between the predicted RHF (R̂HF)2 and BKZ blocksize (Eq. (4)):

R̂HF = 1.01655−0.000196185 Blocksize. (4)

Unfortunately, no detail about the methods used by [SB10] to derive this estimated equation
(Eq. (4)) accompanied the paper. We were able to reproduce almost the same result in Eq.
(27).

2The definition of Hermite Factor given in [SB10] (p.245) appears to have a typo. We assume that
(correcting for typos) [SB10]’s definition agrees with their definition of Hermite Factor given in [SBL09] (p.3).

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

432

2.2 Runtime

Exact algorithms for solving SVP utilize polynomial space and super exponential time
or exponential space and exponential time [Ngu11] (with respect to dimension). The
approximation algorithms that we are testing run in polynomial space. For δ < 1, LLL
is proven to run in polynomial time [Ngu11, SB10, PSZ13], whereas the best theoretical
upper bound for BKZ is (nβ)n [GN08, HPS11]. However, experiments have shown that
BKZ runtime is polynomial in dimension and exponential in blocksize [GN08,SB10,CN11,
BLR08, PS13, FSW14].

• [GN08] (p.14): “[Using LLL, exact] SVP can be solved in dimension 60 within an
hour, but . . . a 100-dimensional lattice [is estimated to take] at least 35,000 years.”

• [GN08] (p.15): “No good upper bound on the complexity of BKZ and DEEP [-LLL]
is known. . . . The best upper bound is (nβ)n . . ., but this upper bound does not seem
tight: it only takes a few seconds to reduce a 100-dimensional lattice with blocksize
20.”

• [SB10] (p.248): “[The runtime for] NTL’s BKZ-50 for a 108-dimensional lattice to
be around 1 year and for a 150-dimensional lattice around 1300 years.”

It would be interesting to use the BKZ 2.0 simulation algorithm [CN11] to confirm or
disprove the above statement on BKZ-50 runtime. We leave that for the next group.

Whereas most papers have stated polynomial runtime for fixed blocksize, all have used
a log-scale when plotting time against dimension rather than a log-log scale. Their graphs
look less than linear [GN08, FSW14, PS13, BLR08], which is an indication that runtime
is at most sub-exponential in dimension. For higher blocksize, the polynomial degree is
much higher, so some plots look exponential over the small number of data points that they
contain. [GN08] also provides a graph indicating a relationship between time and blocksize
as at least exponential. See our models in Section 4.2 and estimations in Section 4.3.

The possible exception to this is for higher blocksize. Around blocksize 23, there is a
sharp increase in runtime [GN08, HPS11]; we found a large jump in runtime from BKZ-
20 to BKZ-25 as well . The explanation given by [GN08] is that the number of calls to
the enumeration subroutine suddenly increases. [SB10] reiterates this with a claim that the
amount of time spent enumerating is more than 99% of total reduction time for blocksize
≥ 40.

As enumeration techniques improve, we believe the blocksize of sharp increase should
be pushed higher. [SB10] states that high blocksize reductions would benefit from the
improvements in enumeration techniques over the years. [CN11] implements improvements
in their BKZ 2.0 algorithm.

3. Our Experiment

Our goal is to determine whether lattice class has an impact on the RHF or runtime. Thus,
we run LLL and BKZ on comparable matrices.

Step 1: Generate these matrices.

1. The Lattice Challenge [BLR08, LRBN10] provides a framework for constructing
general lattices. The scheme guarantees short vectors [Ajt96].

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

433

2. To construct ideal lattices, use the scheme of Plantard and Schneider [PS13,
LRBN10].

3. In both cases, the matrices are generated using a random seed which allows for exact
duplication of the matrix in question.

4. To determine if the starting basis has an effect (on runtime and RHF), construct
unimodular matrices so as to change the starting basis, but preserve the lattice’s form.

Step 2: Run lattice reduction algorithms.

1. For each of the lattices, run LLL and BKZ-5, 10, 15, 20, and 25 and record the
runtime for the reduction and root Hermite factor from the reduced basis.

2. Transform the lattice basis into a “random” [Ngu17] basis (for the same lattice) by
multiplying by a set of 5 unimodular matrices. Then rerun the reduction algorithms
for each.

3. The same unimodular matrices are used for ideal and general lattices of the same
dimension.

Step 3: Compare results.

1. Use least squares estimation (LSE) to fit regression models for RHF and time.

2. The experimental factors to consider are blocksize, dimension, lattice class, and
cyclotomic index (when lattice class is restricted to ideal).

3. Determine whether or not the lattice class (and/or cyclotomic index) variable is
statistically significant.

Additional detail about statistical models and analysis is provided in Section 4. Additional
notes about our experimental process are provided in Appendix A.

4. Statistical Analysis of PeRIL’s Experiments

In this section, we describe the statistical methodology and resulting analysis performed on
the lattice reduction performance results collected by the PeRIL team.

4.1 Experimental Variables

• Two response variables were considered: Root Hermite Factor (RHF) and
experimental runtime. Both response variables quantify algorithm performance.

• Five predictor variables were considered based on the following experimental factors:
BKZ blocksize, dimension, lattice class, and cyclotomic index (for ideal lattices).3

• Factors for future consideration include computational precision, operating system,
background programs (e.g., anti-virus software), software (e.g., package used),
methods for generating unimodular matrices, hyperparameters (e.g., bounds for
matrix entries). These factors may impact runtime and/or RHF.

3The LLL algorithm is a specialization of BKZ with blocksize 2. ‘Algorithm’ could have been used as a
categorical representation of blocksize.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

434

4.2 Methods

Linear regression models were used to inform our investigation of lattice reduction
algorithm performance (response variables) in relation to characteristics of interest
(predictor variables). As a matter of notation, we use “Model (i)” to reference the model
expressed in Equation (i). Since our research focuses on comparing the performance of
general lattices with that of ideal lattices, our formulations extend the models presented
in the literature [SB10, GN08, FSW14, PSZ13] with the addition of lattice class. In our
investigation of the usefulness of lattice class for predicting RHF or runtime, we also posited
the question of whether cyclotomic index (for ideal lattices only), influences the RHF or
runtime.

We chose to test multiple models to ascertain that lattice class was not significant in
more than one specific model. Showing the non-significance in multiple models, covering
different combinations of what may reasonably affect RHF and runtime, helps provide
evidence toward our conclusion that lattice class is not a useful predictor of our response
variables.

4.2.1 Root Hermite Factor Models

The following model expresses the RHF as a function of our experimental factors

RHFi = β0 +β1X1,i +β2X2,i +β3X3,i + εi, (5)

where X1 represents blocksize, X2 represents dimension, and X3 represents lattice class (0:
general, 1: ideal). ε denotes the random error term, which was assumed (for convenience)
to follow the traditional assumptions of a linear model (e.g., independent and identically
distributed following a normal distribution with mean zero and constant variance), and i
denotes the observation index.

For analyses on solely ideal lattices, we augment Model (5) by adding cyclotomic index
(X4), and X3 is set to 1 since the lattice class is fixed:

Ideal RHFi = β0 +β1X1,i +β2X2,i +β3 (1)+β4X4,i + εi

= (β0 +β3)︸ ︷︷ ︸
intercept

+β1X1,i +β2X2,i +β4X4,i + εi. (6)

Note that the βi’s in Eq. (5) are not the same as the βi’s in Eq. (6), nor are the error terms
εi. They are simply placeholder coefficients. This is the case for all models presented.

Since cyclotomic index is largely dependent on dimension4, it may be more appropriate
to use X4

X2
to differentiate its impact on RHF:5

Ideal RHFi = β0 +β1X1,i +β2X2,i +β4,2
X4,i

X2,i
+ εi. (7)

Models (6) and (7) differ in that they consider different data transformations for index and
dimension.6

4Note that we have the bounds C
log log(C)

< φ(C) < C, where φ(C), the Euler-totient function, is the

dimension and C is the cyclotomic index [HW+79]. Thus 1 < C
φ(C)

< log log(C).
5The ratio X4

X2
could be represented as a“new” predictor (R) to maintain the linearity of the model. Note

that the use of dependent predictors R and X2 still violates a traditional assumption of independence between
predictors in a linear model.

6When comparing Model (6) to Model (7), note that the X3 is set to 1 in both models.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

435

According to the literature [SB10, SBL09, GN08, FSW14, PS13, ACD+18, Ngu17] and
our experimental data, RHF converges to a fixed value at higher dimensions. Thus, we
reduce the previous Models (5) and (7) to

RHFi = β0 +β1X1,i +β3X3,i + εi, (8)

Ideal RHFi = β0 +β1X1,i +β4,2
X4,i

X2,i
+ εi, (9)

respectively.
The following simple linear model (with predictor X1) is also considered to allow

comparison with [SB10]’s results (show in our Eq. (4)):

RHFi = β0 +β1X1,i + εi. (10)

These models have a limited range of applicability. We know that extrapolation beyond
our sample range is dangerous. But even more so, since RHF and blocksize are negatively
correlated (see Figure 2), for large enough blocksize we would obtain an estimated RHF
well below 1 (and for extremely large blocksize, > 6000, a negative estimated RHF).7 A
more likely relationship between RHF and blocksize is RHF = D ·X−c

1 for some positive
constants D,c as supported by evidence in [BLR08,GN08,CN11]. An alternative but similar
relationship is RHF = D · e−c·X1 .

We considered additional models in which a transformation is applied to response
and/or predictor variables, where the transformation’s functional form of is inspired by the
theoretical background underlying our particular application. For example, we considered
transformations of RHF that account for it being strictly positive. Exponential and inverse
polynomial are candidates with the positivity property.8

The transformed variables are shown in the following models:

logRHFi = β0 +β1 log(X1,i)+β3X3,i + εi, (11)

logRHFi = β0 +β1X1,i +β3X3,i + εi, (12)

Ideal logRHFi = β0 +β1 log(X1,i)+β4,2
X4,i

X2,i
+ εi, (13)

Ideal logRHFi = β0 +β1X1,i +β4,2
X4,i

X2,i
+ εi. (14)

Models (11) and (13) transforms the response and blocksize from Models (8) and (9),
respectively. Models (12) and (14) transforms only the response from Models (8) and (9),
respectively. These may give better results over a larger range of blocksizes, but eventually
the estimation would approach arbitrarily close to 0 (in violation of the Gaussian heuristic
which approaches 1 from above).9

7There is the caveat that larger blocksizes require a larger dimension in which to be run. But β1 (see Section
4.3), is much greater in absolute value than β2 and β4.

8RHF very likely also has a positive lower bound in asymptotic averages. The addition of an additive
constant to a model here, or another form, is left to the next group.

9For data reproducibility, our use of log is with respect to base e = 2.71828

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

436

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●●

●●

●

●
●

●
●

●●

●

●
●
●

●

●
●

●●

●

●

●
●

●●●●

●●
●

●

●

●

●
●

●

●
●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●
●
●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●●●

●
●
●

●

●
●

●●
●

●●
●

●
●●

●

●●●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●
●

●●

●
●

●

●

●
●
●

●
●

●

●

●●●

●
●●

●
●●

●

●

●●

●●
●
●
●●
●

●

●

●●

●

●

●●●●
●

●

●

●
●●●●

●●●
●

●

●

●●

●
●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●
●●
●
●
●●●●

●
●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●
●
●

●

●
●

●

●
●

●

●

●

●●

●●●●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●●●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●
●●
●
●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●

●●●

●

●

●
●●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●
●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●

●●●●

●

●●●

●

●●

●

●
●

●
●

●●●

●●
●●

●●
●●
●

●●
●
●
●

●

●●
●

●

●

●
●

●

●
●
●
●●
●

●

●●

●

●●
●
●

●

●
●
●
●
●
●●
●●

●

●●

●

●
●

●

●

●

●

●

●
●●●
●
●●
●●

●
●●●
●
●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●
●
●●

●
●●●

●

●●
●

●
●
●●

●

●

●

●

●●
●
●

●●

●●●●

●

●

●●
●●
●

●
●

●●
●●●
●

●

●
●●

●
●●

●

●

●
●●
●
●

●
●
●

●

●●●
●●

●●
●
●
●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●●

●

●
●

●
●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●
●
●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●

●●●●
●

●
●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●
●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●●
●

●●
●
●
●
●

●
●
●

●
●
●●
●
●

●
●
●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●●●●●●●
●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●●●
●

●

●

●

●
●
●
●
●●

●

●

●

●

●●
●
●

●●

●

●●

●

●
●
●
●

●

●
●

●
●●●
●●●
●
●
●
●●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●●●●●●●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●

●
●●

●●

●

●

●
●
●
●●
●

●●

●

●

●

●●

●
●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

1.
01

2
1.

01
4

1.
01

6
1.

01
8

1.
02

0
1.

02
2

Blocksize

R
oo

t H
er

m
ite

 F
ac

to
r

Figure 2: A demonstration of the negative correlation between RHF obtained and
blocksize. Data was pulled from the subset of datawith dimension ≥ 50 (to remove noise at
lower dimensions).

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

437

4.2.2 Runtime Models

The following model expresses the log-transformed algorithm runtime (T) as a function of
our predictors:

logTi = β0 +β1X1,i +β2X2,i +β3X3,i + εi, (15)

Ideal logTi = β0 +β1X1,i +β2X2,i +β4X4,i + εi. (16)

Models (15) and (16) use the same linear predictors as Models (5) and (6), respectively.
We are interested in determining whether there is a statistically significant difference

between the runtime of lattice reduction algorithms for the ideal lattices compared to the
general lattices. The following hypotheses identify the regression coefficients from Model
(15) that quantify the impact of lattice class in a model that already includes blocksize and
dimension (X1 and X2, respectively).

H0: β3 = 0 vs. H1: β3 6= 0.

For the ideal lattice case, we are also interested in the impact of cyclotomic index (X4; in
Model (16)) on the runtime of lattice reduction algorithms. The corresponding hypotheses
for the relevance of cyclotomic index are given by

H0: β4 = 0 vs. H1: β4 6= 0.

As with RHF Model (7), Model (16) replaces the raw cyclotomic index (X4) with the
cyclotomic index-dimension ratio (X4/X2):

Ideal logTi = β0 +β1X1,i +β2X2,i +β4,2
X4,i

X2,i
+ εi. (17)

It is known that the runtime of LLL is polynomial with respect to dimension, and it is
strongly conjectured that BKZ is as well [Ngu11,SB10]. Many resources have shown a less
than exponential relationship between time and dimension [GN08, FSW14, PS13, BLR08].
Thus, we transform Models (15) and (17) as follows:

logTi = β0 +β1X1,i +β2 log(X2,i)+β3X3,i + εi and (18)

Ideal logTi = β0 +β1X1,i +β2 log(X2,i)+β4,2
X4,i

X2,i
+ εi, (19)

respectively. For a direct comparison to the literature, we also produce the further reduced
models:

logTi = β0 +β1X1,i +β2X2,i + εi, and (20)

logTi = β0 +β1X1,i +β2 log(X2,i)+ εi, (21)

from which X3 and X4
X2

were removed. Model (20) is a reduced version of Models (15), (16),
and (17). Model (21) is a reduced version of Models (18) and (19).

Further support for the nonlinear relationship between RHF and blocksize is that the
relation between time and (-RHF) appears to be superexponential [RS10]. Since time is
exponential with respect to blocksize, X1, a superlinear relationship between RHF and
blocksize would yield a superexponential relationship between time and RHF as RHF
decreases.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

438

4.3 Results

In this section, we discuss results from analysis of our lattice reduction experiments
using the methods discussed in Section 4.2. Regression coefficients were calculated using
traditional least squares estimation (LSE) and rounded to 6 decimal places. See Appendix
B for standard errors of model coefficients.

4.3.1 Root Hermite Factor

Eq. (22) through (29) were calculated using our experimental results. Our results were run
including LLL data (setting blocksize=2). Models (5) through (10) are estimated in Eq.
(22) through (27), respectively.

R̂HF = 1.013116−0.000181 X1 +0.000025 X2 +0.000843 X3. (22)

Ideal R̂HF = 1.013736−0.000187 X1 +0.000013 X2 +0.000009 X4. (23)

Ideal R̂HF = 1.014328−0.000182 X1 +0.000021 X2−0.000016
X4

X2
. (24)

R̂HF = 1.016087−0.000177 X1 +0.000044 X3. (25)

Ideal R̂HF = 1.017707−0.000176 X1−0.000825
X4

X2
. (26)

R̂HF = 1.016118−0.000177 X1. (27)

General R̂HF = 1.016118−0.000179 X1. (28)

Ideal R̂HF = 1.016118−0.000175 X1. (29)

In Eq. (22) to (29), Ideal indicates that results were calculated from data of ideal lattices
only, whereas General indicates that results were calculated from data of general lattices
only. Otherwise, all lattices (both general lattices and ideal lattices) were used to estimate a
given model.

The difference between the regression estimates of Eq. (4) and (27) cannot be directly
compared for several reasons. Experimental factors varied between our experiments and
[SBL09]’s experiments (e.g., different blocksizes used). Additionally, the standard errors
for Eq. (4)’s regression coefficients are not provided in [SBL09], limiting our ability to
conduct formal hypothesis tests.

See Appendix B.1 for regression coefficients, including standard errors.

Based on our experimental results (Tables 2, 3, and 4), dimension was identified
as a statistically useful10 predictor of RHF. However, according to the literature
(theoretically [SBL09] and experimentally [SB10,GN08]), dimension does not affect RHF,
apart from allowing possibly shorter vectors at low dimension. In lower dimensions, BKZ
actually solves the SVP giving much lower RHFs than expected asymptotically. This
leads to the possibly erroneous conclusion that dimension is a useful linear predictor. If
dimension is asymptotically relevant as a linear predictor, then β2 should remain constant
as dimension changes. In contrast to that expectation, when we restricted our data to
lattices with dimensions above a given value (0, 50, 100, 150, and 200), we obtained varied
estimates for β2 (β̂2 · 106 = 25,9,6,0, and 3, respectively) in our estimation of Model (5).

10This determination holds at any reasonable individual-test significance level. P-values for each of the tests
are given in Tables 2, 3, and 4. Note that our results do not account for potential dependence between predictors.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

439

The estimates for β2 similarly become smaller in magnitude in the estimations of Models
(6) and (7) with higher dimension sampling.11 This provides evidence backing our choice
to remove lone dimension (X2) as a useful predictor of RHF. 12

Considering that the true functional relation between RHF and blocksize is unlikely to
be linear over large enough ranges, Models (11) through (14) are estimated by

̂log(RHF) = 0.017495−0.001673 log(X1)+0.000054 X3, (30)

̂log(RHF) = 0.015924−0.000173 X1 +0.000059 X3, (31)

Ideal ̂log(RHF) = 0.019148−0.001684 log(X1)−0.000822
X4

X2
, and (32)

Ideal ̂log(RHF) = 0.017549−0.000173 X1−0.000815
X4

X2
, (33)

respectively. These give relationships of

RHF ≈ X−0.001673
1 , e−0.000173 X1 , X−0.001684

1 , e−0.000173 X1 ,

respectively. For blocksize X1 = 100 (extrapolating far beyond the initial sampling space),
the RHF estimated by Eq. (4) is 0.996932 and Eq. (27) estimates 0.998418, both of which
seem optimistic. For general lattices (X3 = 0), Eq. (30) estimates 1.009839 (pessimistic
based on recent accomplishments [RS10, CN11]), and Eq. (31) estimates 0.998625.
Assuming a cyclotomic index of X4 = 1232, thus dimension X2 = φ(1232) = 480, Eq. (32)
and (33) estimate similar values (1.009326 and 0.998159 respectively).

Regarding the reasonability of estimated models, particularly in light of suggested
variable transformations, we found that the estimated model with untransformed variables
(e.g., Eq. (27)) would not produce obviously erroneous predictions for RHF until
very high dimension, so it is not a surprise that estimates from “improved” Models
(11)-(14) do not produce very different results over our limited range. Thus, models
with untransformed variables provides a reasonable approximate when we restrict the
domain. We are presenting the alternatives here as an idea for a reader to use as future study.

Based on a 0.05 significance level, lattice class is a useful predictor to add to a model
for RHF that already includes predictors X1 and X2 (p-value: 0.000016; Table 2). However,
the opposite result was seen regarding the usefulness of lattice class in models with fewer
predictors (e.g., Tables 5, 10, and 11). This may be a result of model misspecification. As
discussed earlier, dimension does not asymptotically affect the RHF [SBL09,SB10,GN08].
Thus, in light of the theory for our particular application, we are more inclined to favor the
results from models without dimension.

Similarly, cyclotomic index is seen as a useful predictor in a model with X1 and X2;
Table 3. But recall that cyclotomic index and dimension (X2) are heavily correlated13. In

11Note that blocksize was dependent on dimension to some extent (e.g., can’t run BKZ-β for dimension
n < β). Since our range was not restricted to dimensions above 25, the representation by algorithm could be an
issue. Areas for potential improvement and future consideration include handling missing values that accounts
for the known relationship between dimension and blocksize.

12Additional methods for appropriately handling dimension and accounting for the variation observed may
be considered for future research.

13Recall the dimension of a lattice with cyclotomic index C is φ(C).

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

440

fact, the coefficient estimate of β2 in Model (5), Eq. (22) is roughly the sum of β2 and
β4 from Eq. (23)14. When X4

X2
was used instead of X4, we obtain mixed results for its

significance (Tables 4, 6, 12, and 13). In fact, this ratio was a useful addition to models
that did not already include dimension, but when dimension was already included in the
model that ratio was not a useful predictor (at any reasonable significance level, based on
results from an individual t-test with hypotheses H0: β4,2 = 0 vs. H1: β4,2 6= 0). However,
X4 was always determined to be a useful additional predictor for every model considered,
regardless of whether dimension was or was not already included in those models.

4.3.2 Runtime

Estimates regression equations for runtime, corresponding to Models (15), (16), and (17)
are given by

l̂ogT =−4.844043+0.109764 X1 +0.059562 X2−0.054894 X3. (34)

Ideal l̂ogT =−5.735850+0.095660 X1 +0.051618 X2 +0.011606 X4. (35)

Ideal l̂ogT =−5.407435+0.101272 X1 +0.063402 X2 +0.140254
X4

X2
. (36)

We suspect, and are supported by the literature [GN08,FSW14,PS13,BLR08], that runtime
is only polynomial (not exponential) with respect to dimension. Corresponding estimated
regression equations, which are based on Models (18) and (19), are given by

l̂ogT =−19.699629+0.068977 X1 +4.927231 log(X2)−0.297858 X3,

(37)

Ideal l̂ogT =−19.024828+0.060018 X1 +4.823624 log(X2)−0.221438
X4

X2
.

(38)

The estimations in Eq. (37) and (38) have values of R2 ≈ 0.93 versus R2 ≈ 0.87 from
Eq. (34) through (36). That is, more variability in the response was explained by models
that used the log-transformed runtime as the response variable, compared to models for the
untransformed runtime. This empirical evidence aligns with our expectation that runtime is
polynomial in dimension.

For comparisons to other papers, the most reduced Models (20) and (21) are estimated
as

l̂ogT =−4.891670+0.109753 X1 +0.059656 X2, and (39)

l̂ogT =−20.054940+0.068648 X1 +4.961946 log(X2), (40)

respectively.

At the 0.05 significance level, lattice class is not a useful predictor to add to a model for
log runtime that already includes predictors X1 and X2 (p-value = 0.45; Table 14). However
the opposite conclusion is seen for models that additionally include X3. That is, lattice class

14Directions for future improvement to this model include considering methods and implications for handling
dependence among predictors.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

441

is a useful predictor to add to a model that already includes X1, X2, and X3 (p = 0.000001;
Table 17).15

On average, there is an increase in runtime from the unmodified lattice to any multipled
lattice (original basis multiplied by a unimodular matrix). The average factor of increase is
2.18 for general lattices and 1.94 for ideal lattices. The increase can be explained in one
of two ways. Either the original lattice (and the special form it has) is that much easier
to reduce or the adjusted bases have entries of order higher than 10n. The reason for the
increase is not addressed in this paper. Since some transformations actually reduced the
runtime (almost exclusively for BKZ-25), it may be that the form was more of a factor than
bitsize.

However, the difference in increases between general and ideal lattices cannot be
explained by the above. If a difference exists, it may have potential cryptographic
ramifications. Since we showed that random bases for general and ideal lattices have
roughly the same runtime, this would mean the special form of the constructed general
lattice is actually reduced faster than the constructed form of the ideal lattice by current
algorithms. We encourage anyone to test if there is a difference.

5. Conclusion

In this paper, we described an experiment that we conducted in order to evaluate the impact
of lattice class on result quality and computational runtime for using lattice reduction
algorithms. Our research is novel in its direct comparison of experimental results between
the class of general lattices and the class of ideal lattices. In this paper, we described
our methods for collecting algorithm performance (e.g., quality and runtime) data. Then,
we developed statistical models to analyze this performance data. Finally, results from
statistical models were described in light of our overarching questions. A summary of key
results is provided below.

Comparing statistical results from various regression models estimated to our
experimental data, we did not find consistent evidence to determine whether lattice class
has a significant impact on RHF or runtime. In models for RHF including blocksize and
dimension as predictors, lattice class appears to be a useful predictor. But once we remove
dimension, as we argued that it shouldn’t be asymptotically relevant to RHF prediction,
we found that lattice class lost its usefulness for predicting RHF. In the opposite direction,
for runtime we found that lattice class was not a useful predictor when combined with
blocksize and dimension. Once we adjusted the predictors so that runtime was modeled as
polynomial in dimension, as referenced in the literature, we found that lattice class became
a useful predictor of runtime.

Neither did we find consistent evidence to determine whether cyclotomic index has a
significant impact on RHF or runtime. The conclusions depended on the overall model
being run. We provided an explanation for why cyclotomic index and dimension shouldn’t
both be used as linear predictors in the same model due to their high correlation. This

15As previously indicated, application-specific theory is relevant in considering whether or not to include
dimension in the model. If instead, the inclusion of dimension was based solely on its predictive merit as
observed in statistical models applied to our data, dimension would be included as a predictor because it is
a statistically useful predictor to add to a model that already includes blocksize and class (at any reasonable
signficance level, based on an individual t-test for β2; Table 14).

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

442

left us with models that included index divided by dimension as a fifth “linear” predictor.
When dimension was also included, this fifth predictor was not useful, but when dimension
was left out, it appeared significant to predicting RHF.

Work building on this would further investigate the functional specification of our
model. Specifically, the addition of interactions between the predictors may be considered.
Using a common precision across all dimensions may help solidify conclusions by
removing this source of variability which was not addressed in our paper.

Acknowledgements

This research was supported by the DoD section 219 Naval Innovative Science and
Engineering Program.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

443

References

[ACD+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel
Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer.
Estimate all the {LWE, NTRU1} schemes! Cryptology ePrint Archive, Report
2018/331, 2018.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages
99–108. ACM, 1996.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is np-hard for randomized
reductions. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 10–19. ACM, 1998.

[Bat15] S. Batson. On the Relationship Between Two Embeddings of Ideals into
Geometric Space and the Shortest Vector Problem in Principal Ideal Lattices.
PhD dissertation, NC State University, 2015.

[BLR08] Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit hard
instances of the shortest vector problem. In International Workshop on Post-
Quantum Cryptography, pages 79–94. Springer, 2008.

[Che16] Hao Chen. A measure version of gaussian heuristic. IACR Cryptology ePrint
Archive, Report 2016/439, 2016.

[CN11] Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 1–20. Springer, 2011.

[dP12] J. Van de Pool. Quantifying the security of lattice-based crytosystems in
practice, Jan 2012.

[dP14] J. Van de Pool. The BKZ algorithm, May 2014.

[FSW14] Felix Fontein, Michael Schneider, and Urs Wagner. PotLLL: a polynomial
time version of LLL with deep insertions. Designs, codes and cryptography,
73(2):355–368, 2014.

[GN08] N. Gama and P. Nguyen. Predicting lattice reduction. Advances in Cryptology
– EuroCrypt 2008, 4965:31–51, 2008. [proceedings].

[Ham13] T. Hamann. The BKZ simulation algorithm. Thesis, Technische Universität
Darmstadt, July 2013.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Terminating BKZ. IACR
Cryptology ePrint Archive, 2011:198, 2011.

[HW+79] Godfrey Harold Hardy, Edward Maitland Wright, et al. An introduction to the
theory of numbers. Oxford university press, 1979.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

444

[LRBN10] R. Lindner, M. Rüeckert, P. Baumann, and L. Nobach. TU Darmstadt Lattice
Challenge, 2010.

[Ngu11] Phong Q Nguyen. Lattice reduction algorithms: Theory and practice. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 2–6. Springer, 2011.

[Ngu17] P. Nguyen. Lattice algorithms: Design, analysis and experiments, March 2017.

[PS13] Thomas Plantard and Michael Schneider. Creating a challenge for ideal lattices.
IACR Cryptology EPrint Archive, 2013:39, 2013.

[PSZ13] T. Plantard, W. Susilo, and Z. Zhang. Adaptive precision floating point lll.
Australasian Conference on Information Security and Privacy (ACISP 2013),
7959:104–117, 2013.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-
based cryptosystems. Cryptology ePrint Archive, Report 2010/137, 2010.

[SB10] Michael Schneider and Johannes A Buchmann. Extended lattice reduction
experiments using the BKZ algorithm. In Sicherheit, volume 10, pages 241–
252, 2010.

[SBL09] M. Schneider, J. Buchman, and R. Lindner. Probabilistic analysis of
LLL reduced bases. Algorithms and Number Theory. Dagstuhl Seminar
Proceedings, 2009.

[SE94] C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming,
66:181–199, 1994.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

445

Appendix
A. Notes about our experimental process

• Software used:

– NTL version 10.1.0 and C++11 for lattice reductions and Sage version 5.10 for
lattice generation.

– For the statistical analysis, we used the linear model function in R version 3.5.1.

– Our “runtime” is actually the walltime. We presume that the cputime is quite
similar. Reductions were run on a dedicated computer.

• Dimensions considered:

– BKZ-n can only be run on dimension ≥ n. So BKZ-5 was only run on
dimension ≥ 5 lattices, BKZ-10 was only run on dimension ≥ 10 lattices,
etc. BKZ-25 was not run on lattices of dimension > 196 (or some lattices
of dimension 190,192,194) due to precision errors and time constraints.

– We only used ideal lattices corresponding to ideals in cyclotomic fields of
index ≤ 275. This meant we had repeats of some dimensions and missed other
dimensions.

– For general lattices, we used every even dimension < 200 as well as those
dimensions covered by ideal lattices above.

– We had to change precision at different stages: floating point for n ≤ 50,
extended double for 52≤ n≤ 194, n = 198, and LLL and BKZ-5,10,15 for n =
200, and arbitrary precision for the rest. Floating point and extended double
are hardware defined as compared to the software defined arbitrary precision.
This causes a statistical artifact of much higher runtimes for reduction when
arbitrary precision is used.

– There are a few outliers in our data that we think were caused by errors in
precision. We did not rerun these instances because of time constraints.

• Lattice basis creation:

– We created matrices that had entries on the order of 10n.

– “There is no natural probability space over the infinite set of bases” [Ngu17].
We decided to address this issue by multiplying the constructed lattice (with
very rigid form, see [LRBN10, PS13]) by a random unimodular matrix.

– For each dimension, we created 5 unimodular matrices to change the basis.
Initially, the unimodular matrices were constructed using the Sage command
random matrix(ZZ,dim,dim,algorithm=’unimodular’).
This proved to take too long in higher dimensions (> 1 month for the highest
dimensions), so we changed to the following technique for dimensions > 180.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

446

1. Construct a general random matrix using the Sage command
A=random matrix(ZZ,dim,dim).

2. Compute the Hermite form using
H,U=Hermite form(transformation=True).

3. The secondary output of this function is the unimodular matrix U such
that UA = H.
We assume this U is a sufficiently random unimodular matrix and use it
for the change of bases.

– Because we wanted to consider performance of lattice reduction algorithms on
random bases of random lattices, we only used the transformed data in our
analysis.

B. Regression Data

If there is any discrepancy between coefficients listed here and coefficients listed in Section
4.3, the data in this section should be presumed to be correct.

In our first attempt of analysis we found that the estimated regression equation based
on Model (10) was given by.

R̂HF = 1.025402−0.000684 Blocksize.

For ease of comparison, we repeat Eq. (4) from the literature:

R̂HF = 1.01655−0.000196185 Blocksize.

The large disparity with Eq. (4) gave us pause. After reviewing our data, we found that our
RHF from LLL tended to approach 1.04 compared to the 1.02 in literature [SB10, SBL09,
GN08, FSW14, PS13]. We believe, though were unable to confirm, that our LLL data was
erroneously squared or missing a square root.16 The regression equations were built with
the “corrected” data. We also ran the regression equations with the “uncorrected” data and
arrived at the same conclusions.

B.1 RHF

Tables 2 through 9 are estimating RHF. Tables 10 through 13 are estimating log(RHF).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.013116 0.000269 3771 0.000000
Blocksize -0.000181 0.000011 -16.45 0.000000

Dimension 0.000025 0.000001 17.44 0.000000
Class 0.000843 0.000195 4.318 0.000016

Table 2: Estimation of Model (5) using both ideal and general data sets combined.

16The LLL data was produced using a separate function in the NTL library, hence the BKZ data was as
expected. Potentially in the version of NTL we used, it was built to output the approximation factor as opposed
to the Hermite factor. We checked in an updated version of NTL and found it output 1.02 consistently, as
expected.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

447

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.013736 0.000185 5468 0.000000
Blocksize -0.000187 0.000009 -20.88 0.000000

Dimension 0.000013 0.000002 6.995 0.000000
Index 0.000009 0.000001 6.605 0.000000

Table 3: Estimation of Model (6) using only data from ideal lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.014328 0.000316 3208 0.000000
Blocksize -0.000182 0.000009 -20.12 0.000000

Dimension 0.000021 0.000001 14.86 0.000000
Index

Dimension -0.000016 0.000107 -0.1459 0.883999

Table 4: Estimation of Model (7) using only data from ideal lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.016087 0.000222 4575 0.000000
Blocksize -0.000177 0.000012 -14.99 0.000000

Class 0.000044 0.000203 0.2166 0.828554

Table 5: Estimation of Model (8) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.017707 0.000235 4323 0.000000
Blocksize -0.000176 0.000010 -18.19 0.000000

Index
Dimension -0.000825 0.000098 -8.394 0.000000

Table 6: Estimation of Model (9) using only data from ideal lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.016118 0.000170 5963 0.000000
Blocksize -0.000177 0.000012 -15 0.000000

Table 7: Estimation of Model (10) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.016118 0.000143 7091 0.000000
Blocksize -0.000175 0.000010 -17.72 0.000000

Table 8: Estimation of Model (10) using only data from ideal lattices.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

448

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.016118 0.000461 2203 0.000000
Blocksize -0.000179 0.000032 -5.621 0.000000

Table 9: Estimation of Model (10) using only data from general lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.017495 0.000289 60.46 0.000000

log(Blocksize) -0.001673 0.000107 -15.69 0.000000
Class 0.000054 0.000204 0.2646 0.791363

Table 10: Estimation of Model (11) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.015924 0.000224 70.96 0.000000
Blocksize -0.000173 0.000012 -14.52 0.000000

Class 0.000059 0.000205 0.289 0.772593

Table 11: Estimation of Model (12) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.019148 0.000273 70.23 0.000000

log(Blocksize) -0.001684 0.000085 -19.82 0.000000
Index

Dimension -0.000822 0.000096 -8.606 0.000000

Table 12: Estimation of Model (13) using only data from ideal lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.017549 0.000233 75.3 0.000000
Blocksize -0.000173 0.000010 -18.07 0.000000

Index
Dimension -0.000815 0.000097 -8.379 0.000000

Table 13: Estimation of Model (14) using only data from ideal lattices.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

449

B.2 Runtime

Tables 14 through 20 are all estimating log(Time).

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.844043 0.100053 -48.41 0.000000
Blocksize 0.109764 0.004103 26.75 0.000000

Dimension 0.059562 0.000533 111.7 0.000000
Class -0.054894 0.072726 -0.7548 0.450447

Table 14: Estimation of Model (15) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.735850 0.093633 -61.26 0.000000
Blocksize 0.095660 0.004513 21.2 0.000000

Dimension 0.051618 0.000909 56.77 0.000000
Index 0.011606 0.000720 16.11 0.000000

Table 15: Estimation of Model (16) using only data from ideal lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.407435 0.170273 -31.76 0.000000
Blocksize 0.101272 0.004867 20.81 0.000000

Dimension 0.063402 0.000771 82.25 0.000000
Index

Dimension 0.140254 0.057437 2.442 0.014727

Table 16: Estimation of Model (17) using only data from ideal lattices.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.699629 0.145181 -135.7 0.000000
Blocksize 0.068977 0.002937 23.49 0.000000

log(Dimension) 4.927231 0.030167 163.3 0.000000
Class -0.297858 0.051341 -5.802 0.000000

Table 17: Estimation of Model (18) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.024828 0.203672 -93.41 0.000000
Blocksize 0.060018 0.003364 17.84 0.000000

log(Dimension) 4.823624 0.038044 126.8 0.000000
Index

Dimension -0.221438 0.037511 -5.903 0.000000

Table 18: Estimation of Model (19) using only data from ideal lattices.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

450

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.891670 0.077640 -63 0.000000
Blocksize 0.109753 0.004103 26.75 0.000000

Dimension 0.059656 0.000518 115.1 0.000000

Table 19: Estimation of Model (20) using both ideal and general data sets combined.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.054940 0.132641 -151.2 0.000000
Blocksize 0.068648 0.002959 23.2 0.000000

log(Dimension) 4.961946 0.029794 166.5 0.000000

Table 20: Estimation of Model (21) using both ideal and general data sets combined.

Distribution A: Approved for Public Release September 27th, 2019 (2019-196)

451

