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Abstract 
Performance audits routinely require estimation of a large number of attributes to support 
audit findings, make assessments of internal controls, and assess compliance with laws 
and regulations.  Proportion estimates from these audits are often at or near the 
boundaries (0 or 1.0) and confidence interval estimation requires methods other than 
normal approximations, especially if they are to be derived from complex sample 
designs. These methods have been well researched and are now included in several 
commonly used statistical software packages.  
 
This paper describes and analyzes methods applied by the Government Accountability 
Office (GAO) to estimate a large number of attribute estimates from a range of complex 
sample designs. We attempt to assess how the method GAO applies as a confidence 
interval decision rule (GAO’s CI decision rule) affects coverage probabilities across a 
range of sample designs and population proportions. We further examine potential 
coverage probability reductions in complex sample designs by relaxing the limitation on 
the effective sample size increasing beyond the observed sample size for complex sample 
designs. 
 
Key Words: Performance audit sample estimation, binomial confidence intervals, 
asymmetric, complex sample design 
  

1. Confidence Interval Methods 
 
For a proportion estimate derived from a complex sample, a standard designed-based 1-α 
confidence interval (CI) can be constructed using the following formula 
 

𝑝𝑝 � ± 𝑡𝑡(1−𝛼𝛼/2,𝑑𝑑)𝑆𝑆𝑆𝑆(�̂�𝑝) 
 
where 𝑝𝑝 � is the weighted sample estimator of the population proportion, 𝑆𝑆𝑆𝑆(�̂�𝑝)  is the 
design-based standard error of 𝑝𝑝 �  ,  𝑡𝑡(1−𝛼𝛼/2,𝑑𝑑) is the 1-α/2 quantile of the t-distribution  
with d degrees of freedom. When the sample size is large, the sampling distribution of 
𝑝𝑝 � is assumed to be approximately normal as the t-distribution approaches a normal 
distribution. When the sample size is small, or the proportion estimate is at or near the 
boundaries (0 or 1.0), this normality assumption does not hold and the performance of the 
constructed CIs fail to achieve the desired 1-α coverage probability. This is of particular 
concern for an audit sample because audit standards require sufficient evidence to make 
assessments of internal controls or compliance with laws or regulations. The decrease in 
coverage probability corresponds with an increase in the audit risk1. 

                                                 
1 According to the 2018 revision of the Government Auditing Standards (Yellow Book), audit risk 
is defined as the possibility that the auditors’ findings, conclusions, recommendations, or 
assurance may be improper or incomplete as a result of factors such as evidence that is not 
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In simple random sampling from large populations, this problem can be avoided by using 
exact binomial methods, as described by Clopper and Pearson (1934).  When x number of 
errors are observed in a simple random sample of size n, the 1-α CI ( 𝑝𝑝𝐿𝐿(𝑥𝑥,𝑛𝑛),𝑝𝑝𝑈𝑈(𝑥𝑥,𝑛𝑛) ) 
can be constructed as follows: 
 

𝑝𝑝𝐿𝐿(𝑥𝑥,𝑛𝑛) =
𝑣𝑣1𝐹𝐹𝑣𝑣1,𝑣𝑣2(𝛼𝛼 2⁄ )

𝑣𝑣2 + 𝑣𝑣1𝐹𝐹𝑣𝑣1,𝑣𝑣2(𝛼𝛼 2⁄ )
 

 

𝑝𝑝𝑈𝑈(𝑥𝑥, 𝑛𝑛) =
𝑣𝑣3𝐹𝐹𝑣𝑣3,𝑣𝑣4(1−𝛼𝛼 2⁄ )

𝑣𝑣4 + 𝑣𝑣3𝐹𝐹𝑣𝑣3,𝑣𝑣4(1−𝛼𝛼 2⁄ )
 

 
Where 𝑣𝑣1 = 2𝑥𝑥,    𝑣𝑣2 = 2(𝑛𝑛 − 𝑥𝑥 + 1),    𝑣𝑣3 = 2(𝑥𝑥 + 1),   𝑣𝑣4 = 2(𝑛𝑛 − 𝑥𝑥). 
 
These methods have been shown, for simple random samples, to provide coverage 
probabilities that are greater than or equal to the desired level.  This results in over-
coverage which is generally considered acceptable by an auditor. 
 
Korn and Graubard (1998) proposed and evaluated the performance of a modification to 
this formulation to make it applicable for a proportion estimated from a complex sample. 
This adjustment involves estimating a degrees-of-freedom adjusted effective sample size, 
𝑛𝑛𝑑𝑑𝑑𝑑∗  and using that in place of the sample size, n.  Specifically, the degrees-of-freedom 
adjusted effective sample size is defined by 
 

𝑛𝑛𝑑𝑑𝑑𝑑∗ =
�̂�𝑝(1 − �̂�𝑝)
𝑣𝑣𝑣𝑣𝑣𝑣� (�̂�𝑝) �

𝑡𝑡𝑛𝑛−1(1− 𝛼𝛼 2)⁄
𝑡𝑡𝑑𝑑(1− 𝛼𝛼 2)⁄ �

2

 

 
where d is the number of Primary Sampling Units (PSUs) minus the number of strata in 
the complex sample design. Because 𝑛𝑛𝑑𝑑𝑑𝑑∗  is undefined when �̂�𝑝=0 or �̂�𝑝=1.0,  𝑛𝑛𝑑𝑑𝑑𝑑∗  is set to n 
in these situations reducing the computation to that of the simple random sample. 
 
Several other methods have been proposed and evaluated for a variety of complex sample 
designs. These methods include, but are not limited to 

• Poisson (Breeze) approach, 
• Logit transformation, 
• Binomial approach, 
• Ad-hoc Quadratic/Wilson method, 
• Andersson-Nermon method, 
• Model-based Wilson method, 
• T-adjusted Andersson_Nerman method 

 
The modification to the exact binomial method described above in this paper, often 
referred to as the binomial approach, has been shown to perform well in most situations 
and generally provides the expected over-coverage. In addition, the method’s similarity 
to exact binomial methods applicable to simple random samples makes it attractive for 
performance audits because audit sampling guidance and standards already use such 
                                                                                                                                     
sufficient or appropriate, an inadequate audit process, or intentional omissions or misleading 
information because of misrepresentation or fraud. 
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methods. However, prior studies have suggested there is a risk of over-estimating 𝑛𝑛𝑑𝑑𝑑𝑑∗  
under certain outcomes for complex samples that may lead to under-coverage when using 
this or other similar approaches. As a result, authors have generally suggesting putting a 
restriction on 𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛 .  Further, Korn and Graubard highlighted that 
coverage probabilities can be reduced under certain conditions when �̂�𝑝=0 or �̂�𝑝=1.0 for a 
particular sample result and there is complete separation within the complex sample 
design (i.e. perfect homogeneity within clusters).  
 

“An example with a more serious lack of coverage can also easily be constructed: 
Suppose that the population consists of clusters of size 100, and that 10% of the 
clusters have all positive units and the remaining 90% have all zero units.  If we 
sample 10 clusters as a simple random sample, and subsample all units in the 
sampled clusters, the 35% (=(1-.1)10) of the time we will observe no positive 
units in the sample size of 1000. In this situation, our proposed intervals reduce 
to the usual binomial ones, so that, e.g., the upper 95% confidence limit for the 
population proportion is given by .003 (=1-.051/1000). This implies that the upper 
95% confidence interval is less that(n) the true value of .10 at least 35% of the 
time, a serious undercoverage.” 

 
2. Confidence Interval Methods Applied by GAO for Performance Audits 

 
In most commonly used statistical software packages, the default methods for estimating 
CIs rely on the normal approximation2. As discussed above, coverage probabilities for 
this method fall below the desired 1-α level when the sample size is small or the 
proportions are at or near the boundaries (0 or 1.0).  The software packages allow 
alternative CI estimation methods to be used based on a pre-determined minimum sample 
size or proportion. However, according to Cochran (1977), the applicability of the normal 
approximation is a function of both the sample size and the proportion, as shown in Table 
1. 

 
Table 1: Smallest Values of np for Use of the Normal Approximation: Cochran (1977) 

 
p np = Number Observed 

in the Smaller Class 
N = Sample Size 

0.5 15 30 
0.4 20 50 
0.3 24 80 
0.2 40 200 
0.1 60 600 
0.05 70 1400 
~0* 80 ∞ 

*This means that p is extremely small, so that np follows the Poisson distribution. 
 

Performance audits often require the estimation of a large number of attributes and CIs to 
support audit findings.  The sample sizes and proportions vary from one attribute to 
another and it is desirable to have an automated decision rule rather than to choose a CI 
method one attribute at a time. Rather than basing this rule on either a minimum sample 
size or a minimum proportion, as the software easily allows, GAO statisticians developed 

                                                 
2 For this paper we refer to methods using the t-distribution as the normal approximation methods.  
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an algorithm to extrapolate the smallest values for np given in Table 1 as a decision rule 
to identify the most appropriate CI estimation method for each attribute being estimated.   
 
In order to allow for estimates derived from complex sample designs, the decision rule 
algorithm first uses the statistical software to estimate the attribute (�̂�𝑝) and the design-
based variance of the attribute (𝑣𝑣𝑣𝑣𝑣𝑣� (�̂�𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛−𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝑑𝑑)). Next, the algorithm computes the 
sample size, the number of PSUs and the number of strata individually for each attribute 
to be estimated3. It then estimates the degrees-of-freedom adjusted effective sample size 
as follows. 

𝑛𝑛𝑑𝑑𝑑𝑑∗ =
�̂�𝑝(1 − �̂�𝑝)

𝑣𝑣𝑣𝑣𝑣𝑣� (�̂�𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛−𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝑑𝑑)�
𝑡𝑡𝑛𝑛−1(1− 𝛼𝛼 2)⁄
𝑡𝑡𝑑𝑑(1− 𝛼𝛼 2)⁄ �

2

 

 
The degrees-of-freedom adjusted effective sample size is then used in conjunction with 
the estimated attribute (�̂�𝑝) to compare to the extrapolated minimum values of np to 
choose between methods using the normal approximation and the binomial methods 
described by Korn and Gaubard.  Finally, we place two additional restrictions on the 
decision rule. First, any estimated attribute that is less than 0.05 or greater than 0.95 will 
always use the binomial methods. Second, and as recommended by the literature, we 
restrict 𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛. 
 
To describe the locations of the CI methods this algorithm chooses, we plotted the 
resulting decision for all possible proportion estimates (0 to 1.0) and degrees-of-freedom 
adjusted effective sample size ranging from 10 to 1,000.  The results of this are shown in 
Figure 1. 
 

 
 

Figure 1: Location of Confidence Interval Method Based on CI Decision Rule 
 

We have developed three functions to apply this method using various software 
packages. Each of the functions allows for estimation of a large number of attributes at a 
time and chooses a CI method individually for each possible outcome for each attribute.  
 

                                                 
3 This step is necessary to account for subpopulation estimates of various sizes and missing 
observations for particular attributes. 
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3. Study Objectives 
 
In this paper, we address the following two study objectives: 
 
1. Assess how the automated CI decision rule affects coverage probabilities across a 

range of sample designs and population proportions. 
2. Examine potential coverage probability reductions in complex sample designs by 

relaxing the restriction on 𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛. 
 

4. Simulations 
 
To evaluate the performance of the GAO CI decision rule method, we designed a series 
of simulations to estimate the coverage probabilities under various conditions. We 
generated estimates of coverage probabilities from four commonly used sample designs 
for a variety of sample sizes and attributes (errors) that cover the range of population 
proportion values (0 to 1.0). For each sample design, sample size and population 
proportion value, we replicated sample selection and estimation 1,000 times. We 
estimated CIs at the 95 percent confidence level and compared coverage probabilities 
obtained from three CI methods (Normal, Korn & Graubard, and the CI decision rule). 
Additionally, we estimated coverage probabilities using the CI decision rule while 
relaxing the restriction on 𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛. 
 
4.1 Simulated Populations & Sample Designs 
Design 1: Nominal Simple Random Sample. We generated a population of 20,000 
transactions and randomly distributed errors for the 101 attributes (P000 – P100).  For 
this population, we selected 1,000 replicate simple random samples for each of 50 sample 
sizes (n=20 to 1,000 by 20s). 
 
Design 2: Inefficient Stratified Random Sample. We generated a population of 20,000 
transactions with imbalanced stratification by assigning 5 percent of the transactions to 
stratum 1 (N1=1,000) and the remainder to stratum 2 (N2=19,000).  We randomly 
distributed errors for the 101 attributes (P000 – P100) across the full population such that 
the expected proportions within each stratum would be equal.  For this population, we 
selected 1,000 replicate stratified random samples for each of 50 sample sizes (n=20 to 
1,000 by 20s) equally allocated across the two strata. The expected inefficiency of this 
design was introduced by the equal allocation to the imbalanced strata. 
 
Design 3: Efficient Stratified Random Sample. We generated a stratified population of 
20,000 transactions by dividing the population into two equal-sized strata (N=10,000 
each).  We distributed errors for the 101 attributes (P000 – P100) by placing 90 percent 
of errors for each attribute in stratum 2 and 10 percent in stratum 1 until stratum 2 
contained transactions that were all assigned as errors. Following that, the remainder of 
the errors was distributed into stratum 1 until both strata were at 100% errors for attribute 
P100.  For this population, we selected 1,000 replicate stratified random samples for each 
of 50 sample sizes (n=20 to 1,000 by 20s) proportionally allocated across the two strata. 
The expected efficiency of this design was introduced by the distribution of the errors in 
the population creating homogeneity within strata.  Table 2 provides a description of the 
assignment of errors for four attributes included in the simulation. 
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Table 2: Assignment of Error Rates Within Strata for Design 3  
 
Stratum  Errors Assigned (rate) 
 N P025 P050 P075 P100 
Stratum 1 10,000 500 (.05) 1,000 (.10) 5,000 (.50) 10,000 (1.0) 
Stratum 2 10,000 4,500 (.45) 9,000 (.90) 10,000 (1.0) 10,000 (1.0) 
Total  20,000 5,000 (.25) 10,000 (.50) 15,000 (.75) 20,000 (1.0) 
 
 
Design 4: Inefficient 2-Stage Cluster Sample. We generated a population of 20,000 
transactions clustered into 200 equal-sized primary sampling units (PSUs) with 100 
transactions each. We distributed errors for the 101 attributes (P000 – P100) to maximize 
homogeneity within PSUs and heterogeneity between PSUs for each attribute. We 
achieved this first by splitting PSUs into two groups, then randomly placing 90 percent of 
errors in the second group of PSUs and 10 percent in the first until all PSUs in the second 
group were at 100% errors. Following that, we placed the remainder of the errors into 
PSUs in the first group until all clusters were at 100% errors. For this population, we 
selected 1,000 replicate 2-stage random cluster samples for each of 50 PSU sample sizes 
(n=2 to 100 by 2s) with an SSU sample size of 10 transactions selected from each PSU. 
The expected inefficiency of this design was introduced by the cluster design and the 
distribution of the errors in the PSUs creating homogeneity within clusters. 
 
To summarize the expected performance of the four populations and sample designs, we 
approximated the design effects for five population proportions (P005, P025, P050, P075 
and P095) for samples of 100 transactions selected from each population with the 
appropriate sample designs.  The results of these approximations are given in Table 3. 
 
Table 3: Approximate Design Effects for P005, P025, P050, P075 and P095 for 

Sample Sizes of 100  
 
Population/Sample 
Design 

P005 P025 P050 P075 P095 

1. Nominal SRS 1.00 1.00 1.00 1.00 1.00 
2. Inefficient Stratified 1.64 1.41 1.35 1.40 1.35 
3. Efficient Stratified 0.98 0.92 0.63 0.88 0.99 
4. Inefficient Cluster 1.31 2.93 6.78 4.04 1.49 
 

5. Coverage Probability Results 
 

For each population and sample design, we estimated coverage probabilities obtained 
from three CI methods (Normal, Korn & Graubard, and the CI decision rule) for 101 
population proportions and 50 sample sizes.  This created 5,050 estimates of coverage 
probabilities for each method and design. Given the number of estimates generated, we 
chose to summarize the results by creating heat maps to show the locations of over or 
under-coverage.  The heat maps for each design show the results for population 
proportions ranging from 0 to 1.0 (y-axis), sample sizes ranging from 20 to 1,000 (x-axis) 
and coverage probabilities color-code as defined in Table 4. We generated three heat 
maps for each design included in our simulation, one heat map for each CI method. Each 
heat map represents more than 5 million replications.  We then used the heat maps to 
compare areas of over or under-coverage within and between designs. 
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Table 4: Heat Map Display of Estimated Coverage Probability (CP)  

 
               CP < 91% Dark Red Significant under-coverage 

  91 <= CP < .92 Red Under-coverage 
     .92 <= CP < .9365 Pink Slight under-coverage 
 .9365 <= CP < .9635 White Expected-coverage* 
.9635 <= CP < .975 Light Blue Slight over-coverage 

.975 <= CP < .99 Blue Over-coverage 
        .99 <= CP Dark Blue Significant over-coverage 
 
*Because we limited the number of replications to 1,000 within each cell, the expected 
coverage range was defined by the 95% CI for a proportion estimate of 95% with a 
sample size of 1,000. 
 
5.1 Coverage Probability Results – Normal CIs 
Across all four designs in our simulation, our results show, as expected that the 
performance of the normal CIs fail to achieve the desired 95 percent coverage probability 
when the sample sizes are small and the proportion estimate is at or near the boundaries 
(0 or 1.0). The results also demonstrate that this failure to achieve desired coverage is a 
function of both the sample size and the population proportion, as suggested by Cochran. 
Figure 2 presents heat maps for each design resulting from using the normal CI methods 
for all values of �̂�𝑝 and 𝑛𝑛𝑑𝑑𝑑𝑑∗ . 
 

Simulation Results Normal Confidence Intervals 
Design 1: Nominal SRS 

 

Design 2: Inefficient Stratified 

 
 

Design 3: Efficient Stratified 

 

 
Design 4: Inefficient 2- Stage Cluster 

 
Figure 2: Heat Maps of Simulation Results Using Normal Confidence Intervals 
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5.2 Coverage Probability Results – Binomial vs. CI Decision Rule 
The simulation results when using the binomial approach for all values of �̂�𝑝 and 𝑛𝑛𝑑𝑑𝑑𝑑∗  
show the expected general over-coverage of the binomial Cis. Results for the CI decision 
rule show a reduction in the over-coverage in the middle of the distribution and when the 
sample size is large. Figures 3 through 6, show the comparison of the binomial approach 
to the CI decision rule for the four designs in our simulation. 
 
The estimated coverage probabilities for Design 1, the nominal simple random sample, 
show the expected over-coverage of the binomial approach across the range of values of 
�̂�𝑝 and 𝑛𝑛𝑑𝑑𝑑𝑑∗ . Additionally, results for the CI decision rule method show a reduction in the 
over-coverage in areas where the normal CI methods were used. Areas of slight over 
coverage (light blue) and slight under-coverage (pink) in the heat map may be a result of 
having a limited number of replications within each cell.  
 

Simulation Results Design 1: Nominal Simple Random Sample 
Binomial 

 

CI Decision Rule 

 
 

Figure 3: Design 1: Nominal Simple Random Sample - Estimated Coverage Probabilities 
Comparison between the Binomial and CI Decision Rule Methods 
 
The estimated coverage probabilities for Design 2, the inefficient stratified random 
sample, show similar results as Design 1 but also show areas of significant under-
coverage resulting from the binomial approach.  We examined the simulation results and 
found that this under-coverage was occurring when the estimated �̂�𝑝 for an individual 
replicate sample was either 0 or 1 and the binomial approach defaulted to CI 
computations equivalent to a simple random sample. In other words, because the estimate 
of 𝑣𝑣𝑣𝑣𝑣𝑣� (�̂�𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛−𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝑑𝑑) is 0 for these outcomes, 𝑛𝑛𝑑𝑑𝑑𝑑∗  is set to n for the computation of the 
CI. In an inefficient sample design, such as this one, that results in CIs that are generally 
underestimated because the additional variability induced by the sample design has not 
been incorporated.  This is further evidence of the warning provided by Korn and 
Graubard discussed above and highlights specific areas of concern for performance audit 
samples because they are often designed to include over-sampling of higher dollar 
transactions or specific subpopulation of interest to the audit.  
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Simulation Results Design 2: Inefficient Stratified Random Sample 
Binomial 

 

CI Decision Rule 

 
Figure 4: Design 2: Inefficient Stratified Random Sample - Estimated Coverage 
Probabilities Comparison between the Binomial and CI Decision Rule Methods 
 
The estimated coverage probabilities for Design 3, the efficient stratified random sample, 
show significant over-coverage for the binomial approach across the range of values of �̂�𝑝 
and 𝑛𝑛𝑑𝑑𝑑𝑑∗ , particularly in areas near the middle of the distribution of the population 
proportion. This is a result of the efficiency of the sample design being maximized in 
these locations and the restriction of  𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛.  In these cases, the binomial 
approach does not account for the gains in efficiency and generally over-estimate the CI.  
Results for the CI decision rule show the advantage of choosing the normal CI methods, 
when appropriate, for efficient sample designs.   
 
Additionally, we observed areas of significant under-coverage or the CI decision rule 
method when the results for a particular sample replicate yielded perfect homogeneity 
within strata. Under these conditions, the estimate of 𝑣𝑣𝑣𝑣𝑣𝑣� (�̂�𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛−𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝑑𝑑) is 0 and 𝑛𝑛𝑑𝑑𝑑𝑑∗  is 
undefined. The current CI decision rule results in a null CI for these cases and represents 
the need for an additional rule to apply the binomial methods when this occurs. That does 
not, however, pose additional risk to the audit in practice because the CIs are always 
manually reviewed, and these cases would be identified prior to drawing conclusions 
based on the audit sample results. 
 

Simulation Results Design 3: Efficient Stratified Random Sample 
Binomial 

 

CI Decision Rule 

 
Figure 5: Design 3: Efficient Stratified Random Sample - Estimated Coverage 
Probabilities Comparison between the Binomial and CI Decision Rule Methods 
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We observed similar results for Design 4, the inefficient 2-stage cluster sample.  In 
general, using the binomial approach across the range of values of �̂�𝑝 and 𝑛𝑛𝑑𝑑𝑑𝑑∗  shows the 
expected over-coverage and the use of the CI decision rule reduces the over-coverage 
when the normal CI methods are appropriate. The areas of significant under-coverage 
shown in Figure 6 are a result of the small number of PSUs selected at the first stage. 
 

Simulation Results Design 4: Inefficient 2-Stage Cluster Sample 
Binomial 

 

CI Decision Rule 

 
 

Figure 6: Design 4: Inefficient 2-Stage Cluster Sample - Estimated Coverage 
Probabilities Comparison between the Binomial and CI Decision Rule Methods 
 
5.3 Coverage Probability Results – Relaxed Restriction on 𝒏𝒏𝒅𝒅𝒅𝒅∗  
To test the need to restrict  𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛  due to the possibility of over-
estimation of  𝑛𝑛𝑑𝑑𝑑𝑑∗  at or near the boundaries, we relaxed this restriction and applied the CI 
decision rule methods to Design 2, the inefficient stratified random sample. The results 
clearly show an increase in the significant under-coverage at or near the boundaries and 
provide an indication that the restriction is needed in practice. 
 

Simulation Results Design 2: Relaxed Restriction on 𝑛𝑛𝑑𝑑𝑑𝑑∗  
With Restriction 

 

Without Restriction 

 
 

Figure 7: Estimated Coverage Probabilities for CIs without Restricting 𝑛𝑛𝑑𝑑𝑑𝑑∗  <= n 
 

6. Conclusions and Future Research 
 
Based on this evaluation of estimated coverage probabilities, we concluded that the CI 
decision rule GAO has implemented works well in most situations.  The ability to choose 
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an appropriate CI method automatically provides significant advantages when generating 
large numbers of proportion estimates in support of performance audits. Furthermore, this 
evaluation shows that the restriction of  𝑛𝑛𝑑𝑑𝑑𝑑∗  such that 𝑛𝑛𝑑𝑑𝑑𝑑∗ ≤ 𝑛𝑛 is necessary. 
 
We also identified the need for caution in the interpretation of sample results of 0 or 1 
when using these methods with inefficient sample designs. As discussed above, these 
methods default to those applicable to simple random samples under these conditions 
resulting in CIs that do not account for the additional variation induced by the inefficient 
design.  This results in additional and unmeasured audit risk and further research in this 
area would be beneficial. 
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