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Abstract
This paper presents cluster analysis of ordinal data utilising the natural order information of ordinal
data. Three models commonly used in ordinal modelling are discussed: the proportional odds
model, the adjacent-categories logit model and the ordered stereotype model.

In our research, the data take the form of a matrix where the rows are subjects, and the columns
are a set of ordinal responses by those subjects to, say, the questions in a questionnaire. We im-
plement model-based fuzzy clustering via a finite mixture model, in which the subjects (the rows
of the matrix) and/or the questions (the columns of the matrix) are grouped into a finite number
of clusters. We will explain how to use EM (Expectation-Maximisation) algorithm to estimate the
model parameters. Specifically, we illustrate the details of using adjacent-categories logit model to
perform row/column and bi-clustering. This clustering method differs from other typical clustering
methods such as K-means or hierarchical clustering, because it is a likelihood-based model, and
thus statistical inference is possible.
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1. Introduction

There are two basic types of data: numerical (quantitative) and categorical (qualitative)
variables. Numerical variables are typically measurement (continuous) or counts (discrete)
(Clark and Randal, 2011). For example a person’s height, weight, IQ or blood pressure; or
counts, such as the number of customers visiting a store in one day, how many dogs each
household has, or how many computers in a lab. Categorical variables are the variables
which have a measurement scale consisting of a set of categories (Agresti, 2013). Categor-
ical variables can be separated into nominal and ordinal types. Nominal variables do not
have a natural order, such as ethnicity (European, Chinese, Māori, etc.), gender (female,
male and bisexual) and travel method (bus, car, walk, etc.). Unlike nominal data, ordinal
data have a specific ordering. Examples of ordinal variables include health status (poor,
reasonable, good and excellent), letter grades (A, B, C, D), socioeconomic status (high,
middle, and low), satisfaction level to a service (very unsatisfied, somewhat unsatisfied,
neutral, somewhat satisfied, very satisfied) and any other Likert scale.

Many researchers treat ordinal variables as continuous or nominal (Fernández et al.,
2019). When treating them as continuous variables, by ignoring the categorical nature
and assigning numerical scores to the ordered categories, methods such as ordinary least
squares (OLS) can be used to fit the model. However, this can lead to unsatisfactory results
which include: predicted values below the lowest category score or above the highest cate-
gory score (Agresti, 2010); assuming equal numerical distance among different categories
is not suitable for some data (for instance, the difference in the severity of a pain expressed
in level 5 rather than 4 may be much more than the difference between level 2 and level
1). Another option is treating ordinal variables as nominal variables. This makes all the
analysis methods that work on nominal variables can be applied to ordinal variables as
well: Chi-square test (Franke et al., 2012, McHugh, 2013), multinomial logistic regression
(Kwak and Clayton-Matthews, 2002, Chan, 2005), log-linear models (Christensen, 2006),
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etc. However, if the ordering is an important part of our research question, we will not find
the insights we need. Losing the ordering information also makes statistical analysis and
inference inappropriate.

Clustering for ordinal data faces a lot of challenges as well. Clustering or cluster anal-
ysis aims to group a data set into different clusters by searching and analysing the response
patterns (Hand, 2007, Chapter 5). Traditional clustering methods such as hierarchical clus-
tering (Murtagh, 1983, Murtagh and Contreras, 2012), centroid-based clustering, associa-
tion analysis (Strehl et al., 1999) have well-developed and documented (Jain et al., 1999,
Han et al., 2011, Aggarwal and Reddy, 2013, Witten et al., 2016). However, these tradi-
tional clustering methods are not likelihood-based, and statistical inference is not available.

In our research, the dataset can be organised into a matrix. Consider questionnaire
data: rows stand for respondents and columns stand for questions. Fuzzy clustering via a
finite mixture model allows to group the rows and/or columns of such data matrices, see
the example, Pledger and Arnold (2014) who clustered matrices of binary and count data.
Through likelihood-based fuzzy clustering, maximum likelihood estimation of parameters
can be carried out, and likelihood ratio tests or information criteria such as AIC (Akaike,
1987), BIC(Schwarz et al., 1978) and DIC (Berg et al., 2004), etc. are available for model
selection.

Our research applies fuzzy clustering via finite mixtures to the adjacent-categories logit
model (Agresti, 1999) for ordinal data. This work is an extension of likelihood-based
models in Pledger and Arnold (2014).

This paper is structured as follows. Section 2 reviews relevant literature related to
our research. The topics include ordinal data, ordinal data modelling, finite mixtures and
model-based clustering. Section 3 introduces the adjacent-categories logit model and how
it applies to fuzzy clustering via a finite mixture. Section 4 describes how we can use
a simulation study to evaluate our proposed model. Section 5 lists our next steps of the
research.

2. Literature Review

In this chapter, we review the existing literature relevant to our research.

2.1 Ordinal modeling

Ordinal trend models are a class of regression models for ordinal data. They can be sepa-
rated into three important types: logistic regression models using cumulative logits, logistic
regression models without using cumulative logits, and other ordinal multinomial response
models. Logistic regression models using cumulative logits use the cumulative probabili-
ties of response categories. The most commonly used is the proportional odds version of
the cumulative logit model, which is reviewed below. Logistic regression models without
using cumulative logits include adjacent-categories logit models, continuation-ratio logit
models and stereotype models. These models do not use the accumulative probabilities
for the response categories. Instead, they use single response probabilities to specify the
model structure. We give a review of the continuation-ratio logit models as an example of
this type of model. Other ordinal multinomial response models use link functions other than
the logit, such as the probit link and log-log link functions. The details of these different
ordinal models can refer to Agresti (2010, Chapter 3-5).

Ordinal response models have been applied widely in applications. For example, recent
applications include Lanfranchi et al. (2014), Cameron et al. (2014), Donneau et al. (2015),
Bürkner and Vuorre (2018) and Ursino and Gasparini (2018). Before giving the model
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we use, we review a few existing ordinal models. For a detailed review see Ananth and
Kleinbaum (1997), Liu and Agresti (2005).

Proportional odds version of the cumulative logit models

One of the most popular models for ordinal variables is the cumulative logit model. This
model attracted researchers’ attention after the seminal article by McCullagh (1980). Sup-
pose we have q ordered response categories. The model is specified:

log

[
P (Yi ≤ k)

1− P (Yi ≤ k)

]
= µk + δTxi

= µk + δ1xi1 + δ2xi2 + · · ·+ δpxip, k = 1, 2, . . . , q − 1

(1)

where Yi stands for the outcome variable for the ith subject, p is number of covariates we
may have, δ is a column vector that contains all the parameters for the covariates, xi are
covariate values.

The parameters {µ1, µ2, . . . , µq−1} are called cutpoints. The column vector δ =
(δ1, δ2, . . . , δp)

T contains the parameters which control the effects of the explanatory vari-
ables. The reason it is called the cumulative logit model is because we accumulate the
probabilities of the first k response levels in the specification. The cutpoints {µk} must
increase as k increases because P (Yi ≤ k) is increasing at fixed covariate values xi.

The model in equation (1) is also referred as the proportional odds model. However,
Agresti (2010) pointed out that the name is not specific enough because there are other
models that can have proportional odds form as well. This model is recommended to be
referred to as the proportional odds version of the cumulative logit model (Agresti, 2010,
section 3.3.1).

Stereotype models

The ordered stereotype model was introduced by Anderson (1984). Once again, suppose we
have the ordered categorical variable Y which has q ordered levels, the ordered stereotype
model is specified by

log

[
P (Yi = k)

P (Yi = 1)

]
= µk + φkδ

Txi (0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1)

k = 2, . . . , q,

where the monotone increasing constraint on the φ parameters must be included to ensure
that the response variable Y is ordinal (Anderson, 1984). The baseline category is the first
category, the parameters {µ2, . . . , µq} are the intercepts (which are unconstrained), and
{φ2, . . . , φq−1} are the parameters which can be interpreted as the “score”for the categories
of the response variable Y . In order to ensure identifiability, we set µ1 = φ1 = 0 and
φq = 1.

Our research focuses on the adjacent-categories logit model which will be introduced
in section 3.

2.2 Clustering for ordinal data

Clustering is the unsupervised classification of patterns into groups. These groups are
called clusters. Unsupervised classification means that we do not know anything about
cluster membership of any observations, in other words, there are no predefined clusters
(Bohte et al., 2002). Cluster analysis is useful in a variety of areas. In marketing, it has
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been used to analyse customer behaviour with demographics. For example, when we have
a large dataset about customers which includes the products the customers buy and also
description information on each customer, say the age, nationality and the time they pur-
chased the product. If we want to identify which customers are likely to buy particular
products, by clustering the customers about their shopping behaviour, we will be able to
get some information about what future customers will buy. Other applications include
earth observation database record the land use types by clustering, city planning based
on area cluster; also earthquake studies (Lin et al., 2007). Also, clustering is useful in
many grouping, decision-making and machine-learning situations, including data mining
and pattern classification.

Currently, a lot of clustering methods are only based on a distance matrix, which does
not provide a likelihood-based estimation of the data. Major clustering approaches include
partitioning algorithm, such as the K-means clustering algorithm (Jobson, 1992, Lewis
et al., 2005, McCune et al., 2002) and K-Medoids; hierarchical clustering (Johnson, 1967,
Kaufman and Rousseeuw, 1990); association analysis (Manly, 2005). However, the lack
of a statistical likelihood underlines these methods makes statistical inference impossible.
In our research, we use model-based clustering. This means that we have a distributional
description for each component, and allow us to calculate the probabilities of cluster mem-
bership for each observation. Furthermore, we can make inference about the number of
clusters.

2.3 Clustering via finite mixtures

The finite mixture model idea was introduced by Pearson (1894). It is assumed that data
are from C ≥ 1 groups. Each obeservation in data is a realization y from a finite mixture
density,

f(y; Ω) =

C∑
c=1

κcfc(y; θc).

Here, Ω contains all the unknown parameters in the finite mixtures, κc is the a priori prob-
ability that a data point belongs to group c, and θc is the vector of unknown parameters
controlling the cth component density of the finite mixture fc(y; θc). Notice that κc are all
non-negative and

C∑
c=1

κc = 1, 0 ≤ κc ≤ 1, c = 1, . . . , C.

Consider a simple case, a dataset is assumed from two normal distribution with differ-
ent means and variances. The dataset we have is the population data, which contain two
subpopulations. We can estimate the parameters for these two normal distributions and
estimate for each data point which component they most likely belong to. This is a simple
finite mixture which assumes the population data is from two subpopulations. If we have
more subpopulations, then we have a finite mixture model with more number of mixture
components.

Clustering identifies how many subgroups a dataset has and associates each data point
with a cluster, or possibly several clusters if its membership is unclear. Finite mixture
models can be used to do clustering which treats the cluster membership as missing in-
formation. A literature review about how finite mixture model has been proposed can see
Melnykov et al. (2010). In our case, with rows are subjects and columns are questions, we
apply probabilistic models using finite mixtures and carry out fuzzy clustering for the rows
or columns (one-way clustering) and both (two-way clustering). This approach enables us
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to use likelihoods, which also makes model selection possible. Models can be fitted us-
ing the EM algorithm and compared through model selection methods such as the Akaike
Information Criterion (AIC) or Bayesian Information Criterion (BIC).

Biclustering, two-way clustering and co-clustering all refer to simultaneous clustering
of rows and columns. Biernacki et al. (2000), Pledger (2000) have proposed biclustering
models for categorical data. Govaert and Nadif (2013) gives a thorough treatment of the
subject. Recently, Fernández et al. (2016) have used the ordered stereotype model and Cos-
tilla et al. (2015) used proportional odds model and trend odds model to handle row, column
and bi-clustered ordinal data, which have extended these models to ordinal responses. The
purpose of our research is to extend these models by using adjacent-categories logit models.

The estimation of the parameters for the finite mixture model is through the Expectation-
Maximization (EM) algorithm. It is an iterative method for finding maximum likelihood
estimates of parameters in statistical models, where the model depends on unobserved la-
tent variables. The EM algorithm was first proposed by Dempster et al. (1977). The for-
mulation of the EM Algorithm is explained in McLachlan and Krishnan (2007, Section
1.5).

3. The Adjacent-Categories Logit Model

3.1 Data formation

Let Y be a n × m matrix where each cell yij is equal to any of the q ordinal categories,
and:

i = 1, . . . , n (where the rows are different subjects);
j = 1, . . . ,m (where the columns are different questions);
k = 1, . . . , q (ordinal categories).

3.2 Adjacent-categories logit model structure

In this model, the probability that Yij takes category k is characterized by the following log
odds:

log

(
P [Yij = k|xij ]

P [Yij = k − 1|xij ]

)
= µk + βTxij ,

i = 1, . . . , n, j = 1, . . . ,m, k = 2, . . . , q,

The vector xij is a set of predictor variables which can be categorical or continuous.
The vector of parameters δ represents the effects of x on the log odds of the response
variable for category k relative to category k − 1 instead of the baseline category. We
also restrict µ1 = 0 to ensure model identifiability.

3.2.1 Adjacent-categories logit model structure with clustering

In this section, we use the adjacent-categories logit model to model clustered data via a fi-
nite mixture model. First, we start with column clustering, then followed by row clustering
and then biclustering.

Column clustering For column clustering, we focus on column clusters to find which
questions are similar and cluster them into groups. Columns are assumed a priori to come
from any of c = 1, . . . , C column groups with probabilities κ1, . . . , κC . That is, we assume
that the columns come from a finite mixture with C components where both C and the
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column-cluster proportions κc are unknown. Note also that 1 ≤ C < m and
∑C

c=1 κc = 1,
and κc ≥ 0.

Let P [Yij = k|j ∈ c] = θick, which means the probability that observation Yij = k
given that column j belongs to column-cluster c.

The adjacent-categories logit model with column clustering has the form:

log

(
P [Yij = k|j ∈ c]

P [Yij = k − 1|j ∈ c]

)
= µk + βc, (2)

i = 1, . . . , n, c = 1, . . . , C, k = 2, . . . , q,

where βc is the cth column-cluster effect.
From equation 2, we have:

θick = P [Yij = k|j ∈ c] =
exp [µ∗k + (k − 1)βc]∑q
`=1 exp

[
µ∗` + (l − 1)βc

] (3)

i = 1, . . . , n, c = 1, . . . , C, k = 1, . . . , q,

where β1 = 0, µ1 = 0, and

µ∗k =
k∑

h=2

µh = µ2 + µ3 + · · ·+ µk.

Assuming independence among the columns and, conditional on the columns, indepen-
dence over the rows, the likelihood with column-clustering is

L(Ω|Y) =

m∏
j=1

[

C∑
c=1

κc

n∏
i=1

q∏
k=1

(θick)I(yij=k)]

The model parameters Ω contain (µ,β,κ). The expression above is referred to as the
incomplete data likelihood, given that the cluster memberships are unknown.

Estimation by using EM algorithm
We define the unknown column group memberships through the following indicator

latent variables:

Xjc = I(j ∈ c) =

{
1 if j ∈ c
0 if j /∈ c j = 1, . . . ,m c = 1, . . . , C

where j ∈ c indicates that column j is in column group c. It follows that:

C∑
c=1

Xjc = 1, j = 1, . . . ,m,

The complete data log-likelihood is:

`c(Ω|Y ,X) =
m∑
j=1

C∑
c=1

Xjc log(κc) +
n∑

i=1

m∑
j=1

q∑
k=1

C∑
c=1

XjcI(yij = k) log(θick)

Given a value for the number of the mixture componentsC, the EM algorithm proceeds
as follows.
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1. E step:

Update x̂. Given Y and values for κc, µk, αr, estimate E[Xjc|{yij},Ω] = xjc as:

x̂
(t)
jc =

κ̂
(t−1)
c

∏n
i=1

∏q
k=1(θ̂

(t−1)
ick )I(yij=k)∑C

g=1[κ̂
(t−1)
g

∏n
i=1

∏q
k=1(θ̂

(t−1)
ick )I(yij=k)]

(4)

2. M step:

The M-step has two parts:

(1) Update the column cluster propotions using:

κ̂(t)c =
1

m

m∑
j=1

E[Xjc|{yij},Ω(t−1)] =
1

m

m∑
j=1

x̂
(t)
jc .

(2) Numerically maximize the complete data log-likelihood:

Q(t) =
m∑
j=1

C∑
c=1

x̂
(t)
jc log(κ̂(t−1)

c ) +
n∑

i=1

m∑
j=1

q∑
k=1

C∑
c=1

x̂
(t)
jc I(yij = k) log(θick).

given x̂jc from the E-step. We maximize Q(t) numerically to obtain new values for
the parameters µk, βc.

A new cycle starts from using the parameters getting from the M-step in the E-step.
This process repeats until the parameter estimates have converged. There is a risk
of convergence to local maxima due to multimodality on the likelihood surface, and
thus it is important to use several initial values to start the EM algorithm.

The formulas for the bi-clustering is as below:

log

(
P [Yij = k|i ∈ r, j ∈ c]

P [Yij = k − 1|i ∈ r, j ∈ c]

)
= µk + αr + βc,

i = 1, . . . , n, j = 1, . . .m, c = 1, . . . , C, k = 2, . . . , q,

4. Simulation Study

In this section, we use a simulated dataset to illustrate the performance of the model for
column clustering.

In particular, we generate a dataset use the following set up:

• n = 30 number of rows

• m = 60 number of columns

• C = 2 number of column clusters

• κ = (0.5, 0.5)

• µ = (µ1, µ2, µ3) = (0, 0, 0) intercepts

• q = 3 number of ordinal response categories

• β = (β1, β2) = (−0.3, 0.3) column cluster effects
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Table 1: True parameters used to generate the simulated dataset
κ1 κ2 µ2 µ3 β1 β2
0.5 0.5 0 0 -0.3 0.3

Table 2: Estimated parameters value from 5 different starting points, and the calculated
data log-likelihood value

Estimated parameters Estimated log-likelihood
κ̂1 κ̂2 µ̂2 µ̂3 β̂1 β̂2 ˆ̀

1 0.56 0.44 0.04 -0.02 -0.28 0.28 -1959.98
2 0.44 0.56 0.04 -0.02 0.28 -0.28 -1959.98
3 0.44 0.56 0.04 -0.02 0.28 -0.28 -1959.98
4 0.44 0.56 0.04 -0.02 0.28 -0.28 -1959.98
5 0.02 0.98 -0.67 -0.67 -0.66 0.66 -1970.19

We estimate the model parameters using the EM algorithm as detailed in Section 3. To
avoid the risk of converging to local maxima, we used five random starting points as the
initial values for the EM algorithm.

The results are illustrated in Table 2. The estimated result from the starting points
2-4 reached the same incomplete data log-likelihood and the same estimates for all the
parameters, which gives us confidence that we have found the global maximum of the
likelihood. For result from the starting point one, it suggested the label switching problem
of mixture models for clustering. κ̂1 and κ̂1 are swapped with each other, β̂1 and β̂2 are
swapped with each other. This is an inevitable problem of mixture models. Even though we
can separate the clusters, the labels for clusters might change in the end, more discussion
about this is in Stephens (2000).

5. Future research

The next step of our research will be:

• Running simulation study on a large scale for the model. The simulation result il-
lustrated in Section 4 is only for one small dataset. We will run more simulation
studies and use heat maps to evaluate our proposed model on row/column clustering
and biclustering.

• Using information criteria to select the right number of clusters. Model selection
method such as AIC, BIC and CLC will be used to make the model selection.

• Evaluate and compare our model with other clustering models using real data.
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