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Abstract

We present a hierarchical Bayes approach to small area estimation (SAE) for the An-
nual Survey of Public Employment & Payroll (ASPEP) and the Annual Survey of Local
Government Finances (ALFIN). This study provides a robust estimation methodology
for the total number of full-time employees in the ASPEP and the total expenditures
and total revenues in the ALFIN. The estimator is based on a Linear Mixed-Effect
Model (LMM) in which errors follow a mixture of t−distributions. We compare our
research method to the existing methods being used for these surveys at the U.S.
Census Bureau. The two Census of Governments (CoG) surveys for Employment
and Finance for 2007 and 2012, similar to ASPEP and ALFIN for non census years,
were used for the evaluation of this research.

Key Words: Linear mixed-effect models, Normal-Mixture models, t−Mixture mod-
els, Bayesian method, MCMC procedure, Small Area Estimation.

1 Introduction

The U.S. Census Bureau uses a hybrid approach (combination of estimators) to small
area estimation for the Annual Survey of Public Employment & Payroll (ASPEP)
and the Annual Survey of Local Government Finances (ALFIN). In this approach, three
estimation methods are considered for each state-by-government-function estimation
cell: Horvitz-Thompson (HT), Empirical Best Linear Unbiased Prediction (EBLUP),
and hierarchical Bayes (HB) estimator with error terms following a t−distribution
(HB-T). The EBLUP estimator is based on a linear mixed-effect model with errors
that are assumed to be normally distributed. The HB-T estimator is based on a linear
mixed-effect model with t−distributed errors. Linear mixed-effect models such as
the ones used for EBLUP and HB-T can be sensitive to outliers. To accommodate
potential outliers in the ASPEP, Trinh and Tran (2017) [14] produced a robust HB
estimator with error terms following a mixture of normal distributions (HB-NN).
In this research, we explore HB estimator with error terms following a mixture of
t−distributions (HB-TT) to determine if it would perform better for these surveys.

——————————–

Any views expressed are those of the author(s) and not necessarily those of the U.S.
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Census of Governments

Every five years, in years ending in “2” and “7” the Census Bureau conducts a Census
of Governments (CoG), which includes both an employment component (CoG-E)
and a finance component (CoG-F). The CoG-E collects exactly the same government
employment and payroll data as the ASPEP collects on a sample basis in non-census
years. The CoG-F also collects the same data on financial activities of all local
governments as the ALFIN does on a sample basis in non-census years. Therefore,
to test how the new estimator performs for both the ASPEP and ALFIN surveys,
we used the California 2007 and 2012 CoG-E and CoG-F data in this research.

Annual Survey of Public Employment & Payroll and Annual Survey of
Local Government Finances

The ASPEP and ALFIN surveys are designed to collect data and produce estimates
of statistics on the number of state and local government civilian employees, gross
payroll and expenditures, revenues, debts and assets. The target population of
approximately 90,000 governmental units includes five types: counties, cities, town-
ships, special districts, and school districts.

Each survey consists of two components. The first component contains the fifty
state governments and the District of Columbia (included with certainty). The
second component in the ASPEP is a representative sample of about 10,000 local
governments of types 1-5. The second component in the ALFIN collects approx-
imately 24,000 local governments containing 10,000 of types 1-4 (non-school) and
14,000 of type 5 (school district). The most recent CoG-E and CoG-F serve as the
sampling frame for the ASPEP and ALFIN respectively. About two years after every
CoG-E and CoG-F, the Census Bureau redesigns and selects a new sample of local
governments. More information about the ASPEP and ALFIN data can be found
at http://census.gov/programs-surveys/apes.html and http://census.gov/programs-
surveys/gov-finances.html respectively.

2 Sample Design

Both ASPEP and ALFIN have a two-phase sample design. In the first phase, a group
of selected governments is assigned as certainties (having a weight of 1, determined
by subject matters) and included in the sample, while other governments are selected
using a stratified systematic probability proportional to size design. In the second
phase, cutoff sampling is used to reduce cost. Sample units are grouped into two
strata depending on their sizes and then a subsample is selected from the stratum
with small units. The details on the description of the sample design for the ASPEP
and ALFIN can be found in Dumbacher and Hill (2014) [3], Bassel and Tran (2017)
[2].

3 Estimators

This section briefly describes the different estimators used in this research for esti-
mating the ASPEP total full-time employment and the ALFIN derived values for
total revenues.
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Let ymk denote the value of the variable of interest (full-time employment or the
revenues) for the kth unit within the mth government function (for example: hos-
pitals, education, transportation, ...). We are interested in estimating the total

Ym =
Nm
Σ
k=1

ymk for m = 1, ...,M (Nm: number of units of the mth area; M : number

of areas).

3.1 Direct Estimator (Horvitz-Thompson)

A direct estimator of Ym is given by Ŷ HT
m =

nm
Σ
k=1

wmkymk where wmk = 1
πmk

and πmk

is the inclusion probability for the kth unit within the mth area.

3.2 Model-Based Small Area Estimator

A model-based small area estimator can be used to produce estimates for areas with
sample sizes that are too small for direct estimation using direct estimators such as
HT. Using SAE methods, the effective sample sizes can be increased by taking extra
information from auxiliary data. A model-based estimator of Ym, the mth area total,
is given by:

Ŷm = ym + Ŷmr (3.1)

where ym =
nm
Σ
k=1

ymk: the sum of the sample values for the variable of interest in the

mth area; Ŷmr =
Nm
Σ

k=nm+1
ŷmk is a predictor of the total of the non-sampled units of

the mth area. The predictor ŷmk can be derived from a linear mixed model (LMM)
(see Battese et al, 1988 [1] for unit level model, Fay and Herriot, 1979 [4] for area
level model).

log (ymk) = β0 + β1 log (xmk) + um + εmk, (3.2)

where ymk and xmk are the value of the kth unit within the mth area from the survey
year and census year, respectively; um is the random effect of the mth area, εmk

is the error term. The log-transformation is applied to xmk and ymk to make the
predictor and response variables approximately conform to normality. Then ymk

(m = 1, ...,M ; k = nm + 1, ..., Nm) is predicted using the inverse transformation

ŷmk = exp
[
β̂0 + β̂1 log (xmk) + ûm

]
(3.3)

EBLUP: Empirical Best Linear Unbiased Predictor

Ŷ EBLUP
m = ym +

Nm
Σ

k=nm+1
ŷmk

ŷmk is estimated using (3.3 and 3.2) assuming

um
iid∼ N

(
0, τ2

)
, (3.4)

εmk
iid∼ N

(
0, σ2

)
. (3.5)

The fixed effect (β0,β1)
T and the random effect ûm are estimated via restricted

maximum likelihood using the SAS Mixed procedure.
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HB-T: Hierarchical Bayes estimator assuming t-distributed errors

Ŷ HB−T
m = ym +

Nm
Σ

k=nm+1
ŷmk

ŷmk is estimated using (3.3 and 3.2) assuming

um| τ2
iid∼ N

(
0, τ2

)
, (3.6)

εmk|σ2
iid∼ t

(
0, σ2, ν

)
. (3.7)

where um and εmk are independent. The parameter (β0,β1)
T and the random effect

ûm are estimated using a Markov Chain Monte Carlo (MCMC) procedure (see Trinh
and Tran 2017 [14]) with the following specifications:

Parms : β1 = 0, β2 = 1, τ2 = 1, σ2 = 1

Priors :

[
β1
β2

]
∼ BVN

([
0
0

]
,

[
50 0
0 50

])
τ2, σ2 ∼ igamma(0.01, 0.01)

Random : um ∼ N (0, τ2)

Likelihood : log(ymk)|um ∼ t(β1 + β2 log(xmk) + um, σ
2, ν)

HB-NN: Hierarchical Bayes estimator with error terms following a mixture
of normal distributions

Ŷ HB−NN
m = ym +

Nm
Σ

k=nm+1
ŷmk

ŷmk is estimated using (3.3 and 3.2) assuming

um| τ2
iid∼ N (0, τ2), (3.8)

εmk|σ21, σ22, sp
iid∼ (1− sp)N

(
0, σ21

)
+ spN

(
0, σ22

)
, σ1 < σ2, (3.9)

sp| p
iid∼ Bin (1; p) . (3.10)

where um and εmk are independent. The parameter (β0,β1)
T and random effect ûm

are estimated using a SAS MCMC procedure (see Trinh and Tran 2017 [14]) with
the following specifications:

Parms : β1 = 0, β2 = 1, sp = 0, τ2 = 0.01, σ21 = 0.01, σ22 = 1

p =
1

1 + exp(−sp)

Priors :

[
β1
β2

]
∼ BVN

([
0
0

]
,

[
50 0
0 50

])
τ2, σ21, σ

2
2 ∼ igamma(0.01, 0.01)

sp ∼ Bin(1, p)

Random : um ∼ N (0, τ2), µ = β1 + β2 log(xmk) + um,

z1 =
log(ymk)− µ

σ1
, z2 =

log(ymk)− µ
σ2

Likelihood : log(ymk)|um ∼
p

σ1
exp(−z

2
1

2
) +

1− p
σ2

exp(−z
2
2

2
)
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HB-TT: Hierarchical Bayes estimator with error terms following a mixture
of t-distributions

Ŷ HB−TT
m = ym +

Nm
Σ

k=nm+1
ŷmk

ŷmk is estimated using (3.3 and 3.2) assuming

um| τ2
iid∼ N

(
0, τ2

)
, (3.11)

εmk|σ21, σ22, sp
iid∼ (1− sp) t

(
0, σ21, ν

)
+ spt

(
0, σ22, ν

)
, σ1 < σ2, (3.12)

sp| p
iid∼ Bin (1; p) . (3.13)

where um and εmk are independent. The parameter (β0,β1)
T and random effect ûm

are estimated using a SAS MCMC procedure with the following specifications:

Parms : β1 = 0, β2 = 1, sp = 0, τ2 = 0.01, σ21 = 0.01, σ22 = 1

p =
1

1 + exp (−sp)

Priors :

[
β1
β2

]
∼ BVN

([
0
0

]
,

[
50 0
0 50

])
τ2, σ21, σ

2
2 ∼ inverse gamma(0.01, 0.01)

sp ∼ Binary (1, p)

Random : um ∼ N
(
0, τ2

)
, µ = β1 + β2 log (xmk) + um,

t1 =
log (ymk)− µ

σ1
, t2 =

log (ymk)− µ
σ2

Likelihood : log (ymk)|um ∼
p

σ1

(
1 +

t21
ν

)− 1+ν
2

+
1− p
σ2

(
1 +

t22
ν

)− 1+ν
2

The degree of freedom is fixed (ν = 8). The MCMC procedure discards the first
2, 500 as burn-in and keeps the next 12, 500 samples. The thinning rate of 5 is
applied to produce 2, 500 thinned samples from the posterior distribution. Then um
is predicted by the average of MCMC posterior estimates of um.

4 Application to ASPEP and ALFIN data

This research uses the ASPEP and ALFIN in California where there are 29 gov-
ernment functions in the ASPEP and 163 in the ALFIN..The performances of the
five estimators (HT, EBLUP, HB-T, HB-NN, HB-TT) are evaluated within and
across government functions using a “pairwise comparison” and a “percentile com-
parison”. The first comparison (pairwise comparison) compares the Relative Root
Mean Square Errors (RRMSE) produced by the two competing estimators within
each government function where an estimator is considered “better” than the other if
it produces an estimate with smaller RRMSE in that area. In the second comparison
(percentile comparison), a percentage level is set and then estimators are evaluated
and compared based on the proportion of government functions producing estimates
with RRMSEs smaller than the specified level.
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4.1 Evaluation Design

The production sampling design is applied to select 1000 replicated samples from
the 2012 CoG. Five estimators (HT, EBLUP, HB-T, HB-NN, HB-TT) are applied
to produce estimates for the total Ym. The quality of the estimators is evaluated

using RRMSEm =

√
1

rep

rep

Σ
i=1

(
Ŷm,i − Ym

Ym

)2

where Ŷm,i is an estimate of Ym, and

rep = 1, 000 is the number of replicate samples selected from the 2012 CoG data
(CoG-E and CoG-F) and used to estimate totals for 2012 CoG data.

4.2 Application to ASPEP data

The parameter of interest in this study is the total number of full-time employees,
Ym, for each function code m = 1, 2, ..., 29 in the 2012 CoG-E of California. The
2007 CoG-E provides the auxiliary data used to estimate the 2012 CoG-E full-time
employment using the HT, EBLUP, HB-T, HB-NN, and HB-TT estimators.

4.2.1 Pairwise Comparison

A pairwise comparison of the RRMSE of the HB-NN and HB-TT versus the HT,
EBLUP, and HB-T estimators is given in Table 1. The values indicate the proportion
that an estimator outperforms the other for RRMSE in 29 function codes in the
ASPEP.

Table 1: Proportion that an Estimator Outperforms the Other for
29 Government Functions Tested in California for 2012 CoG-E
HT HB-NN EBLUP HB-NN HB-T HB-NN
1
29

28
29

10
29

19
29

11
29

17
29

HT HB-TT EBLUP HB-TT HB-T HB-TT
1
29

28
29

10
29

19
29

10
29

18
29

HB-NN HB-TT
13
29

15
29

Data source: U.S. Census Bureau 2007 and 2012 CoG-E California

Among the seven pairwise comparisons in Table 1, the first three comparisons (Row
1 of Table 1) indicate that the HB-NN estimator performs better because it provides
estimates with smaller RRMSEs. For the same reason, the last four comparisons
(Rows 2 and 3 of Table 1) show the HB-TT estimator performs better when com-
pared to the other estimators (HT, EBLUP, HB-T, HB-NN). The RRMSEs for each
estimator are provided in Figure 1.

4.2.2 Percentile Comparison

The proportion of function codes (out of 29 in the ASPEP) where estimators produce
estimates with RRMSEs less than 3 percent is given in Table 2.

 
406



Table 2: Proportion that Each Estimator Produces
Relative Root Mean Square Error less than 3 Percent

********* HT EBLUP HB-T HB-NN HB-TT *********
13
29

24
29

26
29

28
29

28
29

Data source: U.S. Census Bureau 2007 and 2012 CoG-E California

The HB-NN and HB-TT estimators produce estimates with RRMSEs less than 3
percent in more estimation areas (out of 29s in the ASPEP) than the HT, EBLUP
and HB-T do. On average, ASPEP estimation accuracy (in terms of RRMSE)
increases in the order of HT, EBLUP, HB-T, HB-NN and HB-TT (See Figure 1).

Figure 1: Relative Root Mean Square Error of Estimators and Their Box Plots

Data source: U.S. Census Bureau 2007 and 2012 CoG-E California

4.3 Application to ALFIN data

The parameter of interest in this study is the total expenditures or revenues, Ym, for
each function code m = 1, 2, ..., 163 in the 2012 CoG-F of California. The 2007 CoG-
F provides the auxiliary data used to estimate the 2012 CoG-F total expenditures
or revenues using the HT, EBLUP, HB-T, HB-NN, and HB-TT estimators.

4.3.1 Pairwise Comparison

A pairwise comparison of the RRMSE of the HB-NN and HB-TT versus the HT,
EBLUP, and HB-T estimators is given in Table 3. The values indicate the proportion

 
407



that an estimator outperforms the other for RRMSE in 163 function codes in the
ALFIN.

Table 3: Proportion that an Estimator Outperforms the Other for
163 Government Functions Tested in California for 2012 CoG-F
HT HB-NN EBLUP HB-NN HB-T HB-NN
15
163

127
163

43
163

99
163

63
163

79
163

HT HB-TT EBLUP HB-TT HB-T HB-TT
14
163

128
163

39
163

103
163

63
163

79
163

HB-NN HB-TT
59
163

83
163

Data source: U.S. Census Bureau 2007 and 2012 CoG-F California

Among the seven pairwise comparisons in Table 3, the first three comparisons (Row
1 of Table 3) indicate that the HB-NN estimator performs better because it provides
estimates with smaller RRMSEs. Similarly, the last four comparisons (Rows 2 and 3
of Table 3) show the HB-TT estimator performs better when compared to the other
estimators (HT, EBLUP, HB-T, HB-NN).

4.3.2 Percentile Comparison

The proportion of function codes (out of 163 in the ALFIN) where estimators produce
estimates with RRMSEs less than 3 percent and 5 percent are given in Table 4 and
Table 5 respectively.

Table 4: Proportion that Each Estimator Produces
Relative Root Mean Square Error less than 3 Percent

********* HT EBLUP HB-T HB-NN HB-TT *********
45
163

75
163

90
163

90
163

93
163

Data source: U.S. Census Bureau 2007 and 2012 CoG-F California

Table 5: Proportion that Each Estimator Produces
Relative Root Mean Square Error less than 5 Percent

********* HT EBLUP HB-T HB-NN HB-TT *********
68
163

95
163

104
163

105
163

105
163

Data source: U.S. Census Bureau 2007 and 2012 CoG-F California

The HB-NN and HB-TT estimators produce estimates with RRMSEs less than 3
percent and 5 percent in more estimation areas (out of 163s in the ALFIN) than the
HT, EBLUP and HB-T do. On average, ALFIN estimation accuracy (in terms of
RRMSE) increases in the order of HT, EBLUP, HB-T, HB-NN and HB-TT.

5 Conclusion

5.1 HB-TT and HB-NN versus HT, EBLUP, HB-T estimators

Our comparisons show clearly superior performance by the two new Hierarchical
Bayes (HB) estimators tested in this research for the surveys studied using the
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ASPEP and ALFIN data for California (see Tables 1 and 3). To accommodate
potential outliers in the ASPEP, Trinh and Tran (2017) [14] produced a robust HB
estimator with error terms following a mixture of normal distributions, referred to
as the HB-NN estimation method. In this research we also included a new HB
estimator with error terms following a mixture of t−distributions which we call the
HB-TT estimation method. Both the HB-NN and HB-TT demonstrated superior
performance over the Horvitz-Thompson (HT) method, the Empirical Best Linear
Unbiased Prediction (EBLUP) method, and the Hierarchical Bayes estimator with
error terms following a t−distribution (HB-T) method (currently used at the U.S.
Census Bureau), in terms of RRMSE when using the ASPEP and the ALFIN data.
Using HB-NN and HB-TT, ASPEP estimation improvements are possible at the
3 percent level of RRMSE (see Table 2) and ALFIN estimation improvements are
possible at the 3 percent and 5 percent levels of RRMSE (see Tables 4 and 5). The
HB-TT estimator is slightly better than the HB-NN in terms of RRMSE (see Tables
1-5).

5.2 Limitations and Future Research

Further research is necessary to determine if similar improvements as those found
in the particular government functions in California for these two surveys apply to
other states. Similarly, we may want to consider how these estimators perform for
other public sector and similar surveys. We plan to look for a more robust t−mixture
using an optimal degree of freedom based on the akaike information criterion (AIC)
or bayesian information criterion (BIC).
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Examples of Government Functions for the Surveys in this Research

FC Description of Government Function for the ASPEP
001 Air Transportation
012 Elementary and Secondary - Instruction
018 Higher Education - Instructional
... ...
A complete description of Government Functions for the ASPEP
can be found at http://census.gov/programs-surveys/apes.html

FC Description of Government Function for the ALFIN
A01 Air Transportation Charges
A09 Elementary Secondary Education - Lunch Charges
A10 Elementary Secondary Education Tuition and Transportation Charges
... ...

A complete description of Government Functions for the ALFIN
can be found at http://census.gov/programs-surveys/gov-finances.html
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