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Abstract: Count time series data are frequent in many applied disciplines. In de-
scribing them, a specific count may reveal more often than usual. In faming a mod-
eling approach, one must account for the excess count. In this paper, we develop
a copula-based time series model for zero-inflated counts with the presence of co-
variates. Zero-inflated Poisson (ZIP), zero-inflated negative Binomial (ZINB), and
zero-inflated Conway-Maxwell-Poisson (ZICMP) distributed marginals will be con-
sidered, while the joint distribution is modeled under Gaussian copula with autore-
gression moving average (ARMA) errors. Likelihood is formulated for inference,
under sequential inference method. A simulated study is conducted, and a practical
application in environmental setting is described.

Keywords: Conway-Maxwell-Poisson; Count time series; Gaussian copula; Negative bi-
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1. INTRODUCTION

Zero-inflated counts time series are found in several fields such as environmental
sciences, public health, and economics. For examples, monthly counts of sandstorms
in some areas, rare diseases with low infection rates, and crimes such as arson. In
these cases, the observed counts may include a considerable frequency of zeros.
However, during certain seasons, these counts could take larger values. Additionally,
these zero-inflated counts are usually autocorrelated when the data is collected over
time. Standard time series models fail to account for such problems. Motivated
by these problems, we propose and develop a class of time series models for zero-
inflated counts with the presence of covariates using Gaussian copula.

Copulas are multivariate distributions with uniform margins on the unit interval.
There are numerous copulas available, and one of the most popular copulas in the
literature is the Gaussian copula. The Gaussian copula shares many of the proper-
ties of multivariate normal (Gaussian) distribution such as the correlation structure.
Therefore, the flexibility to manipulate the association structure by using the Gaus-
sian copula will be taken advantage of. The Gaussian copula function is given by

C(u1, . . . , un) = ΦR(Φ−1(u1), . . . ,Φ
−1(un)), ∀ui ∈ [0, 1], (1.1)

where Φ−1 is the inverse CDF of a standard normal and ΦR is the joint CDF of a
standard multivariate normal distribution with covariate matrix equal to the positive
definite correlation matrix R.
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To accommodate for the zero-inflation in the data, the zero-inflated Poisson
(ZIP), zero-inflated negative Binomial (ZINB), and zero-inflated Conway-Maxwell-
Poisson (ZICMP) distributions are chosen.

Suppose Yt denotes a random count at time t with the probability mass func-
tion (pmf) and the cumulative distribution function (cdf) are given by ft and Ft,
respectively.

1. ZIP: ωt zero-inflation parameter, λt intensity parameter, and

ft(yt) = ωtI{yt=0} + (1− ωt)
e−λtλytt
yt!

,

where I{yt=0} is the indicator function, ωt ∈ [0, 1], and λt > 0. If ωt → 0,
the baseline Poisson distribution is obtained.

2. ZINB: ωt zero-inflation parameter, λt intensity parameter, κt dispersion pa-
rameter, and

ft(yt) = ωtI{yt=0} + (1− ωt)
Γ(κt + yt)

Γ(κt)yt!

( κt
κt + λt

)κt( λt
κt + λt

)yt
,

where I{yt=0} is the indicator function, ωt ∈ [0, 1], λt > 0, and κt ≥ 0. If
ωt → 0, the baseline NB distribution is obtained.

3. ZICMP: ωt zero-inflation parameter, λt intensity parameter, κt dispersion pa-
rameter, and

fYt(yt) = ωtI{yt=0} + (1− ωt)
λytt

(yt!)κtZ(λt, κt)
,

where I{yt=0} is the indicator function, ωt ∈ [0, 1], λt > 0, and κt ≥ 0. If
ωt → 0, the baseline CMP distribution is obtained, and if κt = 1, the ZIP
distribution is obtained.

Covariates can be included through the marginal parameters via generalized linear
models (GLM).

The rest of the paper is organized as follows. In Section 2, we describe the Gaus-
sian copula zero-inflated regression models for the zero-inflated count time series.
In Section 3, we describe the parameter estimation method applied via sequential
importance sampling. Section 4 presents a simulation study and real data examples
to illustrate the proposed models. We end the paper with a summary in Section 5.

2. REGRESSION MODELS FOR ZERO-INFLATED COUNT TIME
SERIES

Using the ideas in Masarotto and Varin (2012) and Alqawba et al. (2019a), we
construct a regression model for zero-inflated time series count data in the pres-
ence of covariates. Suppose that the errors εt for t = 1, . . . , n follow a stationary
ARMA(p, q) process, with Gaussian noise, ηt for t = 1, . . . , n that are independent
and identically distributed normal random variables with variance σ2η . Then the error
vector ε = (ε1, . . . , εt)

′ follows a multivariate normal distribution with mean 0 and
covariance matrix R(ρ) where ρ = (ϕ, δ) is a function of the ϕ = (ϕ1, . . . , ϕp)

′

and δ = (δ1, . . . , δq)
′, the autoregressive and moving average vector of parameters,

respectively. As in Masarotto and Varin (2012), we make the assumption σ2η = h(ρ)
so thatR(ρ) will be a correlation matrix, where h(ρ) is a function of the dependence
parameters. See page 9, Alqawba (2019) for an implicit form of the function h(ρ).
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As a special case, consider the process ARMA(1, 0) (or AR(1)). Then the
process εt is governed by εt = ϕεt−1 + ηt. With the assumption σ2η = 1 − ϕ2,
the correlation matrix takes the form R(ρ) = R(ϕ) =

[
ϕ|i−j|

]
, which is known

as autoregressive of order one. Note that the marginally εt is standard normal and
the joint cdf of the vector ε = (ε1, . . . , εt)

′ is multivariate normal with mean 0 and
covariance matrix R(ρ). Thus the cdf of ε is ΦR(ρ)(ε1, ε2, . . . , εn) and the induced
copula is the Gaussian copula in (1.1), since ut = Φ(εt) is uniform on [0, 1] for
t = 1, 2, . . . , n.

Let Ft be one of the cdfs of the ZIP, ZINB or the ZICMP distributions. A general
regression model for the zero-inflated count Yt is

Yt = F−1t {Φ(εt)|Xt;θ}, for t = 1, . . . , n, (2.1)

where
F−1t (u) = inf {z ∈ R : Ft(z) ≥ u}, u ∈ (0, 1)

is the generalized inverse (quantile function) of the cdf Ft. The vector Xt =
(xt, zt,wt)

′ consists of covariates corresponding to the intensity (mean) parameter
λt, the zero-inflation parameter ωt and the dispersion parameter κt if needed, respec-
tively. Notice that some of the covariates could be constant across time. The vector
θ = (β,γ,α)′ is the unknown regression parameter that needs to be estimated from
the data.

We construct the model in (2.1) in such a way that ensures the zero-inflated
count Yt follows the desired distribution Ft(.) by the integral transformation theo-
rem. Such model appears in the literature under different names (see for examples,
Masarotto and Varin, 2012, Jia et al., 2018, and Lennon and Yuan, 2019). Generally,
the model falls under the class of nonlinear state-space model since the zero-inflated
counts, {Yt} are assumed to be generated using a nonlinear function of the latent or
state ARMA process, {εt}.

Note that since the counts are zero-inflated, the probability that the count is zero
affects the range of εt such that the range of ut when Yt = 0 is wider in comparison
with Yt > 0. In other words, the zero-inflation parameter ωt affects the range of ut
when Yt = 0 whereas the intensity parameter λt and the dispersion parameter κt (if
existed) affect the ranges of ut when Yt > 0.

The joint distribution function of the zero-inflated count time series, Yt, for t =
1, . . . , n follows the Gaussian copula given in (1.1), that is,

F (y1, . . . , yn) = ΦR(ρ)

(
Φ−1(F1(y1|X1;θ)), . . . ,Φ−1(Fn(yn|Xn;θ))

)
, (2.2)

and it holds only if (2.1) holds.
In a linear regression model with normal errors, the correlation of the responses,

say Yt and Ys, agrees with the correlation of the corresponding errors, εt and εs for
t 6= s. However, in our model the function, F−1, is nonlinear, hence the correlation
of Yt and Ys is not necessarily linear function of the correlation of εt and εs. Jia
et al. (2018) studied the relationship between the autocorrelations of the two pro-
cesses {Yt} and {εt} and defined a function that links the autocorrelations of the
two processes {Yt} and {εt} using Hermite expansions.

3. PARAMETER ESTIMATION

We are interested in estimating the parameter vectors ϑ = (θ,ρ)′ using a maximum
likelihood estimation (MLE) method. Based on the probability density function
define in (2.2), the likelihood function is given by

L(ϑ;y) = Pr(Y1 = y1, . . . , Yn = yn)

 
174



=
1∑

j1=0

· · ·
1∑

jn=0

(−1)j1+···+jnF (y1 − j1, . . . , yn − jn), (3.1)

where F (y1, . . . , yn) for jt = 0, 1 is given in (2.2), and can be expressed as

ΦR(ρ)(D+
1 , . . . ,D

+
n ) =

∫ D+
1

−∞
· · ·
∫ D+

n

−∞
φR(ρ)(ε1, . . . , εn)dε1 . . . dεn, (3.2)

where D+
t = Φ−1{Ft(yt|Xt;θ)}. Therefore, maximizing (3.1) requires the evalua-

tion of 2n multivariate distribution functions, and with time series data usually n is
quite large so the number of functions will be astronomically large and almost im-
possible to be optimized. In addition, straightforward optimization methods of the
likelihood function are not available yet due to the many-to-one mapping given in
(2.1). In addition, calculating the finite difference in (3.1) numerically might result
in negative values when the dimension is large (Nikoloulopoulos, 2016).

However, for some cases where the copula functions do not have a closed form,
the probability density function can be evaluated by integration over a rectangle
(Panagiotelis et al., 2012). In fact, for the Gaussian copula with discrete margins,
the likelihood function is given by the following n-dimensional rectangular integral

L(ϑ;y) = Pr(Y1 = y1, . . . , Yn = yn)

=

∫
D1(y1;θ)

· · ·
∫

Dn(yn;θ)

φR(ρ)(ε1, . . . , εn)dε1 . . . dεn, (3.3)

where

Dt(yt;θ) = [Φ−1{Ft(y−t |Xt;θ)},Φ−1{Ft(yt|Xt;θ)}] (3.4)

for t = 1, . . . , n and φR(ρ)(.) is the probability density function of an n-dimensional
normal distribution with zero mean vector and a variance covariance matrix given
by R(ρ). For small n, notable works have been done on precisely approximat-
ing the normal integral given in (3.3) (see for examples, Joe 1995 and Genz 1992).
However, for large n, as of the case for time series data, evaluating the likelihood
function using these deterministic approximations is computationally intensive and
is inefficient especially when the number of covariates is large. Masarotto and Varin
(2012) argued that applying simple Monte Carlo approximations of the likelihood
given in (3.3) used in importance sampling (IS) are quite inefficient. However, they
suggested sequential importance sampling method inspired by the popular Geweke-
Hajivassiliou-Keane (GHK) algorithm (Geweke, 1991; Hajivassiliou et al., 1996;
Keane, 1994) which was proven to be quite efficient in approximating the multivari-
ate probability integral given in (3.3). They assumed sampling from the following
truncated normal density given by

ft(εt|yt, εt−1, . . . , ε1;ρ), t = 1, . . . , n (3.5)

as a replacement of the difficult to control, ft(εt|yt, yt−1, . . . , y1;ρ) over the interval
given in (3.4). In addition, since we assume that the joint distribution of the errors
is multivariate normal distribution with variance covariance matrix R(ρ), the con-
ditional density φ(εt|εt−1, . . . , ε1;ρ) is of univariate normal distribution with mean
mt = E(εt|εt−1, . . . , ε1) and variance v2t = Var(εt|εt−1, . . . , ε1), for t = 1, . . . , n.
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The quantities mt and v2t can be efficiently obtained through the Cholesky decom-
position of R(ρ). Therefore, the conditional density given in (3.5) is of a truncated
normal distribution over the interval given in (3.4), and a random sample can be
obtained setting

εt = εt(ut) = mt + vtΦ
−1{(1− ut)at + utbt}, t = 1, . . . , n, (3.6)

where u1, . . . , un are n i.i.d. uniform random variable on the unit interval (0, 1),
and

at = Φ

[
Φ−1{Ft(y−t |Xt;θ)} −mt

vt

]
, bt = Φ

[
Φ−1{Ft(yt|Xt;θ)} −mt

vt

]
,

for t = 1, . . . , n.
The likelihood function is then approximated by the following sequential sam-

pler algorithm.

1. For k = 1, . . . ,K,

(a) generate n independent uniform(0, 1) random variables, u(k)1 , . . . , u
(k)
n ;

(b) compute the randomized errors ε(k)t = εt(u
(k)
t ) using (3.6);

2. estimate the likelihood by:

L̂(ϑ;y) =
1

K

K∑
k=1

{ n∏
t=1

φ(ε
(k)
t |ε

(k)
t−1, . . . , ε

(k)
1 ;ϑ)

ft(ε
(k)
t |yt, ε

(k)
t−1, . . . , ε

(k)
1 ;ϑ)

}
, (3.7)

where K denotes the number of replication. Börsch-Supan and Hajivassiliou (1993)
showed that L̂(ϑ;y) is an unbiased estimator of L(ϑ;y).

Thus, the maximum likelihood estimate of ϑ can be obtained by:

ϑ̂ = arg max
ϑ

L̂(ϑ;y). (3.8)

This optimization will yield a Hessian matrix that can be inverted to obtain standard
errors for the model parameters.

4. DATA ANALYSIS

4.1. Simulation

To evaluate the performance of the proposed method, we performed a comprehen-
sive simulation study in R (R Core Team, 2013). Based on the proposed model given
in (2.1), the simulation process is given as follows.
1) simulate ε ∼ ΦR(ρ)(ε1, . . . , εn), 2) compute U = (Φ(ε1), . . . ,Φ(εn)), 3) com-
pute Y = (F−11 {U1|X1;θ}, . . . , F−1n {Un|Xn;θ}), where Xt is the set of covari-
ates for t = 1, . . . , n. Due to the space limitation and the computational require-
ments of the estimation algorithm, we summarize the study results by considering
three models and each assumes one of the zero-inflated distributions presented in
the introduction. We consider the MA(1) dependence structure. No covariates are
considered, so the intensity parameter λ, zero-inflated parameter ω, and the disper-
sion parameter κ (if existed) are constant across time. The dependence parameter of
the latent MA(1) process is chosen to be δ = 0.5 across all three marginals. The
marginal parameters are then given by ZIP with λ = 4.3 and ω = 0.25; ZINB with
λ = 4.3, ω = 0.25 and κ = 0.5; and ZICMP with λ = 3, ω = 0.2 and κ = 0.25.
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Table 1 shows a summary of the simulation results for the ZIP, ZINB, and
ZICMP models with with stationary MA(1) errors. The summary shows that the
proposed estimation method performs well with the latent process {εt} following
MA(1) process.

Table 1. Mean of estimates, MADEs (within parentheses) for zero-inflated models
with MA(1) dependence structure.

Model n λ ω κ δ

ZIP 100 4.3223(0.1903) 0.2533(0.0347) 0.5167(0.0869)
200 4.3205(0.1290) 0.2521(0.0272) 0.5038(0.0578)
500 4.3088(0.0933) 0.2514(0.0176) 0.4961(0.0368)

ZINB 100 4.4940(0.8777) 0.2462(0.1281) 0.6227(0.2387) 0.5289(0.1102)
200 4.3317(0.7072) 0.2293(0.1099) 0.5556(0.1712) 0.4958(0.0661)
500 4.2904(0.4367) 0.2413(0.0721) 0.5305(0.1041) 0.4955(0.0456)

ZICMP 100 3.2587(0.5566) 0.3421(0.1421) 0.2585(0.0491) 0.5119(0.0842)
200 3.1520(0.3189) 0.3400(0.1400) 0.2544(0.0375) 0.4992(0.0554)
500 3.1229(0.2183) 0.3397(0.1397) 0.2549(0.0241) 0.4978(0.0366)

4.2. Real Data Example

The data set used in this example consists of the monthly count of strong sandstorms
recorded by the AQI airport station in Eastern Province, Saudi Arabia, which was
originally studied in Alqawba et al. (2019b). The station happens to be is located
in one of the major dust producing regions in the world (Idso, 1976). Sandstorm is
a weather event that results from strong wind releasing dust from the ground and
transfers it long distances (Goudie and Middleton, 2006). Sandstorms can cause
many environmental and human-related hazards. For examples, sandstorms impact
the air quality, disturb daily activities, and transportations. Hence, studying and
accurately analyzing the behavior of these phenomena is important to successfully
forecast such events.

The monthly counts studied here are characterized as strong sandstorms by the
AQI airport station. Tao et al. (2002) stated that a strong sandstorm reduces the
level of visibility to less than 500 meters and with average wind speed of 17.2 to
24.4 meters/seconds. The counts of these events contain zero inflation. Several
works have been applied on handling rare events such as strong sandstorms (see for
examples Tan et al., 2014 and Ho and Bhaduri, 2015). Here, we apply the proposed
zero-inflated count time series regression models using Gaussian copula.

The data set consists of 348 monthly counts of strong sandstorms, starting from
January 1978 to December 2013. The main objective was to apply the proposed
models and investigate if there were any significant seasonal and trend components.
Additionally, we investigated if there were any other predictors that affected the
frequency of sandstorms such as the monthly counts of dust haze events, maximum
wind speed, temperature, and relative humidity.
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Figure 1. Time series plot of monthly count of sandstorms, the autocorrelation function, bar-plot of
distribution of sandstorm counts, and circular plot of the monthly mean count of sandstorms.

Figure 1 shows the sandstorms series plot, the autocorrelation function, bar-plot
of the distribution of sandstorm counts, and circular plot of the monthly mean count
of sandstorms. From the time series plot and the bar-plot, we could see that the
distribution of the sandstorm counts had more zeros relative to a Poisson distribution
with the same empirical mean. These zeros represented about 59% of the sample.
Decreasing trend could also be observed from the time series plot. Additionally,
seasonality was also captured from the autocorrelation function and circular plot.
In fact, from the circular plot, we concluded that most sandstorms occurred during
spring time, i.e. March, April, and May months. Thus, trend and seasonal covariates
were added to the models.

Hence, we fit several models to investigate the trend and seasonality effects along
with the other covariates mentioned above. After performing model selection based
on AIC, we ended up with the following models taking the form of (2.1), with the
log-linear function of the intensity parameter given by

log (λt) = β0 + β1 (t× 10−3) + β2x1t + β3x2t + β4x3t,

and the logit function for the zero-inflation parameter given by

logit(ωt) = γ0 + γ1z1t + γ2z2t + γ3z3t,

for t = 1, . . . , n, where x1t = z1t = cos (2πt12 ), x2t = z2t = sin (2πt12 ), and x3t =
z3t is the monthly count of dust haze events. The log-function of the dispersion
parameter (if existed) is given by log (κ) = α, i.e. it was chosen to be constant
across time. Thus, the main model was given by

Yt = F−1t {Φ(εt)|Xt;θ}, for t = 1, . . . , 348,

where θ = (β0, . . . , β4, γ0, . . . , γ3, α)′ and Xt = (x′t, z
′
t,wt)

′, in which the in-
tensity covariates were xt = (t × 10−3, x1t, x2t, x3t)

′, the zero-inflation covariates
were zt = (z1t, z2t, z3t)

′, and no covariates with the dispersion effect, i.e. wt = 1
for t = 1, . . . , n. The latent random process, the errors, were generally given by the
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ARMA(p, q) process. However, after fitting multiple models, we considered the
dependence structure that followed AR(1) autocorrelation.

Table 2 shows the three copula-based zero-inflated models we proposed in this
paper along with the copula-based Poisson and NB models introduced in Masarotto
and Varin (2012), all with the AR(1) correlation structure. The results of all models
are comparable. However, the Poisson and NB model seem to perform moderately
less than the other models because they fail to account for the overdispersion in the
counts caused by the zero inflation and the zero inflation itself. On the other hand,
adding more probability to the event zero improves the performance of the fitted
model because it addresses the problem of zero inflation and over dispersion. This
is why the ZIP, ZINB, and ZICMP models are better fit than the ordinary Poisson
and NB distributions in this application.

Table 2. Parameter estimates (standard errors) for the copula-based models fit to the
sandstorms count series.

Parameter ZIP ZINB ZICMP Poisson NB
β0 0.9977(0.1175) 0.9709(0.1570) 0.7978(0.1888) 0.2003(0.1147) 0.2996(0.1965)
β1 -4.1493(0.6065) -4.7477(0.7976) -2.4523(0.5772) -5.1453(0.5517) -5.8397(0.9643)
β2 -0.2004(0.0885) -0.1813(0.1243) -0.1089(0.0723) -0.4634(0.0814) -0.4385(0.1391)
β3 0.3461(0.0938) 0.4231(0.1239) 0.2093(0.0786) 0.7879(0.0888) 0.7751(0.1352)
β4 0.0627(0.0088) 0.0645(0.0123) 0.0435(0.0094) 0.0974(0.0085) 0.0950(0.0163)
γ0 0.7647(0.2622) 0.5656(0.3047) 0.6629(0.2119)
γ1 0.6163(0.2460) 0.6648(0.2925) -1.0047(0.2132)
γ2 -0.8931(0.2401) -0.8363(0.2736) -0.1496(0.0344)
γ3 -0.1489(0.0424) -0.1659(0.0524) -0.2466(0.1613)
α 0.6400(0.2437) 1.1733(0.2230) 0.9195(0.2009)
ϕ 0.2580(0.0623) 0.2503(0.0724) 0.2870(0.078) 0.1539(0.0419) 0.2488(0.0740)

AIC 910.9 895.62 905.6 1017.3 923.06

Furthermore, Table 2 shows that the zero-inflated models are capable of account-
ing for first order autocorrelations. The autocorrelation coefficients, ϕ̂’s, are similar
across models although the zero-inflation models suggest stronger autocorrelation
among the observations. For the marginal parameters, θ, the estimates are quite
similar between the ZIP and ZINB, and slightly different from the ZICMP. All mod-
els suggest significant decreasing trend in the number of strong sandstorms since
β1 < 0. Seasonality also significant at annual frequencies since β2, β3, γ1 and γ2
are significantly different from zero. Finally, the affect of dust haze is significant
since both β4 and γ3 are significantly different from zero.

Figure 2 shows the randomized quantile residuals in normal probability and au-
tocorrelation plots of the copula-based ZIP, ZINB and ZICMP models. The normal
probability plots suggest the randomized quantile residuals of these three models
follow the normal distribution, and the autocorrelation plots indicate the absence
of the serial dependence in the residuals. These findings suggest that the proposed
models in this paper fit the data adequately. Models with more complicated cor-
relation structures such as AR(2) and ARMA(1, 1) were also considered and fit-
ted to the data with the same covariates. No significant improvements were found
and thus we recommend using AR(1). However, dropping the trend and season-
ality covariates and running the models with only the dust haze covariate yields
significant AR(2) and ARMA(1, 1) dependence structures. Figure 3 shows the
predicted values of the sandstorm counts from the three proposed models. The pre-
dicted values were calculated using the conditional expectation of Yt given the past
Yt−1 = yt−1, . . . , Y1 = y1. The plots indicate that our copula-based zero-inflated
models adequately predict the injury counts.
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Figure 2. Sandstorm counts series: q-q plots (left) and autocorrelation plots (right) for sets of
randomized residuals of the ZIP, ZINB and ZICMP models.
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Figure 3. Prediction plot using the conditional expectations of the ZIP, ZINB and
ZICMP models. Dots represent the observed sandstorm counts

5. SUMMARY

Zero-inflated count time series data are found in different areas. Applying ordinary
Poisson and NB distributions to these time series of counts might not be appropri-
ate due to the frequent occurrence of zeros. In this paper, we have extended the
work done by Masarotto and Varin (2012) to include a class of models that accounts
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for zero inflation. The marginals are assumed to follow one of the ZIP, ZINB, and
ZICMP distributions, and the serial dependence was modeled by a Gaussian copula
with correlation matrix that of a stationary ARMA process. Likelihood inference
was carried out using sequential importance sampling. Simulated studies were con-
ducted to evaluate the parameter estimation procedures. Model assessment to check
the goodness of fit for the proposed models was done via residual analysis. The
proposed models were applied to the sandstorm data, and according to the residual
analysis the models fit the data adequately, but both ZINB and ZICMP seem to have
a slight advantage over ZIP distribution. Future direction is to consider different
model construction methods from the marginal regression such as Markov models
to handle zero-inflated count time series data.
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