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Abstract

The aim of this paper is to introduce a probability distribution in the space of symmetric pos-

itive definite (SPD) matrices called the Cholesky normal distribution. Because the space of SPD

matrices is a non-Euclidean manifold, standard arithmetic and thusly standard statistical methods

do not directly apply for data on this space. Instead, researchers typically either perform an intrin-

sic analysis by defining a Riemannian metric and then projecting the data onto a tangent space or

an intrinsic analysis by embedding the space into the space of symmetric matrices. For both ap-

proaches, since there are not many probability distributions defined on the space of SPD matrices,

researchers typically use nonparametric inference procedures, which may be too computationally

expensive for practical use on large-scale data analyses. Following from Schwartzman (2015), we

utilize the Cholesky metric on the space of SPD matrices to define the distribution, investigate some

of its properties, and develop a parametric inference procedure for the mean of SPD matrices.

1. Introduction

Statisticians often encounter symmetric positive definite (SPD) matrices as covariance ma-

trices of multivariate data, and rely rely on properties of covariance and the original data

to study these matrices. However, there are many fields where SPD matrices have become

the primary data objects, themselves, with each SPD matrix being an observation, such as

medical imaging, physics, and astronomy in the form of cosmic background variation. In

such cases, researchers must take a different approach when developing statistical inference

procedures for these objects because the space of SPD matrices is a non-Euclidean mani-

fold. As such,standard arithmetic does not directly apply because the space is locally but

not globally homeomorphic to a Euclidean space.

Many nonparametric procedures were developed for statistical analysis on general man-

ifolds, starting with Hendriks and Landsman (1999), Bhattacharya and Patrangenaru (2003)

and Bhattacharya and Patrangenaru (2005), due to the fact that there exist no general good-

ness of fit tests for data on manifolds despite the need for inference procedures to be readily

available. These nonparametric methods are typically based either on asymptotic results or

resampling techniques, such as the nonparametric bootstrap. Since sample sizes are often

relatively small compared to the dimensionality of the data, bootstrapping is often the more

tractable approach. While this certainly works well in many situations, bootstrapping on

manifolds can often be quite computationally intensive, as discussed in Bhattacharya et al.

(2012). For the specific case of SPD matrices, Osborne et al. (2013) and Ellingson et al.

(2016) developed nonparametric methods utilizing the bootstrap with illustrations of these

methods towards DTI data analysis.

However, those papers consider only single diffusion tensors while a typical diffusion

tensor image will contain many thousands of tensors. Schwartzman (2015) introduced log-
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normal distributions for the space of SPD matrices that allowed for the development of para-

metric inference procedures based on his distributional assumption. These methods have

proven to be far more computationally efficient than the bootstrap methods, and thus more

suitable for large-scale analyses. Inspired by Schwarztman’s approach of defining proba-

bility distributions via two distances on the space of SPD matrices, we sought to develop

additional probability distributions on the space. As such, we have considered a distribution

that some researchers may have already utilized for modeling but, to our knowledge, has

not been studied in-depth based on the Cholesky distance between SPD matrices. Using the

naming convention of the lognormal distribution, we call this distance the Cholesky normal

distribution.

The layout of this paper will be as follows. Section 2 presents the Cholesky distance and

sample means for SPD matrices. Section 3 introduces the Cholesky normal distribution and

some of its properties are investigated via simulation study. Section 4 introduces parametric

confidence regions for the Cholesky mean of SPD matrices and the performance of these

confidence regions is also evaluated through a simulation study. In Section 5, we discuss

the results and some of the limitations of this study.

2. The Cholesky Distance and Associated Means for SPD Matrices

2.1 Cholesky Distance Between SPD Matrices

A p × p SPD matrix A may often be associated with and visualized by an ellipsoid corre-

sponding to all points y ∈ R
p that satisfy the quadratic form y′Ay = c for some constant

c. As discussed in Dryden et al. (2009), due to the geometry of the space of p × p SPD

matrices within the space of symmetric p×p matrices, when the Euclidean distance is used

to travel between SPD matrices, the resulting paths are prone to swell the volume of the

ellipsoids associated with the matrices along these paths. This property is inherited by sam-

ple means when calculated using the usual Euclidean arithmetic and therefore also affects

the calculation of covariance operators for these data objects, as well. Among the many

distance metrics described in Dryden et al. (2009) that do not have this volume-swelling

effect is the Cholesky distance, which is defined as follows.

Definition 2.1. If A and B are two p×p SPD matrices, then the Cholesky distance between

A and B is

dC(A,B) = ‖chol(A) − chol(B)‖,
where chol(A) and chol(B) are the lower Cholesky decomposition matrices of A and B
and ‖ · ‖ denotes the Frobenius norm.

For the purposes of characterizing variability and performing inference, we will find it

convenient to vectorize the matrices of Cholesky decompositions via an invertible mapping

that preserves the distance between observations. Let V ec denote a mapping from L(p),

the space of lower-triangular p × p matrices, to R
q, where q = p(p+1)

2 . There are multiple

equivalent ways to define this function, but we will use the following form:

V ec(L) =
[

diag(L)′, offdiag(L)′
]

′

,

where diag(L) is a p×1 column vector containing the diagonal entries of L and offdiag(L)
is a (q − p)× 1 column vector containing the off-diagonal lower-triangular entries of L.
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For example, if p = 2, and we define

L =

[

l11 0
l12 l22

]

,

then the vec(L) is as follows:

V ec(L) = V =





l11
l22
l12



⇒ V ec−1(V ) = L

2.2 Cholesky Means and Covariances of SPD Matrices

To define a mean with respect to the Cholesky metric, we utilize the definition of a Fréchet

mean, which is defined as

µF = argmin
P

[E(d2(X,P ))],

for some distance d. Similarly, if we have a sample X1,X2, . . . ,Xn, then the sample

Frechet mean is

µ̂F = argmin
P

n
∑

i=1

d2(Xi, P )

Following from Dryden et al. (2009), if d = dC , it can be shown that the minimizer of

the expected squared distance, which we will call the Cholesky mean µC , is

µC = (E[chol(X)]) (E[chol(X)])′ .

Likewise, our sample Fréchet mean, which we will refer to as the sample Cholesky mean

µ̂C is

µ̂C =

[

1

n

n
∑

i=1

chol(Xi)

][

1

n

n
∑

i=1

chol(Xi)

]

′

.

To understand the variability in our data, we also need to define covariance matrices

for our SPD matrices. To do so, we will need to use the vectorized form of our data. Let

X1, . . . ,Xn be iid p × p SPD matrices and Li = chol(Xi). We can define our population

covariance matrix as

ΣC = E
[

(V ec(L1)− V ec(µC)) (V ec(L1)− V ec(µC))
′
]

.

The corresponding sample covariance matrix is

Σ̂C =
1

n− 1

n
∑

i=1

[

(V ec(Li)− V ec(µ̂C)) (V ec(Li)− V ec(µ̂C))
′
]

.

3. Cholesky Normal Random Matrices

With the above concepts, we can now define the Cholesky normal distribution on the space

of p× p SPD matrices.
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Definition 3.1. Let X ∼ Nq(θ,Σ). Then the random p × p SPD matrix Y follows the

Cholesky normal cholN(θ,Σ) distribution if Y = (V ec−1(X)) · (V ec−1(X))′, where θ is

a location parameter vector and Σ is a dispersion matrix.

Please note that µC and ΣC are defined for the random matrix Y on the space of p× p
SPD matrices while θ and Σ correspond to a random vector in R

p. Furthermore, since

V ec−1(X) ∈ L(p) and chol(Y ) ∈ L
+(p), the space of lower triangular p×p matrices with

positive diagonal entries, we cannot conclude that V ec(chol(µC )) = θ or ΣC = Σ due to

the diagonal entries of X having positive density for negative values.

More generally, this means that V ec(chol(Y )) is non-normal. However, if θ >> 0,

then V ec(chol(Y )) ≈ X because the diagonal entries of X will have trivially positive

density for negative values. In this case, V ec(chol(µc)) = E[V ec(chol(Y )) ≈ θ] and

any inferences on chol(µc) will be approximately the same as inferences on θ. Likewise,

inferences about ΣC will be able to approximate those for Σ, though these fall outside the

scope of this study. For the next portion of this subsection, we will study the impact of θ on

the distribution of chol(Y ).
We first examine this by simulating n = 1000 observations Yi from cholN(θ, I6),

where, for simplicity we chose θ = (α,α, α, α, α, α) for α = 0 and α = 3.2. Histograms

of the marginal entries of chol(Y ) for these choices of θ are shown in Figures 1 and 2 and

Figures 3 and 4, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

Figure 1: The diagonal marginal entries of chol(Y ) when θ = 0
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Figure 2: The off-diagonal marginal entries of chol(Y ) when θ = 0

When we take the most extreme case where α = 0, as in Figures 1 and 2, the dis-

tributions of the diagonal marginals are positively skewed and the distributions of the off-

diagonal marginals appear to be normally distributed. However, when α = 3.2, as in
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Figures 3 and 4, while the distributions of the off-diagonal entries still appear normal, the

same is also now true for the diagonal marginals. From this, then, it is clear that we should

focus on the marginal distributions of the diagonal entries of chol(Y ) to study how large θ
must be for V ec(chol(Y )) to be approximately multivariate normally distributed.
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Figure 3: Marginals of the diagonal when θ = 3.2
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Figure 4: Marginals of the diagonal the off-diagonal when θ = 3.2

To investigate further, we focus on the marginal distribution of the first diagonal entry

and now consider α = 0, 1.5, 2.5, 3.2, 4.1, 5.5. Kernel density estimates of the marginal

distributions generated with these values of α are shown in Figure 5. We can see that

the densities appear to become approximately normal for values of α ≥ 2.5. Since the

marginal variance is 1, this makes sense because P (Z < −2.5) = .0062 for Z ∼ N(0, 1).
To try to further establish a threshold for α to result in V ec(chol(Y )) being approximately

multivariate normal, we compare the same marginal density alongside normal densities for

α = 0, 1, 2.5 in Figure 6. It is clear that when α is near 0, the density reflects to the right

of zero meaning that the area gets added to the right of 0. Through 6, it is also obvious that

as θ increases as the difference between the two areas to the left of zero of the two curves

decreases.

So in general, if Y ∼ cholN(θ,Σ), then V ec(chol(Y )) ∼ N(θ,Σ) approximately if

P ( ~X > 0) = (1 − β) is large, where β is the the difference between the area to the left

of 0 between the normal curve and the marginal density of chol(Y ). We can formalize this

under specific assumptions in the following theorem.

Theorem 3.1. Let ~X be 1 × p vector of the diagonal terms of the random vector used to

generate Y such that its marginal entries are iid and β denote the difference between the

area to the left of 0 between the normal curves and the diagonal marginal curves of chol(Y ).
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Figure 5: Density from different means
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Figure 6: Cholesky vs Normal

The cdf of the diagonal entries of chol(Y ) will differ from that of ~X by β if and only if θj
and Σjj are chosen to satisfy

φ−1[1− (1− β)
1

p ] =
−θjj
√

Σjj

,

where φ denotes the cdf of the standard normal distribution.

Proof. Since the diagonal entries of chol(Y ) must be positive, the difference between the

cdfs of ~(X and these entries is P ( ~X ≤ 0) = β. This yields the following result.

P ( ~X > 0) = (1− β) (1)

⇔ P (X11 > 0, ...,Xpp > 0) = (1− β) (2)

⇔ [P (Xjj > 0)]p = (1− β) (3)

⇔ [P (Xjj > 0)] = (1− β)
1

p (4)

⇔ [P (Xjj < 0)] = 1− (1− β)
1

p (5)
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⇔ P

(

Z <
0− θjj
√

Σjj

)

= 1− (1− β)
1

p (6)

⇔ φ−1(1− (1− β)
1

p ) =

(

−θjj
√

Σjj

)

(7)

Corollary 3.1. In the univariate case, θ must be chosen so that

φ−1(β) =
−θ√
Σ

Proof. : The result follows by letting p = 1 in (7).

3.1 Cholesky Normal and the Wishart Distribution

It is important to contrast the non central Wishart distribution to the Cholesky normal dis-

tribution. To generate a non-central Wishart, we must generate X ∼ Np,n(θ,Σ) , n ≥ p,

then S = XXT ∼ Wp(n,Σ,Θ) is a non central Wishart with Θ = Σ−1 ∗ θ ∗ θT is called

the noncentrality parameter.

Applying the Cholesky matrix on S doesn’t neccessary map back to X and even when X is

lower triangular.

The following results is very important in multivariate analysis and is known as the

Bartlett’s decomposition, Bartlett(1933) and see Gupta and Nagar(1999),Theorem 3.3.4,

Matrix Variate Distributions, for a proof of this classical result.

Theorem 3.2. Let S = XXT ∼ Wp(n, Ip) and X is lower triangular, where X = (xij)
with xii > 0 , Θ = 0 and Ip is the p× p identity matrix then the xij , i ≥ j, are independent

random variables distributed. Then, xij ∼ N(0, 1), 1 ≤ j < i ≤ p and x2ii ∼ χn−i+1,

1 ≤ i ≤ p.

Using this result clearly shows the difference beteween the Cholesky normal distribu-

tion in figures 7 and 8. The plot to the left represents the Cholesky normal distribution

on the Cholesky scale and the plot to the right represents the Wishart distribution on the

Cholesky scale. The multivarite normal for both was generated with the same parameters

θ = [0, 0, 0, 0, 0, 0], Σ is 6× 6 identity matrix, the sample size was of n = 10000, and we

used 6 degree of freedom for the Wishart distribution.

In 7, the off-diagonal terms are normally distributed with mean 0 and standard deviation

of 1 in both cases, and in 8 it is obvious that both distributions are different.The Wishart

distribution in this case is centered at the degree of freedom and the Cholesky normal is

centered at zero. Note that to generate the Wishart distribution, the degree of freedom

has be 6 or higher. A more compelling argument of why both distributions are different

is that for the Wishart distribution, the square of the diagonal entries in Theorem 4.1.4 ,

x2ii ∼ χn−i+1 and for the Cholesky distribution the square of the diagonal entries follow a

Chi-square distribution with the same degree of freedom.

The density of the Cholesky normal doesn’t exist in the full Space, since in the Cholesky

scale the distribution is singular normal.
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Figure 7: marginals of the off-diagonal entries

-5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 8: marginals of the square of the diagonal entries

4. Inferences for Means

4.1 Cholesky Confidence Regions

Let Y1, ..Yn be p × p random matrices from a Cholesky normal distribution with mean

µC and covariance ΣC where the location parameter θ is large enough for the Cholesky

decompositions to be approximately normal. Then chol(µ̂C) is the MLE of chol(µC) and

is also approximately the MLE of θ and Σ̂C is the MLE of Cov(V ec(chol(Y )) = ΣC and

is also the approximately the MLE of Σ.

Theorem 4.1. If ΣC is known, then an 100(1 − α)% confidence region for the mean SPD

matrix µC is:

C5 = {µC : nVec(chol(µ̂C)− chol(µC))
′ΣC

−1Vec(chol(µ̂C)− chol(µC)) ≤ χ2
q(α)}.

(8)

is an exact 100(1 − α)% confidence region for µC .

Proof. Let Y1, ..Yn be p × p matrix from Cholesky normal sample distribution with mean

µC and covariance ΣC , then if Vec(chol(Y ) ∼ Nq(chol(µc),ΣC), where q = p(p + 1)/2
and if µ̂C is the MLE of µC , then the MLE of chol(µc) is chol(µ̂C) and,

nVec(chol(µ̂C)− chol(µC))
′ΣC

−1Vec(chol(µ̂C)− chol(µC)) ∼ χ2
q

Thus a 100(1 − α)% confidence region for θ is :

nvec(chol(µ̂c)− chol(µc))
′Σw

−1vec(chol(µ̂c)− chol(µc)) ≤ χ2
q(α)}

 
50



Theorem 4.2. When ΣC is unknown, however, multivariate normal distribution theory tells

us that we can define another exact 100(1 − α)% confidence region for µC to be

C6 = {µC : nVec(chol(µ̂C)−chol(µC))
′(Σ̂C)

−1Vec(chol(µ̂C )−chol(µC)) ≤
q

n− q
F1−α,q,n−q}.

(9)

Proof. In the univariate case, if we let X1, ..Xn ∼ N(θ1, σ) be from a sample of normal

variables with the mean θ1 and where θ̂1 is the maximum likelihood estimator of θ1 and s2

is the sample variance. Then n
(θ̂1 − θ1)

2

s2
∼ F1,n−1 and is the same as :

n(θ̂1 − θ1)s
2(θ̂1 − θ1)

′ = T 2

Now, if we let Y1, ..Yn be from a multivariate Cholesky normal sample distribution with

mean µc and covariance Σc where µ̂c is the mle of µc and Σ̂w is the mle of Σc .

Then vec(cholY ) ∼ Nq(chol(µc),Σw), where q = p(p+ 1)/2 and

replacing

n
(θ̂1 − θ1)

2

s2

by

nvec(chol(µ̂c)− chol(µc))
′(Σ̂w)

−1vec(chol(µ̂c)− chol(µc)) = T 2

gives
n− q

(n− 1)q
T 2 ∼ Fq,n−q

and hence, it follows that

nvec(chol(µ̂c)− chol(µc))
′(Σ̂w)

−1vec(chol(µ̂c)− chol(µc)) ≤
q(n− 1)

n− q
F1−α,q,n−q

4.2 Performance of Cholesky Confidence Regions

We checked the performance of the Cholesky confidence regions in more realistic scenario

with respect to (9). A simulation study was performed to compare the effective confidence

level to the nominal confidence level when the data are from a Cholesky normal distribu-

tion and when the data are generated from a normal distribution with the same mean and

covariance matrix as in the Cholesky scale.

4.2.1 Simulation

More specifically, for a fixed sample size n we decided to consider confidence regions in

the Cholesky scale when the data are generated from a normal distribution with different

means of the form θ = [α1, α1, α1, ...]. We repeated this for increasingly large α to gain

a better understanding the impact that the mean has when generating a Cholesky normal

distribution and how it affects the coverage probabilities. Finally for fixed α1, we repeated
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all of these calculations for increasingly large values of n to explore how many observa-

tions are needed for true coverage probabilities to converge to the nominal levels and false

coverage probabilities to converge to zero.

To simplify the simulations and interpretations of the results, we worked with 2 × 2
symmetric matrices, resulting in the vectorized form being 3-dimensional, then to further

reduce the computational cost, we projected the vector onto the first two principal com-

ponents. This is because our covariance matrix is chosen such as most the variation are

explained by the first two principal components. Also, this allows us to look at our confi-

dence regions along two principal directions.

For the purposes of this simulation, we simulated data using vectorized means of the form

θ = [α1, α1, α1] for the following values of α1 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and the covari-

ance matrix of

Σ =





5 .8
√

(15) .7
√

(5)

.8
√

(15) 3 .5
√

(3)

.7
√

(5) .5
√

(3) 1



 .

Also, we considered the following samples sizes: n = 6, 10, 20, 40, 80, 160.

4.2.2 Evaluation

In the Cholesky scale, we evaluated the performance of confidence regions in 9 at a fixed

nominal confidence level of 95% and we explored the impact that the mean of the data

has on false coverage probabilities similar to the simulations in Chapter 2. We repeatedly

simulated the data sets of values of α1 and n and recorded the proportion of times that the

µT = chol(µc) falls in the confidence region. Along the first principal direction, we used

µT of the form µ1+(ν, 0) and along the second principal direction, we used µT of the form

µ1 + (0, ν) where µ1 is the projected mean onto the first two principal components and ν :
12,−9,−6,−3,−2.5,−2.25,−2,−1.75,−1.5,−1.25,−1,−0.75,−0.5,−0.25, 0.25, 0.5,

0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 6, 9, 12. Finally, for fixed θ we quantified the distance

between coverage probabilities in the Cholesky scale when data are from Cholesky normal

and when the data are generated from a normal distribution with the same mean and same

covariance matrix as the one that we used to generate the data before projecting it on the

two first components. The following samples size were used n=6,10,20,40,80 and 160 and

the L2 distance between the coverage probabilities is defined as:

D =

(
∫∫

L

(CCholN − CN )

)
1

2

CCholN and CN are respectively coverage probabilities for Cholesky normal in the Cholesky

scale and normal distribution generated with the same parameters at any given α1 value of

µ.

4.2.3 Results

Results along the first two principal components for various sample sizes are shown below.

The plot to the left of each figure represents the coverage probabilities along the first prin-

cipal component direction and the plot to the right represents coverage probabilities along

the second principal component directions:

In figure 9, when n = 6 along the first principal component direction, we clearly ob-

served true coverage probabilities being around the nominal level when the entries of the
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Figure 9: Coverage probabilities curves at different values of θ and when n = 6

mean are all one’s or greater and false coverage probabilities are also high. The coverage

probability curve when the entries of the mean are zeros has a true nominal probability less

than 95%. Along the second principal component direction, false coverage probabilities are

converging faster to zero because there is lesser variability, but likewise in the first principal

component direction, true coverage are all near the nominal level when entries of the mean

are all one’s or greater and is less than zero when entries of the mean are all zeros.
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Figure 10: Coverage probabilities curves at different values of θ and when n = 20

In figure 10 and 11 when n = 20 and n = 40 along the first principal components

direction, when entries of the mean are all 2 or greater true coverage probabilities are around

the nominal level and when the entries of the mean are all less than one true coverage

probabilities are less than 95%. On the other hand, false coverage probabilities are gradually

converging to zero as the the sample size increases. We observed similar behavior of the

coverage probability curve when the entries of the mean are zeros as when n = 6.

Along the second principal component direction, we also observed similar behavior as when

n = 6 except that all coverage probabilities are all zeros even the nominal level when entries

of the mean are all zeros.

In figure 12 and 13 when n = 80 and n = 160 along the two principal component
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Figure 11: Coverage probabilities curves at different values of θ and when n = 40
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Figure 12: Coverage probability curves at different values of θ and when n = 80
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Figure 13: Coverage probabilities curves at different values of θ and when n = 160

direction, we observed similar behavior of coverage probabilities curves as when n = 40.

Coverage probabilities along the second principal component direction are all converging

to zero when the entries of the mean are all zeros and one.
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To understand and explain the behavior of these coverage probability curves in the

Cholesky scale, we decided to first plot the the coverage probability surfaces for a small

sample says, n = 6 at θ = 10 and at θ = 0. As we see in figure 14 and in 15, when θ = 10
the surface area appears to be elliptical and symmetrical along both directions and when

θ = 0 the surface area appears to be shrinking in one direction and it is not symmetrical.

This is what motivated us to compare the distance between coverage probabilities in the

Cholesky scale when data are from Cholesky normal and when the data are generated from

a normal distribution with the same mean and covariance matrix as the one that was used to

generate the data. The distance were computed for θ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and for

X = Y = −6. − 5− 4. − 3. − 2.5 − 2.25 − 2 − 1.75 − 1.5 − 1.25 − 1. − 0.75 − 0.5 −
0.2500.250.50.7511.251.51.7522.252.53456.

Figure 14: Coverage probability surface n = 6, θ = 10

Figure 15: Coverage probability surface n = 6, θ = 0
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Figure 16: Coverage probability distance for different θ

As we see in figure 16, for fixed sample size and for values of θ near zero the distance

between coverage probabilities are high and for large value of θ the distance between the

coverage probabilities is zero.

More specifically, for θ around 3 or greater the distance between the coverage probabil-

ities converges to zero, for fixed θ ≤ 1 the distance between coverage probabilities are high

for small samples size and for fixed θ ≥ 2, sample size seems to not have an effect on the

distance between coverage probabilities.

To visualize the area between te two curves, for fixed sample size of 6, we plotted the

coverage probabilities curve along the x-axis at a given distance of 0.1 0.41 and 0.9 between

the normal curve and the Cholesky curve, it obvious that two plots look very similar at a

distance of 0.1 as we see in 17, 18 and 19
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Figure 17: Normal and Cholesky coverage probability plots, distance=0.1
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Figure 18: Normal and Cholesky coverage probability plots, distance=0.41
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Figure 19: Normal and Cholesky coverage probability plots, distance=0.9

 
57



5. Conclusion

5.1 Discussion

From our simulation study we can arrive at the following conclusions about the Cholesky

normal distribution assumptions. To generate the Cholesky normal distribution, we must

generate a multivariate normal vector so that the location parameter of the Cholesky normal

distribution on the Cholesky scale coincides with the mean of the multivariate normal vec-

tor. More importantly, the entries of this location parameter must be far from zero. Also,

doing inferences on the mean of SPD matrices using Cholesky normal distribution on the

Cholesky scale is the same as doing inferences on the mean of the multivariate normal from

which the data are generated. So, on the the Cholesky scale, parametric confidence regions

for the mean of SPD matrices can be defined as the one for multivariate normal.

Also, for the performance of the Cholesky normal confidence regions we arrived at the

following conclusions. For fixed sample size, true coverage probabilities are all near the

nominal level for large values of θ and moreover, the distance between coverage probabil-

ities as defined earlier decrease as θ increases. For fixed small θ < 3, distance between

coverage probabilities decrease as n increases, and for fixed large θ ≥ 3, the distance

between coverage probabilities are all zeros. This seemingly to indicate that in general,

confidence regions defined via Cholesky normal performs well for large θ regardless of the

sample size. Also, for any value of θ above 1.5, Cholesky confidence regions can still per-

form well. We may need the distance between coverage probability to be roughly around

0.41 or less for these confidence regions to perform well and ideally around 0.1. Finally,

as expected for any value of θ between 0 and 1.5, the Cholesky confidence regions perform

better for large sample size than small sample size.

5.2 Limitations and Future Work

For Cholesky normal distribution, one of the limitations is that we may not need to put a

restriction on each entry of θ For Cholesky normal distribution, in the multivariate case,

it will be very difficult the find a threshold for θjj the mean of the jth diagonal entry of

the normal distribution from which the data are generated if the diagonal entries are not

independent as in Theorem 4.1.1. Also, unlike the lognormal distribution, for Cholesky

normal we don’t have enough flexibility when choosing θ which can be problematic for

modeling when using real application data.

For the Cholesky normal distribution, more extensive computation may be needed to

check if we can have less restriction on θ. We may only need to restrict the entries of θ
that corresponds to the diagonal of Chol(Y ). We may also consider to check robustness of

confidence regions when the distributions in the mixture are both Cholesky normal.
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