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Abstract 
Multiple imputation is an active field of statistical research, encompassing a wide variety 
of modeling methods with different strengths and weaknesses. This paper provides a 
theoretical overview and empirical comparisons between multiple imputation – 
specifically, Fully Conditional Specification – and traditional hot deck imputation in the 
context of the American Housing Survey. The hot deck method stratifies across 
demographic and housing-level characteristics to form donor cells of similar housing 
units. Unlike the hot deck, Fully Conditional Specification methods allow for a wider 
array of models, and provide well-researched methods for estimating the amount of 
variance introduced by imputation itself. Both are compared against hurdles present 
within the American Housing Survey, including numerous structural zeros, thereby 
highlighting the benefits and trade-offs of each imputation approach. 
 
Key Words: Bayesian Methods, Multiple Imputation, Hot Deck, Structural Zeros, Fully 
Conditional Specification, Complex Survey Design 

 
1. Introduction 

 
This paper discusses the development and initial results of multiple imputation (MI) for 
the American Housing Survey (AHS). The AHS has a number of features that make it an 
ideal testing ground for MI, such as intricate structural zero dependencies, a wide array of 
types of variables requiring imputation (continuous, binomial, categorical, etc.), and a 
complex survey design.  
 
The central goal of this research is to improve upon the current Hot Deck method of 
imputation within the AHS. The two primary benefits MI brings to bear on data quality 
are: (1) the ability to measure the variance introduced into estimation by imputation itself 
and (2) the preservation of complex correlation structures in the dataset at large. These 
were the two main research goals of this project, though additional practical goals 
motivated us as well. Specifically, the choice of using Fully Conditional Specification 
(FCS) to multiply impute missing values allows us to model each variable individually 
according to their own structural zeros and particular distributions, and more refined 
modeling with MI ideally produces better point estimates and variances than Hot Deck. 
 
The key results of our research are that MI exceeds Hot Deck in that it improves point 
estimates, better preserves distributions and correlations, and provides a hitherto 
unavailable measure of the variance of imputation itself within the AHS. The organization 
of this paper is as follows: (a) brief overview of the AHS and its current imputation 
methods, (b) a concise description of MI theory as it pertains to our goals of improving the 
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current Hot Deck method, (c) a summary of MI diagnostics and comparisons between MI 
and Hot Deck that support our key results, and finally (d) a conclusion and indications of 
future potential research.  
 
2. Overview of the American Housing Survey and Its Hot Deck Imputation Method 

 
Before proceeding to the results of our research, this section will introduce the AHS, its 
sample design, and data processing steps germane to the current imputation setup. It also 
summarizes the Hot Deck method as it is implemented now, highlighting the aspects 
needed to compare with the proposed MI route. 
 
2.1 The American Housing Survey 
The Department of Housing and Urban Development (HUD) sponsors the most detailed 
and expansive public survey on housing stock within the United States – the American 
Housing Survey (AHS) – and works in conjunction with the U.S. Census Bureau to 
administer this survey. HUD and the Census Bureau collaborated on the AHS sample 
design and selection, while the Census Bureau is primarily responsible for data collection, 
editing, and processing, as well as the publication of important sample estimates. As with 
any survey, AHS has missing data, and it is the Census Bureau’s responsibility to impute 
reasonable values in a well-documented, statistically sound way. 
 
The AHS is a longitudinal survey that selected a new set of housing units (HUs) in 2015. 
The sample design consists of two main samples: National and Metro. The National AHS 
employs a complex, two-stage sample design for HUs outside the top 15 largest Core-
Based Statistical Areas (CBSAs). The first stage is a stratified sample selection of primary 
sampling units (PSUs) proportional to size and the second is a systematic sample of 
housing units within PSUs themselves. The top 15 CBSAs each have 3,000 HUs selected 
from them systematically, which are combined with the two-stage sample for a total 
National AHS sample of 84,880 HUs in 2017. This paper deals solely with the 2017 
National AHS. For more information, see the Source and Accuracy statement for the 2017 
National AHS. 
 
During each two-year survey cycle of the AHS, data processing efforts have to handle two 
essential types of missing data: unit nonresponse and item nonresponse. Unit nonresponse 
refers to a noninterview of a HU, so no information is obtained for the HU. The Census 
Bureau implements a weighting adjustment to account for unit nonresponse. Item 
nonresponse occurs when an interview is completed, but a few questions remain 
unanswered. This paper concerns how AHS processing imputes missing values within 
these types of item nonresponses; unit nonresponse is out of scope. 
 
The “Edits” phase of AHS data processing consists of imputation, blanking, and 
consistency edits, and occurs after interviewing and before weighting adjustments and 
disclosure avoidance measures. Edits proceed by module – delimited sets of variables 
related to each other by theme, such as “Equipment” or “Utilities” modules – and each set 
of edits for a particular module assume all prior variables in previous modules have been 
fully edited and imputed. Our research focuses on the first three modules of the AHS: 
Housing Unit, Out-of-Sequence Household, and Inventory. “Blanking” refers to when 
certain observations are out of scope for a given variable – such as owners being out of 
scope for the variable measuring rent amount – and “consistency” refers to particular 
observations that must be forced to have certain values in order to be consistent with their 
responses to prior survey questions. For example, a housing unit indicating that it is a 
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mobile home in a given variable must then be given values consistent with that fact for 
future related variables. Both blanking and consistency edits exemplify what the MI 
literature refers to as “structural zeros,” where a given observation’s responses to prior 
questions dictate the value it must have for subsequent variables.  
 
2.2 Hot Deck within the AHS 
Currently, the Census Bureau employs a form of Hot Deck for the majority of variables 
requiring imputation in AHS. In the Hot Deck method, groups of variables requiring 
imputation are assigned specified cells and sort orders based on selected variables, and 
donors give their observed values to missing observations within the sort order’s cells. 
Proceeding sequentially from the first observation to the last for an imputed variable, the 
most recent observed value in the sort order serves as the donor for the next missing 
value(s) until another observed value occurs. The algorithm continues until the next 
missing value, fills that in with the new, most recently observed value, making sure that 
donors only give to missing observations within their own sort-order cell. Hot Deck is a 
relatively simple imputation algorithm, with the added benefit of ensuring viable values 
for all observations. For our purposes though, it is important to note two things: (1) the sort 
order provides an implicit model for each variable and (2) frequently, whole groups of 
variables requiring imputation receive the same implicit model under the existing scheme. 
 

3. Multiple Imputation within the American Housing Survey 
 

MI, properly done, can achieve several statistical enhancements to survey data quality, 
chief among which include the ability to measure the variance of imputation itself and the 
preservation of correlations between variables. The choice of using Fully Conditional 
Specification (FCS) provides further practical benefits in a complex survey with various 
distributions of variables requiring imputation. This section will provide a short summary 
of MI theory, highlighting aspects of the theory relevant to these benefits, as well as our 
specific choices and assumptions we rely on with our research. 
 
3.1 Multiple Imputation: A Non-Technical Overview 
Rubin provided the first thorough statistical exposition of MI in 1987 (Rubin, 1987), and 
the method has since then garnered a significant amount of research attention. The central 
idea of MI is to impute multiple, varying values in observations that are missing data – 
yielding multiple datasets – and provide some simple combination rules for these 
multiple datasets so that a researcher can produce unbiased point estimates that 
incorporates random variation of imputation itself. Other benefits of MI include, ideally, 
increased efficiency (Rubin, 1987, p. 16), and preserving correlations in the data. 
 
Anyone imputing data faces several choices and hurdles. The first concern surrounds the 
mechanism of missingness: missing completely at random (MCAR), missing at random 
(MAR) and missing not at random (MNAR). MCAR occurs when the probability of an 
observation having a missing value in a given variable is uniform throughout the variable 
(van Buuren, 2019, p. 8). This implies that the missing values in a variable bear no 
relationship to any variable in the dataset. MCAR is unlikely to occur in practice. MAR, 
by contrast, means that the probability of missingness for a given variable is uniform 
after conditioning upon other variables in the dataset. MNAR occurs when there is a 
pattern to the missingness in a variable that is unexplained by observed variables. 
 
The second decision surrounds the particular choice of imputation method – the actual 
“imputation” portion of MI theory. Van Buuren (2019; p. 67-91) gives a concise 
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overview of potential imputation methods, some of which include classic regression 
prediction (including stochastic regression, which attempts to draw from an estimated 
distribution), predictive mean matching, classification trees, and so on. All of these 
methods for actually selecting an imputed value are compatible with MI. 
 
Currently, the two major routes of MI are Joint-Modeling and FCS. Joint-Modeling calls 
for a precise specification of the joint distribution of all variables requiring imputation 
(Akande et al., 2018). The joint distribution’s parameters are then estimated using 
observed data, and multiple values are independently drawn from the estimated 
distribution. This route is elegant in theory, but fairly intractable in practice. For example, 
it is extremely difficult, if not impossible, to specify a multivariate distribution containing 
a combination of continuous, binomial, categorical, and Poisson variables. 
 
By contrast, FCS – also called Sequential Regressions (Raghunathan, 2016) – imputes 
one variable at a time according to the appropriate regression model of that variable and, 
after imputing every variable necessary in the data, iterates back over the set of variables 
for a new set of imputations until the distributions stabilize. This iterative process allows 
imputed variables to use imputed values of other variables within each iteration beyond 
the first. FCS is flexible enough to handle any common distribution, it can work with 
complex structural zero dependencies, and it allows for a wide range of modeling choices 
for each individual variable. 
 
Under FCS, the imputer needs to consider (1) how many burn-in iterations should there 
be, (2) what order (if any) should the variables be imputed in, (3) how many imputed 
datasets should be retained, (4) do the conditional models stem from the same joint 
distribution, and finally (5) how will the particular models compare with analysts’ 
models. Estimates generally stabilize quickly, depending on the amount of missing data 
in a given variable (Raghunathan, 2016, p. 69); visual diagnostics assist in determining 
this burn-in point. Raghunathan addresses the order question, and concludes that order is 
essentially unimportant (Raghunathan, 2016, p. 68). Five is a standard choice of number 
of imputed datasets to use in the diagnostic phase, though this should ideally be higher 
for production purposes (van Buuren, 2019). 
 
The fourth and fifth questions above concern “compatibility” and “congeniality,” 
respectively. Technically, FCS is only valid if the conditional distributions of each 
regression are compatible, meaning they have the same joint distribution. If no such joint 
distribution exists, the underlying Gibbs Sampler mechanism is not guaranteed to 
converge (Li et al., 2012). Some contemporary research indicates that FCS is reasonably 
robust against deviations from this assumption (van Buuren et al., 2006; Zhu and 
Raghunathan, 2015). The seminal work of Meng (1994) demonstrated the importance of 
congeniality as well; the regression model used to impute data must be equivalent – or 
broader in scope – than an analyst’s model. Otherwise, point estimates of analysts will be 
biased (van Buuren, 2019). 
 
Finally, we should give some thoughts to incorporating the National AHS’ complex 
survey design into our imputation methodology. Reiter et al. (2006) suggests including 
strata or cluster dummy variables within models to account for design features, but 
acknowledge there appear to be cases where design variables have no meaningful effect 
on imputation. 
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These are the main aspects of MI theory relevant to our work. We need to address the 
missingness mechanism, choose an imputation procedure, pick between Joint-Modeling 
and FCS, make familiar modeling choices, pick a number of iterations and datasets, 
consider the theoretical validity of our methods with respect to compatibility and 
congeniality, as well as the impact of a complex survey design. 
 
3.2 Assumptions and Decisions for MI within the AHS 
We have considered each of the above problems in our MI research. However, due to the 
ongoing nature of our research into MI within the AHS, some of our decisions are 
temporary stopgap measures based on best practices or widely accepted assumptions. We 
will elaborate on our decision process for each question below, highlighting when we 
assumed something and when we chose something based on empirical results. 
 
With regard to the missingness mechanism, this study assumes all variables are MAR. 
There are no commonly accepted tests for identifying a missing data mechanism, though 
some current research is being done in this area (Tshering et al., 2013). MNAR is 
particularly difficult to test, since, by definition, MNAR occurs when there are 
unobserved influences on missingness. Still, some of our results discussed in Section 4 
suggest either that (1) some variables need further refined models to ensure MAR or (2) 
there is an unknown factor worth pursuing with subject-matter experts. 
 
We chose to use stochastic regression modeling with randomness inserted into both the 
predictions and the estimated regression coefficient parameters as our imputation method. 
This is what van Buuren refers to as “Bayesian MI” (van Buuren, 2019, p. 67), since it 
considers the regression coefficient parameters to have distributions themselves. We also 
chose to use FCS, rather than Joint-Modeling, for the “multiple” part of MI theory. There 
is evidence suggesting FCS is better at imputing categorical variables (Kropko et al., 
2013), of which there are many in the AHS. Given this, the prevalence of complicated 
structural zero dependencies within the AHS, and the wide range of distributions present 
across the set of variables requiring imputation, FCS seemed by far the logical choice. 
Our technical method for drawing from the posterior distribution of coefficients and 
predicted values mimics the processes described by Raghunathan (2016, p. 69-73) and 
van Buuren (2019, p. 68, 88). 
 
We kept our first fully imputed dataset at iteration ten and took every tenth dataset after 
that until iteration 50, for a total of five datasets used to calculate point estimates and 
variances. We chose five datasets since this is standard for diagnostic purposes (van 
Buuren, 2019, p. 340), and we chose the tenth iteration in part on a general rule of thumb 
(van Buuren, 2019, p. 120) and in part on the convergence of means we found in our 
variables. We chose a gap of ten between selecting datasets to ensure independence. 
 
The issues of compatibility and congeniality are considerably more difficult to assess. We 
assume our conditional distributions have the same joint-distribution, or at least that any 
deviations from this have minimal impact on our results. The literature cited above 
bolsters this assumption by suggesting FCS is robust to violations of compatibility. Since 
the AHS is a general-purpose survey, it is impossible to build an imputation model 
encompassing all conceivable models any data analyst will use with our data. Therefore, 
we follow the advice in Murray (2018) and try to mitigate congeniality issues by 
incorporating many variables into our regression models within modest computational 
constraints (Murray, 2019, p.9). Our general modeling method used a standard forward-
selection algorithm using the Akaike Information Criterion (AIC) as the selection 
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criterion, which considered every possible variable within the given structural zero 
domain as potential independent variables. The set of variables considered for modeling 
purposes included every variable within the three modules under consideration, some 
demographic AHS variables, and a small set of variables taken from the American 
Community Survey (ACS) on the Census Bureau’s Planning Database. 
 
Our models thus far only include one design variable: a binary indicator of being in the 
top 15 CBSAs. Future model refinements will likely include additional design variables, 
though our understanding of current research suggests that design variables should be 
included in an abundance of caution, not because they are vital for every variable’s model 
in every case. The conclusion of Reiter et al. (2006), for example, is essentially: design 
variables should be included in a model when they are correlated with the outcome of 
interest. The same could be said of any non-design variable. Granted, design variables are 
frequently correlated with outcomes – which is why we agree with the abundance of 
caution approach – but, again, so are many demographic and other variables deemed 
generally important by subject-area experts. Overall then, we encourage the use of design 
variables in modeling, even if their unique role in MI remains somewhat opaque to us.  
 

4. MI Diagnostics and Hot Deck Comparisons 
 

This section first describes the rate of missingness for the imputed variables under 
consideration here, and then turns to diagnostic output. The empirical results of this 
research take two main forms: (1) assessing the quality of the models and MI methods 
themselves and (2) comparing MI with the current Hot Deck method. While there has 
been some recent research on more sophisticated diagnostic tools (Nguyen et al., 2017), 
standard MI diagnostics evaluate the convergence of means and standard deviations 
across iterations, compare observed and imputed distributions, typically via a validation 
study, and use traditional model fitting and distributional discrepancy tools (van Buuren, 
2019, p. 51, 187, 190). We examined the convergence of means and standard deviations 
and compared observed verses imputed distributions in a validation study. Our Hot Deck 
comparisons include distribution and point estimate comparisons of several different 
types of variables, as well as some tables contrasting correlations preserved between the 
methods. 
 
4.1 Rates of Missingness 
Unsurprisingly, variables requiring imputation within the first three modules of the AHS 
have varying amounts of missingness within them. These range from near zero percent to 
42 percent missing, with multinomial and binomial variables generally having lower rates 
of missingness than continuous and count (modeled as Poisson distributions) variables. 
Table 1 below gives a sense of the amount of missing data throughout our imputed 
variables. The first column describes the given variable, and the second states its 
mathematical distribution. The third gives the number of valid observations within the 
variable’s domain, and the fourth lists the percentage of missing data for each given 
variable. 
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Table 1: Rates of Missingness among Imputed Variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Source: U.S. Census Bureau, 2017 American Housing Survey 
 

Variable Distribution 
Rate of 

Missingness 

Type of Building Categorical 0.09% 

No. of Units Continuous 3.05% 

Tenure Categorical 0.02% 

Entry System for HU Binomial 10.17% 

HU in Apartment Complex Binomial 0.80% 

Type of HU Categorical 0.10% 

Type of Mobile Home Categorical 0.33% 

Type of Vacancy Categorical 9.96% 

Monthly Rent Amount Continuous 10.85% 

No. of Full Bathrooms Count 1.10% 

No. of Bedrooms Count 1.25% 

Year Built Continuous 1.56% 

No. of Dens Count 34.59% 

No. of Dining Rooms Count 1.72% 

No. of Family Rooms Count 30.41% 

No. of Half Bathrooms Count 1.47% 

No. of Kitchens Count 1.05% 

No. of Laundry Rooms Count 17.00% 

No. of Living Rooms Count 1.24% 

No. of Other Finished Rooms Count 37.68% 

No. of Unfinished Rooms Count 42.53% 

No. of Recreation Rooms Count 40.26% 

Market Value of HU Continuous 15.00% 

Routine Maintenance Cost Continuous 11.27% 

HU Made Accessible Binomial 41.93% 

HU Made Energy Efficient Binomial 41.99% 

HU Made Ready for Sale Binomial 41.94% 

Is Anchored Binomial 5.76% 

Has a Basement Categorical 0.68% 

Is a Condo / Cooperative Categorical 0.52% 

No. of Floors Count 0.56% 

Has a Garage Binomial 0.51% 

Gut Rehabilitation Binomial 1.39% 

Square Footage of Lot Continuous 2.34% 

Mobile Home Foundation Categorical 1.58% 

No Entrance Steps Binomial 0.40% 

Has a Porch Binomial 0.58% 

No. of Stories Count 0.56% 

No. of Mobile Homes Continuous 8.48% 

Unit Square Footage Continuous 11.84% 
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4.2 MI Diagnostics 
 
4.2.1 Mean and Standard Deviation Convergence 
Overall, means and standard deviations for our FCS method converged more quickly for 
categorical and binomial variables than for continuous and count variables. This appears 
to be independent of amount of missingness in each type of variable. Multinomial and 
binomial variables converge almost immediately, while some continuous and count 
variables take as long as iteration 30 to converge. Figure 1a below show the mean and 
standard deviation convergence for a categorical variable describing the particular 
vacancy status of a vacant housing unit, and Figure 1b display analogous results for a 
binomial variable indicating whether a certain home renovation was done to increase 
energy efficiency within the housing unit. 

 
Figure 1a: Type of vacancy – mean / standard deviation convergence. 

Missingness rate: 1.3%. Source: U.S. Census Bureau, 2017 American Housing Survey 
 

 
Figure 1b: Efficient renovation – mean / standard deviation convergence. Missingness 

rate: 21.1%. Source: U.S. Census Bureau, 2017 American Housing Survey 
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The figures above stand in stark contrast to the continuous and count variables below. 
Figures 1c/d depict a continuous variable asking about the value of the housing unit and a 
count variable asking how many utility or laundry rooms are in the housing unit, 
respectively. 

 

 
Figure 1c: Value – mean / standard deviation convergence. Missingness rate: 8.9% 

Source: U.S. Census Bureau, 2017 American Housing Survey 

 
Figure 1d: Laundry rooms – mean / standard deviation convergence. Missingness rate: 

17% Source: U.S. Census Bureau, 2017 American Housing Survey 
 
Not all continuous or count variables take this long to converge – the variable for rent 
only takes about 4 iterations to converge – but they indicate that we may want to consider 
longer burn-in iterations before selecting imputed datasets for the AHS. Generally 
though, the fact that all of these variables converge indicates a well-functioning FCS MI 
implementation or, more specifically, that there exists stable conditional distributions to 
which this algorithm converges. 
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4.2.2 Validation Study 
The value of a validation study centers around our ability to control the mechanism of 
missingness. Our validation study inserts missing values randomly into ten percent of 
observed data (thereby ensuring the missing data are MCAR), applies our FCS MI 
implementation on the simulated missing data, and compares the distribution of actual 
verses imputed data. In this way, no real nonresponse observations affected this analysis, 
and we are able to see how close our imputation methods approximate observed values. 
 
The comparison for categorical, binomial, and count variables takes the form of two 
kinds of histograms: one depicting the frequency of each discrete value in the real and 
imputed artificially missing data, and another showing the distribution of differences 
between real and imputed values for each observation in the artificially missing data. 
Continuous variables use a scatter plot and a histogram, with real values along the x-axis 
and imputed values along the y-axis for the scatter plot, and the differences shown again 
in the histogram. We need both plots to confirm that distributions of imputed data 
reasonably mirror real data. The frequency count and scatter plot confirm the 
distributions are similar, and high counts at (or near) zero in the differences histogram 
indicate that accurate values are being imputed in individual observations. 
 
Figures 2a/b/c/d/e below indicate the well-functioning imputation models used in the four 
variables used above (a categorical, binomial, count, and continuous variable, 
respectively), as well as another count variable – number of bedrooms – to illustrate the 
varying degrees of success with the count variables.  
 

 
Figure 2a: Type of vacancy – validation comparison. Distribution: Categorical 

Source: U.S. Census Bureau, 2017 American Housing Survey 
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Figure 2b: Efficient renovation – validation comparison. Distribution: Binomial 
Source: U.S. Census Bureau, 2017 American Housing Survey 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2c: Number of laundry rooms – validation comparison. Distribution: Poisson 
Source: U.S. Census Bureau, 2017 American Housing Survey 

 
Figure 2d: Number of bedrooms – validation comparison. Distribution: Poisson 

Source: U.S. Census Bureau, 2017 American Housing Survey 
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Figure 2e: Value – validation comparison. Distribution: Normal / Continuous 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 

Again, categorical and binomial variables do extremely well with these diagnostic 
measures. Count variables fair somewhat well, and continuous variables suffer from 
some over-estimation in certain cases. As Figure 2e suggests, the current MI algorithm 
imputes some significant outliers in some continuous variables and Figure 2d indicates 
that the variable counting bedrooms in a HU also diverges somewhat from the real 
distribution. These results suggest that we should focus future research on model 
refinements. Still, the validation study strongly indicates the viability of MI within the 
AHS, despite the need for ongoing model tweaking. 
 
Overall, we are reasonably confident in the performance of our MI algorithm. It 
converges well and produces reasonable imputations when compared against known 
values under MCAR, while acknowledging further model refinements and diagnostics 
need to be pursued for certain variables. In particular, this validation simulation should be 
expanded to include examining correlations, varying the types of missingness 
mechanisms, looking at averages over simulations, applying and comparing results to the 
Hot Deck method, and varying the amount of randomness inserted into the variables. 
 
4.3 MI vs. Hot Deck in the AHS 
 
Now, we turn to comparing MI to the Hot Deck. This section focuses on three central 
points supporting this conclusion: MI improves point estimates, and it better preserves 
distributions and correlations. Furthermore, unlike Hot Deck, MI provides an estimation 
of the variance of imputation itself, which is an automatic improvement over Hot Deck. 
 
4.3.1 Point Estimates and Imputed Variance 
MI should provide more accurate point estimates than the current Hot Deck imputation 
method for both practical and theoretical reasons. Practically speaking, the current Hot 
Deck cells and sort orders in the AHS are outdated, and frequently use one implicit model 
for multiple variables at a time. This means that any attempts to improve on these will 
likely succeed. More theoretically though, Hot Deck methods do not incorporate the full 
range of information provided by continuous variables, since these variables have to be 
binned in order to use them in a sort order. Our MI implementation of FCS uses common 
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regression modeling as its foundation, and as such can use the full amount of information 
of any variable within its models. 
 
The Fraction of Missing Information (FMI) is the percent of total variance due to the 
imputation process. This statistic the ratio of the imputation variance of the variable and 
the total variance with some additional correcting terms depending on the number of 
imputed datasets (Enders, 2010, p. 222-226). If the number of imputed datasets is high, 
then FMI is approximated by equation (1) below, where m is the number of imputed 
datasets, 𝑉𝐵 is the variance between imputed datasets and 𝑉𝑇  is the total variance: 
 

𝐹𝑀𝐼 =  
𝑉𝐵 +

𝑉𝐵
𝑚⁄

𝑉𝑇
   (1) 

 
Since we used only five datasets, formula (2) below is more appropriate for our analysis, 
where v is a degrees of freedom term and 𝑉𝑊  is the average variance within each imputed 
dataset: 
 

𝐹𝑀𝐼 =   
𝑉𝐵 +

𝑉𝐵
𝑚⁄ +

2𝑉𝑊
(𝑣+3)⁄

𝑉𝑇
 (2) 

 
Higher percentages of FMI suggest a greater need for MI methods for a given variable 
because, absent a measure of imputation variance, confidence intervals for parameter 
estimates of a variable with high FMI will be egregiously narrow. A higher FMI also 
suggests that a given variable will take longer to converge (Enders, 2010, p. 226), so it 
serves as a good diagnostic tool as well. 
 
Our models employed in our MI algorithm improve upon the existing Hot Deck results. 
To illustrate these improvements, Tables 2a/b/c/d below provide the weighted means of 
many of the variables in the three AHS modules we have imputed with MI. Table 2a 
displays the proportions of binomial variables, 2b has proportions for categorical 
variables, 2c has means for count variables, and 2d has means for continuous variables. 
The second column – “Observed” – is the mean of the given variable based on the 
observed data, the third column – “Hot Deck” – is the mean based on the Hot Deck, and 
the fourth column – “MI” – is the mean based on MI. The fifth column is FMI. Green 
rows occur when the MI estimate is closer to the observed estimate than Hot Deck, 
yellow implies that the MI and Hot Deck means are extremely close1 to the observed 
value, and red means Hot Deck performs better than MI. 
 

 
 
 
 
 
 
 
 

                                                   
1 “Extremely close” here just means within one order of magnitude for a particular distribution. 
The categorical and binomial variables need to be within 0.01 (or one percent) of the observed 
proportion, the mean of imputed count variables within 0.1 of the observed count mean, and 
imputed means for continuous variables within one unit of the observed mean. 
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Table 2a: FMI / Proportions – Binomial 

Variable Observed Hot Deck MI FMI 
Entry System for HU 0.396 0.407 0.398 3.68% 

Gut Rehabilitation 0.201 0.201 0.201 2.30% 

Has a Garage 0.635 0.635 0.635 0.61% 
Has a Porch 0.843 0.843 0.843 0.69% 

HU in Apartment Complex 0.610 0.609 0.609 0.62% 

HU Made Accessible 0.066 0.067 0.066 45.99% 
HU Made Energy Efficient 0.302 0.308 0.303 26.25% 

HU Made Ready for Sale 0.036 0.038 0.035 56.86% 

Is Anchored 0.859 0.865 0.865 5.47% 
No Entrance Steps 0.504 0.504 0.503 0.11% 

 
Table 2b: FMI / proportions – Categorical 

 

Variable Observed Hot Deck MI FMI 
Basement Under Part of HU 0.100 0.104 0.105 0.30% 
Basement Under Whole HU 0.298 0.307 0.308 0.41% 
Concrete Slab Foundation 0.370 0.352 0.350 0.21% 

Crawl Space 0.209 0.215 0.215 0.28% 
For Rent Only 0.301 0.288 0.299 9.26% 

For Rent or for Sale 0.025 0.023 0.026 14.19% 
For Sale Only 0.109 0.108 0.111 16.11% 

Held for Occasional Use 0.136 0.153 0.134 8.35% 
Is a Co-Op 0.008 0.008 0.008 0.29% 
Is a Condo 0.065 0.064 0.065 0.72% 

Migratory HU 0.006 0.005 0.006 14.50% 
Neither a Condo nor a Co-Op 0.923 0.928 0.923 0.68% 

Other Cellar 0.023 0.022 0.022 0.08% 
Other Vacancy 0.175 0.199 0.178 17.46% 

Owner Occupied 0.640 0.638 0.638 0.01% 
Rented, but not Occupied 0.016 0.016 0.016 0.00% 
Rented, but not Occupied 0.021 0.019 0.021 5.32% 

Renter Occupied 0.343 0.346 0.346 0.01% 
Seasonal-Other 0.066 0.060 0.066 6.36% 

Seasonal-Summer 0.082 0.074 0.081 2.87% 
Seasonal-Winter 0.041 0.037 0.040 1.09% 

Sold, but not Occupied 0.037 0.033 0.037 7.11% 
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Table 2c: FMI / means – Count 
Variable Observed Hot Deck MI FMI 

No. of Bedrooms 2.760 2.758 2.775 66.46% 
No. of Dens 0.159 0.100 0.304 98.77% 

No. of Dining Rooms 0.494 0.492 0.503 63.69% 
No. of Family Rooms 0.215 0.143 0.241 76.22% 

No. of Floors 1.813 1.790 1.770 0.06% 
No. of Full Bathrooms 1.681 1.679 1.698 86.45% 
No. of Half Bathrooms 0.317 0.317 0.337 91.15% 

No. of Kitchens 1.009 1.009 1.009 27.22% 
No. of Laundry Rooms 0.377 0.311 0.459 97.82% 
No. of Living Rooms 1.044 1.044 1.049 47.78% 

No. of Other Finished Rooms 0.139 0.084 0.205 94.54% 
No. of Recreation Rooms 0.069 0.039 0.110 93.27% 

No. of Stories 1.813 2.225 1.771 0.04% 
No. of Unfinished Rooms 0.035 0.019 0.100 97.91% 

 
Table 2d: FMI / means – Continuous 

Variable Observed Hot Deck MI FMI 

Market Value of HU 292,400 299,100 311,600 67.58% 

Monthly Rent 1,010 1,072 1,048 59.01% 

No. of Mobile Homes 41 45 41 6.48% 

No. of Units 10.38 11.35 11.21 5.67% 

Routine Maintenance Costs 801 865 871 23.23% 

Unit Square Footage 1,654 1,703 1,796 96.97% 

Year Built 1970 1970 1970 0.60% 
 
Tables 2a/b indicate that MI rivals or exceeds Hot Deck on most measures, even where 
there is a substantial FMI. We can see too that the variables taking somewhat longer to 
converge – the rent and number of bedrooms variables – indeed have a higher FMI. 
 
4.3.2 Preserving Distributions 
Under a MAR assumption, any imputation method should replicate the distribution of 
known values successfully (Raghunathan, 2016, p. 87). To test this, we can compare what 
the distributions of imputed values under Hot Deck and MI look like against the observed 
distribution of values. Figures 3a/b/c below all show how MI performs better than Hot 
Deck method in replicating the distribution of observed values.  
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Figure 3a: Comparing Distributions – Has a Porch 
Source: U.S. Census Bureau, 2017 American Housing Survey 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3b: Comparing Distributions – Number of Laundry Rooms 
Source: U.S. Census Bureau, 2017 American Housing Survey 
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Figure 3c: Comparing Distributions – Type of Vacancy 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
With a few exceptions, MI is closer to the actual frequency of observed values in these 
variables than Hot Deck. The laundry variable in Figure 3b has a curious spike at 5 under 
MI, which it did not have during the validation study. This again suggests more model 
refinement for this variable, but it highlights the need for multiple diagnostic measures 
when assessing MI. We would not have caught this merely by looking at convergence 
rates and the validation results. Still, these comparisons highlight another potential 
benefit of MI within the AHS. 
 
4.3.3 Preserving Correlations 
Successful implementations of MI can preserve correlations between variables when they 
are incorporated into each others’ models. Since MI allows – even encourages – 
extremely broad imputation models, this theoretical result implies that most variables’ 
correlations can be maintained easily with a wide enough scope in modeling. 
 
To measure this within this study, we constructed a relatively intuitive correlation-
adjacent statistic. We calculated the correlation of binomial and continuous variables 
under consideration in our study with just the observed data, then with the observed plus 
Hot Deck imputations, and then with the observed and MI imputed values. We then made 
two tables: one of the absolute value of the difference between the observed and Hot 
Deck, and another of the absolute value of the difference between the observed and MI. 
Two continuous or two binomial variables’ correlation was measured using standard 
Pearson correlations, and the correlation between a continuous and binomial variable was 
measured as Point-Serial correlations. The statistic takes the form of formulas (3) and (4) 
below, where “HD” means “Hot Deck,” “MI” means “Multiple Imputation,” “Obs” 
means “Observed” and r indicates the relevant correlation: 
 

|𝑟𝐻𝐷, 𝑣𝑎𝑟1, 𝑣𝑎𝑟2 −  𝑟𝑂𝑏𝑠, 𝑣𝑎𝑟1, 𝑣𝑎𝑟2|                                       (3) 
 

|𝑟𝑀𝐼, 𝑣𝑎𝑟1, 𝑣𝑎𝑟2 −  𝑟𝑂𝑏𝑠, 𝑣𝑎𝑟1, 𝑣𝑎𝑟2|                                       (4) 
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Tables 3a/b below show the results from these correlation comparisons. Green indicates 
an absolute difference close to zero, meaning that the correlations before and after the 
given imputation method preserved the correlations among the observed values. Shades 
towards red indicate more divergence from the initial correlation. 
 

Table 3a: Hot Deck and Observed Difference of Correlations 
Variable RENT BUILT VALUE CSTMNT UNITSF LOT GARAGE ANCHOR NOSTEP GUTREHB HMRACCE

SS

HMRENEF

F

HMRSALE ACCESSB COMPLEX PORCH

RENT 0.000 0.048 0.182 0.061 0.119 0.019 0.011 0.066 0.018 0.030

BUILT 0.048 0.000 0.010 0.000 0.089 0.042 0.001 0.019 0.002 0.001 0.001 0.000 0.001 0.000 0.004 0.001

VALUE 0.010 0.000 0.027 0.202 0.021 0.064 0.050 0.003 0.002 0.009 0.001 0.002 0.031 0.079 0.026

CSTMNT 0.000 0.027 0.000 0.034 0.005 0.006 0.016 0.003 0.002 0.000 0.001 0.007 0.008 0.021 0.007

UNITSF 0.182 0.089 0.202 0.034 0.000 0.017 0.196 0.032 0.043 0.015 0.012 0.000 0.009 0.014 0.021 0.126

LOT 0.061 0.042 0.021 0.005 0.017 0.000 0.024 0.032 0.037 0.016 0.014 0.004 0.009 0.033

GARAGE 0.119 0.001 0.064 0.006 0.196 0.024 0.000 0.009 0.000 0.000 0.001 0.001 0.000 0.010 0.003 0.001

ANCHOR 0.019 0.019 0.050 0.016 0.032 0.032 0.009 0.000 0.002 0.009 0.003 0.010 0.004 0.016

NOSTEP 0.011 0.002 0.003 0.003 0.043 0.037 0.000 0.002 0.000 0.000 0.001 0.001 0.000 0.007 0.001 0.000

GUTREHB 0.001 0.002 0.002 0.015 0.016 0.000 0.009 0.000 0.000 0.002 0.002 0.001 0.007 0.001 0.000

HMRACC

ESS

0.001 0.009 0.000 0.012 0.014 0.001 0.003 0.001 0.002 0.000 0.003 0.001 0.005 0.009 0.002

HMRENE

FF

0.000 0.001 0.001 0.000 0.004 0.001 0.010 0.001 0.002 0.003 0.000 0.000 0.001 0.009 0.001

HMRSALE 0.001 0.002 0.007 0.009 0.009 0.000 0.004 0.000 0.001 0.001 0.000 0.000 0.004 0.002 0.001

ACCESSB 0.066 0.000 0.031 0.008 0.014 0.010 0.007 0.007 0.005 0.001 0.004 0.000 0.001 0.007

COMPLEX 0.018 0.004 0.079 0.021 0.021 0.003 0.001 0.001 0.009 0.009 0.002 0.001 0.000 0.004

PORCH 0.030 0.001 0.026 0.007 0.126 0.033 0.001 0.016 0.000 0.000 0.002 0.001 0.001 0.007 0.004 0.000  
Source: U.S. Census Bureau, 2017 American Housing Survey 
 

Table 3b: MI and Observed Difference of Correlations 
Variable RENT BUILT VALUE CSTMNT UNITSF LOT GARAGE ANCHOR NOSTEP GUTREHB HMRACCE

SS

HMRENEF

F

HMRSALE ACCESSB COMPLEX PORCH

RENT 0.000 0.022 0.183 0.028 0.048 0.051 0.007 0.033 0.022 0.004

BUILT 0.022 0.000 0.013 0.001 0.154 0.010 0.001 0.013 0.000 0.002 0.008 0.006 0.010 0.001 0.007 0.000

VALUE 0.013 0.000 0.024 0.208 0.010 0.038 0.021 0.014 0.013 0.019 0.012 0.001 0.055 0.102 0.001

CSTMNT 0.001 0.024 0.000 0.006 0.016 0.017 0.015 0.007 0.015 0.004 0.009 0.009 0.026 0.011 0.009

UNITSF 0.183 0.154 0.208 0.006 0.000 0.003 0.283 0.084 0.070 0.015 0.020 0.016 0.011 0.013 0.019 0.170

LOT 0.028 0.010 0.010 0.016 0.003 0.000 0.005 0.048 0.001 0.011 0.010 0.000 0.001 0.013

GARAGE 0.048 0.001 0.038 0.017 0.283 0.005 0.000 0.014 0.001 0.001 0.007 0.004 0.003 0.002 0.001 0.000

ANCHOR 0.051 0.013 0.021 0.015 0.084 0.048 0.014 0.000 0.006 0.015 0.013 0.001 0.004 0.008

NOSTEP 0.007 0.000 0.014 0.007 0.070 0.001 0.001 0.006 0.000 0.001 0.005 0.002 0.006 0.007 0.001 0.000

GUTREHB 0.002 0.013 0.015 0.015 0.011 0.001 0.015 0.001 0.000 0.023 0.033 0.009 0.018 0.003 0.001

HMRACC

ESS

0.008 0.019 0.004 0.020 0.010 0.007 0.013 0.005 0.023 0.000 0.007 0.006 0.033 0.001 0.004

HMRENE

FF

0.006 0.012 0.009 0.016 0.000 0.004 0.001 0.002 0.033 0.007 0.000 0.008 0.003 0.002 0.010

HMRSALE 0.010 0.001 0.009 0.011 0.001 0.003 0.004 0.006 0.009 0.006 0.008 0.000 0.010 0.048 0.002

ACCESSB 0.033 0.001 0.055 0.026 0.013 0.002 0.007 0.018 0.033 0.003 0.010 0.000 0.005 0.006

COMPLEX 0.022 0.007 0.102 0.011 0.019 0.001 0.001 0.003 0.001 0.002 0.048 0.005 0.000 0.001

PORCH 0.004 0.000 0.001 0.009 0.170 0.013 0.000 0.008 0.000 0.001 0.004 0.010 0.002 0.006 0.001 0.000  
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We can see that there are a handful of binomial variables with slightly varying 
correlational structures after MI, and some variables remain somewhat divergent under 
both Hot Deck and MI. However, the lot size variable shows marked improvement under 
MI, and the overall replication of correlations is supportive of MI. The flexibility of 
future model refinements gives us more confidence in the benefit of MI over Hot Deck 
on this measure as well. For example, we can easily add more variables to binomial 
models to improve preserved correlations, whereas it is theoretically unclear that doing so 
with Hot Deck would improve anything. 

 
5. Conclusion and Future Research 

 
This research strongly suggest the viability of MI for the AHS, though future research 
should focus on model refinement for key variables. The MI algorithm we developed 
converges properly and performs reasonably well in our validation study. More 
importantly, MI improves upon point estimates, better preserves distributions and 
correlations, and provides a measure of imputation variance itself for the AHS. Future 
research certainly includes more model development, but should also include revisiting 
the missing data mechanism assumption, as well as the number of iterations required for 
convergence and number of complete datasets. 
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