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Abstract
In order to gather the information about the lifetime distribution of a product, a standard life test-

ing method at normal operating conditions is not practical when the product has an extremely long
lifespan. Accelerated life testing solves this difficult issue by subjecting the test units at higher
stress levels than normal for quicker and more failure data. The lifetime at the design stress is then
estimated through extrapolation using an appropriate regression model. Estimation of the regres-
sion parameters based on exponentially distributed lifetimes from accelerated life tests has been
considered by a number of authors using numerical methods but without systematic or analytical
validation. In this article, we propose an alternative approach based on a simple and easy-to-apply
graphical method, which also establishes the existence and uniqueness of the maximum likelihood
estimates for constant-stress and step-stress accelerated life tests under progressive censorings.

Key Words: accelerated life tests, constant-stress loading, exponential distribution, maximum
likelihood estimation, progressive censoring, step-stress loading

1. Introduction

With ever increasing reliability and substantially long life-spans of products, it is often
very difficult for standard life testing methods under normal operating conditions to obtain
sufficient information about the failure time distribution of the products. This practical
difficulty is overcome by accelerated life test (ALT). By subjecting test units to higher
stress levels than normal, the ALT collects more failure data in a shorter period of time.
By applying more severe stresses, ALT collects information on the parameters of lifetime
distributions more quickly. The lifetime at the normal operating stress can be estimated
through extrapolation using an appropriate stress-response regression model. Some key
references in the area of ALT include Nelson (1980), Meeker and Escobar (1998), and
Bagdonavicius and Nikulin (2002).

The parameter estimation and design optimization for the ALT models have been dis-
cussed by numerous authors over the decades; see, for instance, Miller and Nelson (1983),
Bai et al. (1989), Leemis et al. (1990), Bagdonavicius and Nikulin (1997), Han et al.
(2006), Balakrishnan and Han (2008, 2009), Balakrishnan et al. (2010), Laronde et al.
(2010), Han and Balakrishnan (2010), Wu and Huang (2010), Han and Ng (2013), Sha and
Pan (2014), Han and Kundu (2015), Ismail (2016), and Han (2015, 2017). In the literature
as noted by Balakrishnan and Kateri (2008), the estimation problem has been approached
by different techniques including probability plotting, method of moments, and maximum
likelihood estimation (MLE). In particular, the MLE requires solving a series of likelihood
equations computationally. Since the solution is numerical in nature, one needs to address
the issues of existence and uniqueness of the estimates, which get quite involved in the
case of progressive censoring. Studying the existence and uniqueness of the estimates are
not only theoretically but also practically important in order to guarantee the estimability
under general settings as well as to develop and implement an efficient computational esti-
mation algorithm. In this article, a simple graphical method is proposed for determination
of the MLE of the regression slope parameter for the general k-level constant-stress and
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step-stress ALT under progressive Type-I and Type-II censorings. This approach ensures
the existence and uniqueness of the MLE as well.

It is assumed that the physical relationship between the mean lifetime parameter and
stress level is log-linear along with the accelerated failure time (AFT) model for the ef-
fect of changing stress in step-stress ALT. For deriving the analytical tractable results, it
is further assumed that the lifetimes are exponentially distributed at each stress level. Al-
though simple, the exponential distribution is a very good approximate model for many
practical applications, including the decay time of a radioactive particle, the waiting time
for service calls, the default time in credit risk modeling, and the distance between muta-
tions on a DNA strand. In electrical and mechanical engineering, it has been successfully
used to model the lifetime of an electric circuit and a semiconductor. Reliability theory
and reliability engineering also make extensive use of the exponential distribution since its
memoryless property renders it well-suited for modeling the constant hazard rate portion of
the bathtub curve. More importantly, its statistical property serves as a theoretical proof of
concept for other popular lifetime distributions such as gamma and Weibull, which is also
the case based on the research outcomes of this study.

Here we also consider a generalized form of censoring known as progressive censor-
ing, which has attracted considerable attention in the reliability literature for its efficient
exploitation of the available resources in comparison to traditional designs. There are two
fundamental censoring schemes: Type-I and Type-II. Progressive Type-I censoring occurs
when a prefixed number of surviving units are continuously removed during the experiment
at the end of each pre-specified time interval. On the other hand, progressive Type-II cen-
soring corresponds to the situation where a prefixed number of surviving units are continu-
ously withdrawn from the experiment at each observed failure time until the pre-specified
number of units have failed; see Balakrishnan et al. (2010) for more details. Both censor-
ing schemes provide greater flexibility to the experimenter in the design stage by allowing
removal of test units at non-terminal time points. Those withdrawn unfailed test units could
be used in other experiments in the same or at a different facility. As special cases, when
no intermediate censoring takes place but the censoring is allowed only at the terminal
time point of an experiment, it reduces to the conventional Type-I and Type-II censorings,
respectively.

The rest of the paper is organized as follows. Section 2 presents the model descriptions
and formulations for k-level constant-stress ALT and step-stress ALT under progressive
Type-I and Type-II censorings. The MLEs of the model parameters are then derived, and
the proposed estimation procedure is described in Section 3 under the unified structure of
the likelihoods. Section 4 illustrates the proposed method using a real dataset. Finally,
Section 5 is devoted to some concluding remarks.

2. Model Descriptions and MLE

Let s(t) be the given stress loading (a deterministic function of time) for ALT. Also, let
sH be an upper bound of stress level and sU be the normal use-stress level. The standard-
ized stress loading is then defined as

x(t) =
s(t)− sU
sH − sU

, t ≥ 0

so that the range of x(t) is [0, 1]. Now, let us define 0 ≡ x0 ≤ x1 < x2 < · · · < xk ≤ 1
to be the ordered k standardized stress levels to be used in the test. It is further assumed
that under any stress level xi, the lifetime of a test unit follows an exponential distribution
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whose probability density function (PDF) and cumulative distribution function (CDF) are

fi(t) =
1

θi
exp

(
− t

θi

)
, 0 < t <∞, (1)

Fi(t) = 1− Si(t) = 1− exp

(
− t

θi

)
, 0 < t <∞, (2)

respectively. Also, it is assumed that under any stress level xi, the mean time to failure
(MTTF) of a test unit, θi, is a log-linear function of stress given by

log θi = α+ βxi, (3)

where the regression parameters α and β need to be estimated. The log-linear relationship
is a commonly used and well-studied model for the accelerated exponential distribution
model. Along with its simplicity, the log-linear link represents several significant life-stress
relationships built from physical principles such as Arrhenius, inverse power law, Eyring,
temperature-humidity, and temperature-non-thermal; see Miller and Nelson (1983).

Here we consider two popular classes of ALT: constant-stress and step-stress. In constant-
stress testing, a unit is tested at a fixed stress level until failure occurs or the life test is
terminated, whichever comes first. On the other hand, (step-up) step-stress testing allows
the experimenter to gradually increase the stress levels at some prefixed time points dur-
ing the test. The following subsections present the likelihoods and the MLEs of α and
β for general k-level constant-stress ALT and step-stress ALT under (progressive) Type-I
and Type-II censorings. For simplicity, no notational distinction is made in this article be-
tween the random variables and their corresponding realizations. Also, we adopt the usual
conventions that

∑m−1
j=m aj ≡ 0 and

∏m−1
j=m aj ≡ 1.

2.1 k-level step-stress test under progressive Type-I censoring

For i = 1, 2, . . . , k, let ni denote the (random) number of units failed at stress level
xi in time interval [τi−1, τi)). Let yi,l denote the l-th ordered failure time of ni units at xi,
l = 1, 2, . . . , ni while ci denotes the number of units censored at time τi. Furthermore, let
Ni denote the number of units operating and remaining on test at the start of stress level xi.
That is, Ni = n−

∑i−1
j=1 nj −

∑i−1
j=1 cj . Then, a step-stress ALT under progressive Type-I

censoring proceeds as follows. A total of N1 ≡ n test units is initially placed at stress level
x1 and tested until time τ1 at which point c1 live items are arbitrarily withdrawn from the
test and the stress is changed to x2. The test is continued on N2 = n− n1 − c1 units until
time τ2, when c2 items are withdrawn from the test and the stress is changed to x3, and
so on. Finally, at time τk, all the surviving items are withdrawn, thereby terminating the
life test. Note that since n ≡

∑k
i=1(ni + ci), the number of surviving items at time τk

is ck = n −
∑k

i=1 ni −
∑k−1

i=1 ci = Nk − nk. Obviously, when there is no intermediate
censoring (viz., c1 = c2 = · · · = ck−1 = 0), this situation corresponds to the k-level
step-stress ALT under conventional Type-I right censoring as a special case. When there is
no right censoring (viz., τk = ∞ and nk = Nk), this situation corresponds to the k-level
step-stress testing under complete sampling as a special case.

It is noted that unlike progressive Type-II censoring, prefixing the progressive Type-I
censoring scheme (c1, c2, . . . , ck−1) has an inherent mathematical lapse due to a non-zero
probability that all the units could fail before reaching the last stress level xk, resulting in an
early termination of the test as well as failing to fully implement the censoring scheme. To
ensure the feasibility of progressive Type-I censoring, Balakrishnan and Han (2009) pro-
posed a simple adjustment, which is to determine a sequence of a fixed proportion of sur-
viving items to be censored at the end of each stress level xi, denoted by (π∗1, π

∗
2, . . . , π

∗
k−1)
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with 0 ≤ π∗i < 1. Then, the actual number of items withdrawn at the end of xi is deter-
mined by ci = Υ((Ni−ni)π∗i ), where Υ(·) is a discretizing function of choice to transform
its argument to a whole number. It could be round(·), trunc(·), floor(·), or ceiling(·), for
example. This adjustment essentially allows the ALT to terminate prior to reaching the final
level xk. As the number of surviving items at the end of each level before censoring oc-
curs is random, the actual censoring scheme (c1, c2, . . . , ck−1) is also random through this
modification. Another practical modification suggested is first to determine a sequence of a
fixed number of units to be censored at the end of each stress level xi, say (c∗1, c

∗
2, . . . , c

∗
k−1)

with c∗i ≥ 0 and
∑k−1

i=1 c
∗
i < n. Then, the actual number of units withdrawn at the end of

stress level xi is determined by ci = min
{
c∗i , Ni − ni

}
. In case the number of remaining

units at any time point of censoring is at most the prefixed number of items to be withdrawn
at that time point, every surviving and operating item is withdrawn and the ALT is termi-
nated. Hence, this modification also allows an earlier termination of the ALT whenever
the number of the items remaining on the ALT is insufficient. Again, as the number of the
functioning items at the end of each stress level prior to censoring is random, the actual
censoring scheme (c1, c2, . . . , ck−1) is essentially random as well.

Since the step-stress loading is non-constant stress loading, an additional assumption
is required to represent the effect of changing stress. The AFT model, also referred to
as the additive accumulative damage model, is often appropriate as it generalizes several
well-known models in reliability engineering for the exponential distribution, including the
basic (linear) cumulative exposure model and the PH model; see Leo and Mikhail (2007).
Now, under the AFT model along with the assumption of exponentiality, the PDF and CDF
of a test unit are

f(t) =

[
i−1∏
j=1

Sj(∆j)

]
fi(t− τi−1) if

{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1
τk−1 ≤ t <∞ for i = k

,(4)

F (t) = 1−

[
i−1∏
j=1

Sj(∆j)

]
Si(t− τi−1)

if
{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1
τk−1 ≤ t <∞ for i = k

,(5)

where ∆j = τj − τj−1 is the step duration at stress level xj , and fi(t) and Fi(t) are as
given in (1) and (2), respectively. Then, using (4) and (5), the joint distribution function of
n = (n1, n2, . . . , nk) and y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained
as

fJ(y,n) = C

[
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (6)

where

C =

k∏
i=1

Ni!

(Ni − ni)!
,

Ui =

ni∑
l=1

(yi,l − τi−1) + (Ni − ni)∆i (7)

for i = 1, 2, . . . , k. The detailed derivation of (6) is similar to Balakrishnan and Han
(2009). Note that Ui in (7) is the Total Time on Test statistic at stress level xi. Now, using
(6) and the log-linear link given in (3), the log-likelihood function of (α, β) can be written
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as

l(α, β) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Ui exp
[
− (α+ βxi)

]
. (8)

Upon differentiating (8) with respect to α and β, the MLEs α̂ and β̂ are obtained as simul-
taneous solutions to the following two equations:[

k∑
i=1

ni

][
k∑
i=1

Uixi exp (−β̂xi)

]
=

[
k∑
i=1

nixi

][
k∑
i=1

Ui exp (−β̂xi)

]
, (9)

α̂ = log

(∑k
i=1 Ui exp (−β̂xi)∑k

i=1 ni

)
. (10)

2.2 k-level constant-stress test under Type-I censoring

For illustrative simplicity, let us consider the procedure of a constant-stress ALT un-
der Type-I censoring. A constant-stress ALT under progressive Type-I censoring can be
described in a similar manner like in the previous subsection by introducing a set of time
points for intermediate censoring. For i = 1, 2, . . . , k, Ni units are allocated on test at
stress level xi such that

∑k
i=1Ni = n. The allocated units are then tested until time τi at

which point all the surviving items are withdrawn, thereby terminating the life test. Let ni
denote the (random) number of units failed at stress level xi in time interval [0, τi) and yi,l
denote the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni while Ni−ni denotes
the number of units censored at time τi. Obviously, when there is no right censoring (viz.,
τi = ∞ and ni = Ni), this situation corresponds to the k-level constant-stress ALT under
complete sampling as a special case.

Then, using (1) and (2), the joint distribution function of n = (n1, n2, . . . , nk) and
y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained as in (6) where

Ui =

ni∑
l=1

yi,l + (Ni − ni)τi, i = 1, 2, . . . , k. (11)

Again, note that Ui in (11) is the Total Time on Test statistic at stress level xi. Using (6) and
the log-linear link in (3), the log-likelihood function of (α, β) can be written as in (8) and
as a result, we obtain the MLEs α̂ and β̂ as simultaneous solutions to (9) and (10) with Ui
given in (11).

2.3 k-level constant-stress test under progressive Type-II censoring

Let us now describe the procedure of a constant-stress ALT under progressive Type-II
censoring. For i = 1, 2, . . . , k, Ni units are allocated on test at stress level xi such that∑k

i=1Ni = n. Let ni denote the prefixed number of failure times to be observed at xi
along with the progressive censoring scheme given by Ri = (Ri,1, Ri,2, . . . , Ri,ni). Also,
let yi,l denote the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni. Then, a
constant-stress ALT under progressive Type-II censoring proceeds as follows. At stress
level xi, Ni units are tested until the first failure time yi,1 at which Ri,1 live items are
arbitrarily withdrawn from the test. The test continues until the second failure time yi,2
at which Ri,2 items are withdrawn from the test, and so on. Finally, at the ni-th failure
time yi,ni , all the surviving items are withdrawn, thereby terminating the life test. Note
that since Ni ≡ ni +

∑ni
l=1Ri,l, the number of items censored at the ni-th failure time is

Ri,ni = Ni − ni −
∑ni−1

l=1 Ri,l. Obviously, when there is no intermediate censoring (viz.,
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Ri,1 = Ri,2 = · · · = Ri,ni−1 = 0), this situation corresponds to the k-level constant-stress
ALT under conventional Type-II right censoring as a special case. When there is no right
censoring (viz., ni = Ni), this situation corresponds to the k-level constant-stress testing
under complete sampling as a special case.

Then, using (1) and (2), the joint distribution function of y = (y1,y2, . . . ,yk) with
yi = (yi,1, yi,2, . . . , yi,ni) is obtained as

fJ(y) = C

[
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (12)

where

C =
k∏
i=1

ni−1∏
j=0

(
Ni − j −

j∑
l=1

Ri,l

)
,

Ui =

ni∑
l=1

yi,l(1 +Ri,l) (13)

for i = 1, 2, . . . , k. Note that the structure of (12) is identical to (6). Also, Ui in (13) is
the Total Time on Test statistic at stress level xi. Using (12) and the log-linear link in (3),
the log-likelihood function of (α, β) can be written as in (8) and as a result, we obtain the
MLEs α̂ and β̂ as simultaneous solutions to (9) and (10) with Ui given in (13).

2.4 k-level step-stress test under progressive Type-II censoring

For i = 1, 2, . . . , k, let ni denote the (random) number of units failed at stress level
xi in time interval [τi−1, τi)) such that the total number of failure observations is fixed at
nT ≤ n (viz., nT =

∑k
i=1 ni) along with the progressive censoring scheme specified by

R = (R1, R2, . . . , Rn
T

). Also, let yi,l denote the l-th ordered failure time of ni units
at xi, l = 1, 2, . . . , ni while Ni denotes the number of units operating and remaining on
test at the start of stress level xi. That is, Ni = n −

∑i−1
j=1 nj −

∑i−1
j=1

∑ni
l=1Rj,l where

R∗ = (R1,R2, . . . ,Rk) with Ri = (Ri,1, Ri,2, . . . , Ri,ni) such that R matches with
the first nT elements of R∗. Then, a step-stress ALT under progressive Type-II censoring
proceeds as follows. A total of N1 ≡ n test units is initially placed at stress level x1 and
tested until the first failure time y1,1 at whichR1,1 ≡ R1 live items are arbitrarily withdrawn
from the test. The test continues until the second failure time y1,2 at whichR1,2 ≡ R2 items
are withdrawn, and so on. During this process, if the testing time reaches τ1, the stress is
changed to x2. The test continues until time τ2 at which the stress is changed to x3, and
so on. Finally, at the nT -th failure time, all the surviving items are withdrawn, thereby
terminating the life test. Note that since n ≡ nT +

∑n
T
i=1Ri, the number of items censored

at the nT -th failure time is Rn
T

= n − nT −
∑n

T
−1

i=1 Ri. When there is no intermediate
censoring (viz., R1 = R2 = · · · = Rn

T
−1 = 0), this situation corresponds to the k-level

step-stress ALT under conventional Type-II right censoring as a special case. When there
is no right censoring (viz., nT = n), this situation corresponds to the k-level step-stress
testing under complete sampling as a special case.

Using (4) and (5), the joint distribution function of y = (y1,y2, . . . ,yk) with yi =
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(yi,1, yi,2, . . . , yi,ni) is obtained as in (12) where

C =

n
T
−1∏

j=0

(
n− j −

j∑
i=1

Ri

)
,

Ui =

ni∑
l=1

(yi,l − τi−1)(1 +Ri,l) +Ni+1∆i (14)

for i = 1, 2, . . . , k with ∆i = τi − τi−1 being the step duration at stress level xi. Again,
Ui in (14) is the Total Time on Test statistic at stress level xi. Using (12) and the log-linear
link in (3), the log-likelihood function of (α, β) can be written as in (8) and as a result, we
obtain the MLEs α̂ and β̂ as simultaneous solutions to (9) and (10) with Ui given in (14).

3. Determination of the MLE

We can see from (9) and (10) that for the existence of β̂ and also of α̂, at least one failure
has to be observed from at least two different stress levels. Otherwise, the parameters are
not estimable. Under such a condition, to prove the existence and uniqueness of the MLEs
of α and β, let us express (9) alternatively as∑k

i=1 nixi∑k
i=1 ni

=

∑k
i=1 Uixi exp (−βxi)∑k
i=1 Ui exp (−βxi)

, (15)

whose RHS is denoted by H(β;x,U). We will show that for given x and U, H(β;x,U)
is a monotone decreasing function of β with a limit smaller than LHS of (15) as β → +∞
and with a limit greater than LHS of (15) as β → −∞. Since LHS of (15) is a constant, it
then follows that the plots of

∑k
i=1 nixi/

∑k
i=1 ni and H(β;x,U) would intersect exactly

once, at the MLE of β. This intersection guarantees the unique existence of β̂ and also of
α̂ from (10).

For this purpose, we have to ensure that

∂

∂β
H(β;x,U) =

h(β;x,U)[∑k
i=1 Ui exp (−βxi)

]2 ≤ 0,

or equivalently that h(β;x,U) ≤ 0 where

h(β;x,U) = −

[
k∑
i=1

Uix
2
i exp(−βxi)

][
k∑
i=1

Ui exp(−βxi)

]
+

[
k∑
i=1

Uixi exp(−βxi)

]2
.

(16)
Setting ai = xi

√
Ui exp(−βxi) and bi =

√
Ui exp(−βxi) for i = 1, 2, . . . , k, (16) can be

expressed as

h(β;x,U) = −
k∑
i=1

a2i

k∑
i=1

b2i +

( k∑
i=1

aibi

)2

≤ 0

by the Cauchy-Schwarz inequality, which establishes the required property thatH(β;x,U)
is indeed a monotone decreasing function of β. It is also observed that the limits for
H(β;x,U) are

lim
β→+∞

H(β;x,U) = x1 ≤
∑k

i=1 nixi∑k
i=1 ni

,

lim
β→−∞

H(β;x,U) = xk∗ ≥
∑k

i=1 nixi∑k
i=1 ni

,
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Table 1: Progressively Type-I censored dataset from n = 30 prototypes of a solar lighting
device on a three-level step-stress ALT with τ1 = 15, τ2 = 20, and τ3 = 25

Failure Times at Failure Times at Failure Times at
Temperature Level 1 Temperature Level 2 Temperature Level 3

(x1 = 0.1) (x2 = 0.5) (x3 = 0.9)
1.515 15.164 20.318
2.225 15.355 21.228
4.629 15.953 21.543
4.654 16.735 24.541
6.349 18.796
8.003 19.248
8.262 19.295
10.416
11.381
12.433
14.755
n1 = 11 n2 = 7 n3 = 4
c1 = 4 c2 = 1 c3 = 3

n⊕ = 22, c⊕ = 8

where xk∗ is the observed last stress level when the life test is terminated. Thus, a plot
of the LHS and RHS of (15) gives a simple graphical method of determining the MLE
of the parameter β; see Figure 1. The proposed method is advantageous compared to
the traditional methods for obtaining the MLE of the model parameters. The Newton-
Raphson algorithm has been one of the standard procedures for the parameter estimation.
In order to implement the Newton-Raphson procedure, however, it is necessary to acquire
the second-order derivatives of the log-likelihood function, and this might be complicated
under progressive censorings. This is a clear benefit of the proposed method since its
simplicity does not require such derivations.

4. Illustrative Example

The graphical estimation method proposed here is illustrated with a real engineering
case study. A three-level step-stress ALT was conducted under progressive Type-I cen-
soring in order to assess the reliability characteristics of a solar lighting device, whose
dominant failure mode is controller failure. Here, temperature is the stress factor whose
level was changed during the test in the range of 293K to 353K with the normal operat-
ing temperature at 293K. The standardized stress loading was x1 = 0.1, x2 = 0.5, and
x3 = 0.9. The stress change time points were τ1 = 15 (in hundred hours) and τ2 = 20 (in
hundred hours) with the censoring time point at τ3 = 25 (in hundred hours). The number
of devices censored at τ1 = 15 and τ2 = 20 were c1 = 4 and c2 = 1, respectively, in order
to utilize them for further engineering analyses and in other tests. The dataset obtained is
presented in Table 1 and it consists of total n⊕ = 22 failure times from the initial sample
size of n = 30 prototypes (i.e., 26.7% right censoring).

Initially, Weibull models with a constant shape parameter across different stress levels
were fitted under the power law relationship but the inference for the shape parameter
supported an exponential lifetime of the device at any constant temperature. Consistent
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Figure 1: Plot of H(β;x,U) and LHS functions of (15) for the progressively Type-I cen-
sored data in Table 1

with our model assumption, fitting exponential distribution to the data with the log-linear
parameter-stress relationship in (3), the estimation procedure described in Section 3 leads
to a simple graphical solution of β̂ = −2.41309 with no need to use the Newton-Raphson
method; see Figure 1. This in turn produces α̂ = 3.659685 from (10).

5. Conclusion

In this work, a simpler estimation method was proposed for determination of the MLE
of the regression slope parameter for the general k-level constant-stress and step-stress ALT
under progressive Type-I and Type-II censorings. The unified structure of the likelihoods
was provided upon using the popular physics-based log-linear link function between the
mean lifetime parameter and the (transformed) stress level along with the AFT model for
explaining the effect of changing stress levels in step-stress ALT. It was demonstrated that
this proposed approach ensures the existence and uniqueness of the MLE. For analytical
tractability, the derivations and numerical results presented in this work are based on the
exponentially distributed lifetimes at each stress level. It is of practical interest to extend the
results of this research to other types of censoring schemes and the failure data from other
popular lifetime distributions containing non-scale parameters such as Weibull, extreme
value, gamma, and lognormal. With added distributional parameters, it is challenging to
assess the nature of the likelihood equations analytically but luckily, the existence and
uniqueness of the MLE can be inferred based on the results reported in this work. For
instance, if the failure times follow Weibull distributions with a common shape parameter
across stress levels, a simple power transformation converts the lifetime distribution to an
exponential, which has been discussed in this paper; see Balakrishnan and Kateri (2008)
for example. Research in these direction is under progress and it is hoped to report these
findings in future communications.
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