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Abstract
We study a one-unit repairable system with two identical, cold standby spare units in terms of

limiting availability A∞ and limiting profit per unit time ω, using semi-Markov processes, when
life- and repair time distributions are exponential. The failed unit undergoes repair either by an
in-house repairer within a randomly chosen exponential patience time T , or else by a visiting expert
repairer, who works faster but charges at a higher rate. Since there are two repair facilities, we
allow the regular repairer to begin repair or to continue repair beyond T , if the expert is busy. Two
models arise according as the expert repairs one or all failed units during each visit. We show that
(1) adding a second spare unit to a one-unit system backed by only one spare unit increases both
A∞ and ω; (2) thereafter adding a second repair facility improves both criteria further. Finally, we
determine whether the expert must repair one or all failed units in order to maximize these criteria.
This optimal strategy fulfills the maintenance management objectives better than those in previously
studied models.

Key Words: Cold standby, Perfect repair, Patience time, Semi-Markov process, Sojourn time,
Busy time

1. Introduction

We consider a continuously monitored, one-unit repairable system supported by two other
identical units, and serviced by two types of repairers in order to reduce maintenance cost.
Also, there are two repair facilities to accommodate both repairers at a time. A regular
in-house repairer may have limited maintenance knowledge, but he is paid less per hour
and his continual presence eliminates the overhead expense payable to a visiting expert
repairer. Generally, the regular repairer can do minor repairs within a given patience time,
and is either incapable of performing more complicated repairs, or is unable to do so within
the patience time. The visiting expert repairer, on the other hand, can fix any problem with
the failed unit, and she performs the repair faster than the regular repairer. However, her
hourly charges are comparatively higher, and she must be paid also a trip charge for each
visit.

This is how the system operates: Initially, one unit is put on operation and the other two
units are on cold standby. Consequently, the system differs from a 1-out-of-3 system. Upon
failure of the operating unit, immediately a spare unit is placed on operation, and the failed
unit undergoes repair—first by the regular repair person, and if it is not repaired within the
patience time T , the visiting expert repair person is called in. We allow a random patience
time (RPT). We also call in the expert repairer when the system goes down because all
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three units are down; that is, the regular repairer is busy fixing a previously failed unit, the
patience time is not over yet, but the other two units have successively failed.

Since the two repairers can work simultaneously, the regular repairer works on the
failed unit until his patience time is over or until the expert is freed up to take over,
whichever comes later. Also, we assume that the benefit of any partial repair done by
the regular repair person is forfeited when the expert takes over the job. We also assume
that when repair is complete by either repairer, the repaired unit becomes as good as new.

How long will the expert remain at the repair facility? We consider two possibilities
before the expert leaves the system: Either she repairs all failed units before leaving one
unit on operation and the other two on cold standby or one unit on operation, one unit on
standby and another one under repair by regular person while she is visiting, which we call
the multiple repair by expert (MRE) policy. Or, she fixes only one failed unit during each
visit; and she lets the regular repairer attend to the waiting failed unit(s), if any. This second
possibility we call the single repair by expert (SRE) policy.

Depending on the number of repairs done by the expert—single or multiple—two pos-
sible models arise: (1) MRE-RPT, (2) SRE-RPT. We evaluate the performance of these two
models in terms of limiting availability A∞ and limiting profit per unit time ω. Under the
assumption of continuous monitoring and continuous life- and repair times, the limiting
availability exists; and it is defined as the long-run proportion of time the system is up [1].
Likewise, the limiting profit per unit time is defined as the long-run difference between the
net revenue earned and the repair cost paid to the repair persons, including a trip charge
payable to the expert, all expressed per unit time.

[2] studies Models (1) and (2), and also those under deterministic patience time policy
(DPT)–(3) MRE-DPT and (4) SRE-DPT–when there is only one spare unit and one repair
facility. Assuming exponential life- and repair times, they obtain A∞ and ω using the
technique of semi-Markov processes (SMP). [3] extends their results to the case of two
spare units. Such an extension is desirable if, for example, A∞ with only one spare unit
falls below an acceptable threshold even when the units are state-of-the-art. Assuming that
the engineering side has already done its best to manufacture such crucial units, on behalf
of the maintenance team we can further improve A∞ to exceed the acceptable threshold by
utilizing one more spare unit. In this paper, we extend their results to a system with two
repair facilities under RPT policy. It can be seen that the Markovian property fails under
the DPT policy, since the transition out of some states may depend not only on the current
state but also on the history of the process.

We demonstrate that under RPT policy, the system with two spare units and two repair
facilities has higherA∞ and ω compared to a system with one spare unit or two spare units,
with only one repair facility.

The rest of the paper is organized as follow: In Section 2, we give a literature review.
In Section 3, we formulate the stochastic behavior of the repairable system as an SMP; and
we describe the analytic techniques for deriving the limiting availability and the limiting
profit per unit time. In Section 4, we provide detailed analytic derivations for our two repair
models. Section 5 compares the two models against those when there is one spare unit or
two spare units, with only one repair facility. Finally, Section 6 concludes the paper with a
summary and several directions for future research.
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2. Literature Review

In this section, we review some latest developments in modeling repairable systems to
address various reliability characteristics.

[4] considers a one-unit repairable system, supported by r identical repair facilities
and s cold standby spare units, r ≤ s + 1, which fails when all units are down and are
undergoing or awaiting repair. They obtain limiting average availability under a perfect
repair policy when lifetime is arbitrary and repair time is exponential. [5] studies a similar
model, but they obtain the instantaneous availability function under both life- and repair
times exponentially distributed.

[6] deals with reliability and sensitivity analysis of a repairable system with several
operating- and warm standby units, and several unreliable service stations. Failure times
and service times are exponentially distributed, and the service station is subject to break-
downs according to a Poisson process. They determine the mean time to failure (MTTF)
and system reliability; and study how these characteristics change with the model parame-
ters.

[7] studies a cold standby repairable system consisting of two dissimilar components—
with Component 1 having priority in use—and one repairman. Component 2 is as good
as new after repair, while Component 1 follows a geometric process repair. Assuming
exponential life- and repair times, they derive some important reliability indices such as the
system availability, reliability, mean time to first failure (MTTFF), rate of occurrence of
failure and the probability the repairman remains idle. For Component 1, they determine
an optimal replacement policy which minimizes the long-run average cost per unit time.

[8] designs a maintainable cold standby system which minimizes the system cost rate
subject to availability constraint. [9] investigates the cost-benefit analysis of a two-unit cold
standby system with two-stage repair with waiting time in between. They use regenerative
point processes to obtain time dependent availability, steady state availability, reliability,
MTTF and profit function.

[10] proposes two interval availability indexes for Markov repairable systems which
measure the probability that the system is working during a given time window contain-
ing either a specified point or an interval. [11] studies a discrete-time semi-Markovian
repairable system where the state space of the process includes three subsets—working,
changeable and failed. They apply Z-transform to derive reliability, point availability and
interval availability. They also discuss for their system the two new reliability measures
introduced in [10].

[12] describes repairable systems in which defects are detected before failure, triggering
repair. The system is either perfectly repaired within a time period, and the process renews;
or it is not repaired within the time period, causing fatal failure. The authors derive the
survival function of these systems assuming exponential time to defect, deterministic time
period and arbitrary repair time; though they illustrate the results only under exponential
repair time. They also obtain asymptotic survival probability under the assumption of fast
repair when distributions are arbitrary.

[13] employs cost analysis approach in the redundancy-allocation problem to obtain the
optimal number of allocated cold redundant units in a one-unit repairable system. In this
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system, the main component is put on operation first, and as soon as the failure happens,
the redundant component is replaced and the failed unit undergoes repair. They develop
a model using continuous-time Markov chain to analyze system reliability assuming that
both failure- and repair time are exponentially distributed.

Repairable systems with two types of repairers have not been studied extensively. [14]
studies Model (2) with only one spare unit. They allow an expert to take over the repair only
after the patience time of the regular repairer is exhausted without completing the repair,
even if the system fails during this time. [15] calls in the expert as soon as the patience time
is over or the system fails. Although they claim to allow arbitrary life-, repair- and patience
time distributions, their results are correct only under exponential life- and exponential
repair times, as pointed out in [2]. [16] allows a random pre-inspection time for the regular
repairer to determine whether he is able to repair a failed unit or not. If he is capable
of repairing, he starts the repair; otherwise, the expert is called immediately. [2] studies
Models (1)-(4), when there is only one spare unit. They obtain limiting availability and
limiting profit per unit time using the SMP technique under exponential life- and repair
times. They also extend the technique to allow arbitrary life- and repair times.

[17] allows only one repair person but permits two types of failures and hence two
types of repair. They find MTTF, limiting availability and limiting profit using the Laplace
transformation technique.

[18] studies a one-unit system backed by a hot standby spare unit in a master-slave
relationship. Initially, the master unit is operating and the slave unit is on hot standby.
There are three types of failures: minor, major-repairable and major-irreparable (which
requires replacement). The regular repairer repairs only minor failures. They claim to
derive the system MTTF, steady-state availability and limiting profit per unit time assuming
repair- and replacement times are arbitrary but lifetime is exponential; however, no analytic
solutions are given. In fact, their theoretical results are valid only under exponential life-,
repair- and replacement times.

The papers discussed above utilize the Laplace transform technique to obtain various
system reliability indices including, but not limited to, availability, busy periods for the
two repairers and profit. None of those papers actually invert the Laplace transform except
in the case of exponential distribution. Therefore, we prefer to use the relatively more
straight-forward and simpler method of semi-Markov processes (SMP).

[3] extends the results of [2] to the system with two spare units and one repair facility
using SMP technique. For any choice of parameter values, they determine a range of values
of T for which Model (3) performs the best in terms of both A∞ and ω. Furthermore, they
obtain a threshold value for the cost per unit time payable to the expert repairer such that
so long as the expert charges less than this threshold value the MRE policy yields higher
profit than the SRE policy, and vice versa.

3. System Description and Mathematical Framework

For the two models (1) and (2) discussed in Section 1, we study the system limiting avail-
ability and limiting profit per unit time under the following assumptions:

1. A one-unit system has three identical units. At the very beginning, one unit is put on
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operation, and the other two spare units remain on cold standby.

2. There are two repair facilities attended by regular and the expert repairer.

3. Failure of the operating unit is immediately detected; the failed unit is sent for repair,
and if a standby unit is available, it is put on operation immediately.

4. The regular repair person has to finish repair within a maximum allowable patience
time T which is random (RPT).

5. The system fails when all three units are down.

6. When either the patience time for the regular repair person is over or the system fails,
whichever happens first, the expert is called; and she arrives immediately.

7. The regular repairer works on the failed unit until his patience time isover or until
the expert is freed up to take over, whichever comes later.

8. Life-, repair- and patience times are exponentially distributed with arbitrary parame-
ters, and are independent of one another. Admittedly, this is a restrictive assumption,
which we intend to remove in subsequent research.

9. When the expert repairer takes over the job, the benefits of partial repair done by
the regular repairer is forfeited. In fact, this assumption follows from the previous
assumption.

10. We consider two options for the expert repairer: She may leave the repair facility
after repairing all failed units before leaving one unit on operation and the other two
on cold standby or one unit on operation, one unit on standby and another one under
repair by regular person, which is called the MRE model. Or, she may leave the
facility after repairing only one failed unit and letting the regular repairer attend to
the other failed unit(s), if any. This alternative model is called the SRE model.

11. We assume a perfect repair policy under which a repaired unit becomes as good as
new.

At any time, a unit exhibits one of five possible features: s (on standby), p (operating), r
(undergoing repair by regular repairer), r̄ (undergoing repair by regular repairer beyond T
when the expert is busy with repairing another failed one) e (undergoing repair by expert
repairer) or w (awaiting repair). Since the units are identical, it suffices to record how many
units are exhibiting each feature. Accordingly, the system is in one of the nine possible
states: 1 = (p, s, s), 2 = (r, p, s), 3 = (e, p, s), 4 = (r, w, p), 5 = (e, r, p), 6 = (e, r̄, p),
7 = (e, r, w), 8 = (e, r, w), 9 = (e, r̄, w). The system is down in States 7, 8 and 9, and is
up in all other states. States 7 and 8 represents the same features of units but we separate
those because the system enters in the state with units’ features (e, r, w) from two different
paths.

Figure 1 shows the transitions under SRE and MRE models, along with random vari-
ables that determine the sojourn times and transition probabilities.

Let us first explain the random variables. LetX , Y andZ denote the lifetime of the unit,
the repair time by the regular repairer and the repair time by the expert respectively. Some
additional random variables shown in the diagram have the following interpretations: The
variable X ′ is another lifetime which has the same distribution as X , but is independent of
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Figure 1: Transition diagrams for SRE (left) and MRE (right) models

X . The variable T ′ and T ′′ are the remaining patience times. They reduce to T ′ = T −X
and T ′′ = T − X − X ′ under the DPT policy; but under the RPT policy, in view of the
memoryless property of exponential distribution, T ′ and T ′′ has the same distribution as T ,
but they are all independent.

Next, let us explain the sojourn times in each state and the transitions out of them. The
system starts in State 1 at time t = 0; it stays there for a random duration X; and then it
moves to State 2. The sojourn time in State 2 is min(X,Y, T ); and the system returns to
State 1 if Y is the smallest, to State 3 if T is the smallest, or to State 4 if X is the smallest.
The sojourn time in State 3 is min(X,Z); and the system moves to State 1 if Z < X , or to
State 5 otherwise. The sojourn time in State 4 is min(X ′, Y, T ′); and the system moves to
State 2 if Y is the smallest, to State 5 if T ′ is the smallest, or to State 7 if X ′ is the smallest.
The sojourn time in State 5 is min(X,Y, Z, T ). The system moves to State 2 if Z is the
smallest, to State 3 if Y is the smallest, to State 6 if T is the smallest, or to State 8 if X is
the smallest. The sojourn time in State 6 is min(X,Y, Z). The system moves to State 3 if
either Y or Z is the smallest, or to State 9 if X is the smallest. The sojourn time in State 7
ismin(Z, Y, T ′′). The system moves to State 9 if T ′′ is the smallest, to State 5 (under MRE
policy) if either Y or Z is the smallest. However, under SRE policy, the system moves to
State 4 if Z is the smallest, or to State 5 if Y is the smallest. The sojourn time in State
8 is min(Z, Y, T ′). The system moves to State 9 if T ′ is the smallest. Transitions from
this state to State 4 and State 5 are the sames as those from State 7 under both SRE and
MRE policies. Finally, as soon as either the expert or the regular repairer repairs one of
the failed units in State 9, the system moves to State 5 under both SRE and MRE policies.
The red arrows emphasize the transitions exclusive to each model, while the solid arrows
are common to both models. The transition probabilities out of each state are determined
based on whichever associated random variable attains the minimum.

Let θk be the proportion of time the system spends in State k (k = 1, . . . , 9). Since the
system is down in States 7, 8 and 9, the limiting availability of the system is,

A∞ = 1− θ7 − θ8 − θ9. (1)

Having obtained A∞, we can now derive ω, the limiting profit per unit time. We need
the following parameters: The proportion of busy time for the regular repairer is Θr =
θ2 +θ4 +θ5 +θ6 +θ7 +θ8 +θ9, and that for the expert is Θe = θ3 +θ5 +θ6 +θ7 +θ8 +θ9.
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Let Rp, Cp, Cr, Ce denote respectively the net revenue, the operation cost, the payment to
the regular repairer and the payment to the expert—all expressed per unit time. Also, let
Cl denote the trip charge paid to the expert per trip (not per unit time). Then the limiting
profit per unit time is given by

ω = A∞(Rp − Cp)− [ΘrCr + ΘeCe + Cl/τ ], (2)

where τ is the expected length of a cycle, which is defined as the duration from the epoch
the system enters State 2, until it returns to State 2 after visiting one of States 3, 5, 6, 7,
8 and 9 at least once. Thus, within each cycle, the expert comes and returns exactly once,
and she is paid the trip charge Cl exactly once. By Wald’s First Identity [1], the expected
number of visits by the expert per unit time is the reciprocal of τ . Therefore, Cl/τ is the
trip charge paid to the expert per unit time.

4. Limiting Availability and Limiting Profit Analysis

In this section, we derive the analytic expressions for the limiting availability A∞ and the
limiting profit per unit time ω for two models: (1) MRE-RPT, (2) SRE-RPT. In view of
Assumption 9, let us denote the patience time, the lifetime, the repair times by the regular
repairer and the expert respectively as

T ∼ exp(α), X ∼ exp(λ), Y ∼ exp(β), Z ∼ exp(γ).

Here, the parameter of an exponential distribution denotes the rate; and its reciprocal de-
notes the mean. By the memoryless property of an exponential random variable, the future
trajectory of the stochastic process depends only on the present state, while the history
of the process can be disregarded. Hence, the process, describing each repair model is
a semi-Markov processes (SMP); that is, the system changes states in accordance with a
Markov chain, but takes a random amount of time between changes. See [19] for more
details on SMP. More specifically, in our models, the embedded discrete time stochastic
process (DTSP) is a Markov chain with a finite state space {1, 2, 3, 4, 5, 6, 7, 8, 9} and a
transition probability matrix P = ((Pij)); i, j = 1, . . . , 9. The exact expressions for Pij
varies across the four models, and will be presented in the respective subsections.

The stationary distribution of a Markov chain gives the limiting probability πj of transi-
tions entering (also departing) State j. It is unique, and is obtained by solving the following
system of equations (for more details see [19], pp. 215-216),

πj =
∑
i

πiPij ,
∑
j

πj = 1. (3)
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Moreover, the expected sojourn times in different states are

µ1 = E[X] =
1

λ

µ2 = E[min(X,Y, T )] =
1

α+ λ+ β

µ3 = E[min(X,Z)] =
1

λ+ γ

µ4 = E[min(X ′, Y, T ′)] =
1

α+ λ+ β

µ5 = E[min(X,Y, Z, T )] =
1

α+ λ+ β + γ

µ6 = E[min(X,Y, Z)] =
1

λ+ β + γ

µ7 = E[min(Y,Z, T ′′)] =
1

α+ β + γ

µ8 = E[min(Y,Z, T ′)] =
1

α+ β + γ

µ8 = E[min(Y,Z)] =
1

β + γ

(4)

The following theorem, also quoted from [19], pp. 215-216, gives the proportions of time
the SMP spends in the different states.

Theorem 1 For an SMP, if the embedded DTSP is irreducible with stationary probabilities
π, and if the times between successive visits to any State k has a non-lattice distribution
with a finite mean, and µk is the expected sojourn time in State k before transition, then the
limiting probability that the process will be found in State k exists, is independent of the
initial state, and is given by

θk =
πkµk∑9
j=1 πjµj

. (5)

In the following subsections, for each of the two models, starting from the transition matrix
P , we derive θk (k = 1, . . . 9) using (5), (3) and (4). Then we obtain A∞ using (1).
Next, we obtain the analytic expression of τ in each model by solving a suitable system of
recursive relations. Subsequently, we obtain ω using (2).

4.1 Model 1: MRE-RPT

For the MRE-RPT repair model, the embedded DTMC has transition matrix

P =



0 1 0 0 0 0 0 0 0
β

α+λ+β 0 α
α+λ+β

λ
α+λ+β 0 0 0 0 0

γ
λ+γ 0 0 0 λ

λ+γ 0 0 0 0

0 β
α+λ+β 0 0 α

α+λ+β 0 λ
α+λ+β 0 0

0 γ
α+λ+β+γ

β
α+λ+β+γ 0 0 α

α+λ+β+γ 0 λ
α+λ+β+γ 0

0 0 β+γ
λ+β+γ 0 0 0 0 0 λ

λ+β+γ

0 0 0 0 β+γ
α+β+γ 0 0 0 α

α+β+γ

0 0 0 0 β+γ
α+β+γ 0 0 0 α

α+β+γ

0 0 0 0 1 0 0 0 0


. (6)
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Solving the system of equations (3), we obtain the stationary distribution as

π ∝
( βξ1
α+ λ+ β

+
γξ2
λ+ γ

, ξ3, ξ2,
λξ3

α+ λ+ β
, 1,

α

α+ λ+ β + γ
,

(
λ

α+ λ+ β
)2ξ3,

λ

α+ λ+ β + γ
, ξ4

)
(7)

where,

ξ1 = 1− β

α+ λ+ β
− λβ

(α+ λ+ β)2

ξ2 =
αγ(λ+ β + γ) + βξ1(λ+ β + α)(λ+ β + γ) + αξ1(β + γ)(λ+ β + α)

(λ+ β + γ)
(
ξ1(λ+ β + α)(λ+ β + γ + α)− αγ

)
ξ3 =

α+ λ+ β

α

(
ξ2 −

β

α+ λ+ β + γ
− α(β + γ)

(λ+ β + γ)(α+ λ+ β + γ)

)
ξ4 =

αλ

(λ+ β + γ)(α+ λ+ β + γ)
+

ξ3αλ
2

(λ+ β + γ)(α+ β + γ)2
+

αλ

(α+ β + γ)(α+ λ+ β + γ)
.

Substituting the mean sojourn times (4) and the stationary distribution (7) into (5), we can
obtain expressions for θk’s. Thereafter, from (1), we get

A∞ = 1− θ7 − θ8 − θ9

where

θ7 ∝ µ7π7 =
ξ3λ

2

(α+ λ+ β)2(α+ β + γ)

θ8 ∝ µ8π8 =
λ

(α+ β + γ)(α+ λ+ β + γ)

θ9 ∝ µ9π9 =
ξ4

β + γ
.

(8)

Next, the expected length of a cycle satisfies the recursive relation

τ = µ2 + P21(µ1 + τ) + P23σ
M
32 + P24σ

M
42 (9)

where σM32 denotes the expected time for the system to go from State 3 to State 2 (via State
1 or State 5) under the MRE policy. The other parameters σM42 , σM52 , σM62 , σM72 and σM82 (to
be introduced shortly) denote similar quantities. These parameters satisfy

σM32 = µ3 + P31µ1 + P35σ
M
52

σM52 = µ5 + P53σ
M
32 + P56σ

M
62 + P58σ

M
82

σM62 = µ6 + P63σ
M
32 + P69(µ9 + σM52 )

σM82 = µ8 + P85σ
M
52 + P89(µ9 + σM52 )

(10)

Solving the system of equations (10), we obtain

σM52 =
µ5 + P53(µ3 + P31µ1) + P56(µ6 + P63(µ3 + P31µ1) + P69µ9) + P58(µ8 + P89µ9)

1− P53P35 − P56P63P35 − P56P69 − P58P85 − P58P89
.

(11)
Thereafter, using (11) we obtain an explicit expression for σM32 and σM72 which the latter
satisfies

σM72 = µ7 + P75σ
M
52 + P79(µ9 + σM52 ). (12)
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Finally. we have one more relationship

σM42 = µ4 + P45σ
M
52 + P47σ

M
72 + P42τ. (13)

Substituting the expressions for σM32 and σM42 into (9) and solving, we obtain

τ =
µ2 + P21µ1 + P23σ

M
32 + P24(µ4 + P45σ

M
52 + P47σ

M
72 )

1− P21 − P24P42
. (14)

Using expression (14) for τ , we obtain ω from (2).

4.2 Model 2: SRE-RPT

For the SRE-RPT repair model, the embedded DTMC has transition matrix

P =



0 1 0 0 0 0 0 0 0
β

α+λ+β 0 α
α+λ+β

λ
α+λ+β 0 0 0 0 0

γ
λ+γ 0 0 0 λ

λ+γ 0 0 0 0

0 β
α+λ+β 0 0 α

α+λ+β 0 λ
α+λ+β 0 0

0 γ
α+λ+β+γ

β
α+λ+β+γ 0 0 α

α+λ+β+γ 0 λ
α+λ+β+γ 0

0 0 β+γ
λ+β+γ 0 0 0 0 0 λ

λ+β+γ

0 0 0 γ
α+β+γ

β
α+β+γ 0 0 0 α

α+β+γ

0 0 0 γ
α+β+γ

β
α+β+γ 0 0 0 α

α+β+γ

0 0 0 0 1 0 0 0 0


. (15)

Using linear algebra we are able to solve the system of equations (3) to obtain stationary
distribution π for this model. However, due to the complexity of the solution, we apply
numerical technique to obtain the stationary distribution for some known values of the
parameters. It can be seen that both analytical and numerical solutions are consistent.
Having obtained the values of πj’s and the mean sojourn times (4), and substituting them
into (5), we can obtain the values of θk’s. Thereafter, from (1), we get

A∞ = 1− θ7 − θ8 − θ9.

To obtain ω we need to find the expected cycle time τ . Let σS32 denote the expected time
for the system to go from State 3 to State 2 (via State 1 or State 5) under the SRE policy.
The other parameters σS42, σS52, σS62, σS72 and σS82 (to be introduced shortly) denote similar
quantities. They satisfy the recursive relations

τ = µ2 + P21(µ1 + τ) + P23σ
S
32 + P24σ

S
42

σS32 = µ3 + P31µ1 + P35σ
S
52

σS42 = µ4 + P45σ
S
52 + P47σ

S
72 + P42τ

σS52 = µ5 + P53σ
S
32 + P56σ

S
62 + P58σ

S
82

σS62 = µ6 + P63σ
S
32 + P69(µ9 + σS52)

σS72 = µ7 + P74σ
S
42 + P75σ

S
52 + P79(µ9 + σS52)

σM82 = µ8 + P84σ
S
42 + P85σ

M
52 + P89(µ9 + σM52 ).

(16)

Rewriting σS42 as a function of σS52 and τ , we obtain σS52 from the fourth equation in (16).
Then, we obtain σS32 and σS42. Having obtained all the σS’s, from the first equation in (16),
we get

τ =
µ2 + P21µ1 + P23σ

S
32 + P24(µ4 + P45σ

S
52 + P47σ

S
72)

1− P21 − P24P42
. (17)

Using expression (17) for τ , we obtain ω from (2).
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5. Comparison of Models

In this section, for some choices of values of the parameters, we compare the two repair
models discussed in Section 3 in terms of the limiting availabilityA∞ and the limiting profit
per unit time ω under RPT policy. For a given choice of parameter values, we determine the
best model under which both criteria are maximized. We also demonstrate that a system
with two spare units has a higher A∞ and a higher ω than a system supported by only one
spare unit when there is only one repair facility; thereafter utilizing second repair facility
which allows both repairers work on the failed units at a time, improves both criteria.

We compare the two models MRE-RPT and SRE-RPT in terms of A∞, ω, Θr and Θe

for systems with either one spare unit (S = 1) or two spare units (S = 2) when either
one repair facility (R.F = 1) or two repair facilities (R.F = 2) is available. We assume
that the expert repairer completes repair quicker than the regular repairer, but she charges
a higher rate; that is, β < γ and Cr < Ce. The comparisons are made given the parameter
values: λ = 0.5, α = 0.3, β = 0.35 and γ = 0.75 and additionally: R = 20, Cr = 1,
Ce = 5 and Cl = 3. Table 1 shows the results obtained for two repair models MRE and
SRE under RPT policy and different number of spares and repair facilities.

Table 1: Calculated results under RPT policy.

Criteria
SRE MRE

S = 1 S = 2 S = 2 S = 1 S = 2 S = 2
R.F = 1 R.F = 1 R.F = 2 R.F = 1 R.F = 1 R.F = 2

A∞ 0.736 0.801 0.884 0.788 0.844 0.896
ω 11.919 13.640 14.978 12.484 14.068 15.126
Θr 0.320 0.442 0.605 0.174 0.227 0.572
Θe 0.342 0.327 0.307 0.426 0.457 0.331

We observe the following results:

1. The limiting availability A∞ is strictly higher under MRE policy than under SRE
policy for systems with either one or two spare units, irrespective of the number of
repair facilities.

2. The limiting profit per unit time ω is strictly higher under MRE policy than under
SRE policy for systems with either one or two spare units, irrespective of the number
of repair facilities.

3. Adding one more spare unit to a system backed by only one spare unit increases both
A∞ and ω. For example, A∞ is below 80% when S = 1; but it is more than 80%
when S = 2. See [3] for further details.

4. Utilizing one more spare unit yields Θr > Θe. This implies that we utilize the regular
repairer most. Furthermore, adding second repair facility makes the regular repairer
busier than the expert which results in even less costs and higher ω.

5. Adding second repair facility to the system with two spare units raises both A∞ and
ω. For example, the limiting availability is increased to 90% under MRE policy.
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Figure 2: Limiting profit per unit time as a function of Ce for system with S = 2 and
R.F = 2.

Although, for our choice of parameter values, it was seen that ω is larger under MRE policy
than under SRE policy, if the expert charges too much, then MRE model may not dominate
SRE model in terms of ω. Figure 2 depicts ω for MRE and SRE models as the cost per
unit time paid to the expert repairer Ce varies with R = 20, Cr = 1, Cl = 3. If the expert
charges at a rate less than a threshold, then MRE model yields a higher limiting profit per
unit time than SRE model under RPT policy; and the opposite holds if the expert charges
above the threshold. In our example, the threshold for Ce is 11.231.

6. Concluding Remarks

In this paper, we extend the results obtained in [3] under random patience time by introduc-
ing another repair facility to a cold standby repairable system consisting of two identical
units and one repair facility, and serviced by two types of repairers. In a situation where
component lifetime is short and repair time is long, multiple spare units are necessary to
improve the reliability characteristics of the system. In addition, utilizing multiple repair
facilities enable both repairers to work on the failed units simultaneously which results in
higher available and more profitable system. In this extended set up, we study the limiting
availability and the limiting profit per unit time when lifetime and repair times are exponen-
tially distributed and patience time for the regular repairer is random. Two possible models
arise depending on the number of failed units the expert repairer is allowed to repair during
each visit. We derive the limiting availability and limiting profit per unit time for each of
the two possible models using SMP, which is much simpler than the Laplace transform
technique widely used in the literature. As anticipated, we verify that the system supported
by two repair facilities results in higher A∞ and higher ω compared to the system having
only one repair facility.
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Since the expert repairs faster than the regular repairer, MRE yields a higher A∞ than
SRE. However, in order to maximize ω, the maintenance administrator may adopt either
MRE or SRE policy depending on the relative costs payable to the expert (compared to the
regular repairer). Thus, given all cost parameters, the maintenance engineer can determine
whether MRE or SRE is the preferred policy in terms of ω.

We identify several directions of future research:

• For the purpose of building the repairable models, we have assumed life- and repair
times to be exponential. Relaxing these assumptions, though desirable, may prove to
be challenging since the stochastic process will no longer be an SMP.

• We assumed that the units are identical. It is desirable to study a more realistic system
involving non-identical units with different life- and repair rates. In particular, we
must determine which unit should be put on operation and which on repair whenever
there are multiple such units.

• We studied the system when patience time is random. It is highly interested to con-
sider the case where patience time is predetermined which is logistically more de-
sirable. However, we fail to use SMP under deterministic patience time policy since
Markovian property fails in some states.
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