
Preference Probability Based on Ranks - A New Approach Using
Logistic Regression With Zero Intercept

David Oluwagbenga Agboola∗

Abstract

Many probability models have been proposed to describe rankings. One of these is the
Bradley-Terry model, which is based on observed pairwise preferences. For this study, we
reverse the case and propose a new approach for estimating pairwise preference probabilities
based on observed rankings. The new approach uses logistic regression with zero intercept
as the statistical model that fits this situation. In order to implement the model, we first
estimate the parameter using maximum likelihood estimation. Then we evaluate this es-
timation using numerical approximation procedures. We consider three such procedures:
bisection method, Newton-Raphson method, and improved Newton’s method. Using sim-
ulated data, we compare the three procedures based on the number of iterations required
for convergence, as well as CPU time. We identify the improved Newton’s method as the
fastest of the three methods.

Key Words: Bradley-Terry model, pairwise preference, logistic regression, numerical
approximation procedures, maximum likelihood estimation, simulated data

1. Introduction

For this study, we propose a statistical model that can estimate or predict pref-
erence probability of a pairwise comparison using known rankings; that is, we are
estimating the probability that one item is preferred to another given each item’s
rank. Let us say that we have two equally ranked brands Bα and Bβ; in this case
either brand should have equal chances of being chosen. That is, the probability
either brand’s product is selected by some consumer is 0.5, so both brands have
equal chances of being selected by some consumer. According to Holland and Wes-
sells (1998) predicting preference can be based on some specific attributes of the
goods or product. But for this study, we do not intend to go into details as to other
factors that could influence the consumer’s preference except for the given rank.

Another instance can be found in the sporting context. If we have two teams
Aα and Aβ that are ranked first in their respective leagues, it is logical to say that
both teams would have equal chances of winning. Thus the probability that team
Aα beats team Aβ (and vice-versa) is 0.5. We know that there are various factors
that can influence the chances of a team winning a game, some of which were
considered by Willoughby (2002) with respect to Canadian Football. However,
we take the position that the ranks incorporate all these factors and, thus, we
intend to base the preference probability on these ranks alone. In fact, we will
base preference probabilities on only the difference between the two ranks. Another
example is racetrack betting as discussed by Lo, Bacon-Shone and Busche (1995)
Further examples can be found in tennis, soccer, and other team sports.

Considering the historical use of ranking models in paired comparisons, we ob-
serve that the most popular of such models is the Bradley-Terry model. This prob-
ability model is used to predict the outcome of a pairwise comparison. As discussed

∗University of Northern Colorado, 501 20th St, Greeley, CO 80639

22

by Jong-June and Yongdai (2014) the Bradley-Terry model has been used to esti-
mate ranking probabilities which are based on observed preferences.

Now, we intend to reverse this concept by estimating preference probabilities
which are based on observed rankings. Then we consider a situation in which it is
possible to apply this concept, stating all the properties our proposed model should
satisfy. We would explore a particular regression method - logistic regression - and
show that a special case in which the intercept is zero satisfies all the required
properties. Our choice of logistic regression model is based on its use for analyzing
data with categorical or binary outcome.

In the following chapters, we will do a review of the Bradley-Terry model and
logistic regression model. Then we will identify all the required properties for the sit-
uation considered and then prove that logistic regression model with zero intercept
satisfies all of the required properties. Then we apply the method of maximum like-
lihood estimation to fit our model. Afterwards, we will discuss and compare three
numerical approximation procedures we have chosen to estimate the parameter β1,
identifying the fastest and most efficient of the three procedures. We illustrate this
by simulating data to compare these numerical procedures, by fixing the values of
β1 and x but with varying values of y. We explore the distribution of the estima-
tor for small samples. And finally, we conclude by stating our findings, and some
limitations encountered that lead to future work.

2. The Bradley-Terry Model

The Bradley-Terry model, though studied in the 1920s by Ernst Zermelo, is
named after R.A Bradley and M.E Terry who presented the model in 1952 in their
paper titled “Rank analysis of incomplete block designs: I. The method of paired
comparisons” Bradley-Terry model is one of several models used in the analysis of
categorical or dichotomous data and can be viewed as a special case of generalized
linear models. The Bradley-Terry model is for paired comparison or for analyzing
pairwise preference data. For any pair of entities u and v, selected from some sample,
the probability that u ranks higher than v can be estimated using this model.

Now, let us consider a situation where k entities are in pairwise comparisons to
one another, given their order of preference: τ1, · · · , τk. For this model, we have the
condition that every τi ≥ 0 with

k∑
i=1

τi = 1

(which implies that there is no chance for a tie), so that it is expressed as:

P (u ranks higher than v) =
τu

τu + τv
.

where τu and τv are positive real-valued score functions assigned to u and v respec-
tively. In using this model, entities from the sample are considered to have true
ratings (or preferences); thus, the estimated ranking is based on these preferences.

We note that for mutually independent events, the probability puv = P (u beats
v) satisfies the logit model (and removing ties):

log
puv

1− puv
= ψu − ψv,

where ψu = log τu, as expressed by Bradley and Terry (1952).

23

According to Jong-June and Yongdai (2014) it was explained that the popularity
of the Bradley-Terry model is gained not only due to its easy computation but
also because of how it exhibits some nice asymptotic properties when the model
is misspecified. Model misspecification generally means that there is an omission
of relevant variables or inclusion of irrelevant variables. We also realized that this
model can be constructed to fit a dataset simply by constructing an appropriate
matrix with response vector for some binomial regression model; we could do this
from scratch for a single dataset. Another approach is to construct functions or
quantities that make the data more specified and in a nice form. In addition to
these, the Bradley-Terry model can address some specific questions, such as, what
is the estimated value of the probability that u beats v? In illustrating these ideas,
Drakos (1995) was able to fit a Bradley-Terry model to the results for the eastern
division of the American league for the 1987 baseball season. Conclusively, the
Bradley-Terry model is used for estimating ranking probabilities of a finite number
of items by pairwise comparison, which is based on a known order of preference.
Some of the real-world applications of the Bradley-Terry model are:

1. Ranking documents based on relevance for any given query by information
retrieval, Jong-June and Yongdai (2014).

2. Quantification of the influence of statistical journals, Stigler(1994).

3. Prediction of the results of FIFA 2010 South Africa World Cup, Hong, Jung
and Lee (2010).

4. Transmission/disequilibrium test in genetics, Sham and Curtis (1995)amongst
others.

2.1 Logistic Regression

Logistic regression is one of the regression methods that have been largely used
for any data analysis involving the description of the relationship between a response
variable and one or more explanatory variables. The logistic regression model has
been the standard method of analysis for several years, and put to use in many
fields for this type of case. Just like every other regression method, the goal of
the analysis using logistic regression is to find the best fitting and most reasonable
model to describe the relationship between a response and a set of predictor vari-
ables. It is also worthy of note that logistic regression has an outcome response
that is dichotomous or binary. This largely differentiates logistic regression from
linear regression and other regression methods, although it follows the same general
principles as used in linear regression. Also, many distribution functions have been
suggested for use in the analysis of categorical response variables. But the logistic
distribution has been popular because it is very flexible and can be easily used, and
it tends to give a meaningful interpretation as described by Hosmer and Lemeshow
(1989).

Before we discuss logistic regression, let us formally state the familiar linear
regression model. Let Y and X be response and predictor variables respectively.A
simple linear model is expressed as

E(Y |X) = µ = β0 + β1X,

with real-valued constants β0 and β1.

24

The simple linear model is a special case of the generalized linear model, which
is given by

f
(
E(Y |X)

)
= β0 + β1X ⇒ f(µ) = β0 + β1X,

where f is the link function.
Logistic regression is another special case of the generalized linear model, used

for a categorical or binary outcome. We will consider the fixed effects case. So, let
our predictor assume a fixed numerical value x, and let the random response variable
Y be a categorical outcome “Yes/No” or 0/1. Suppose that the distribution of Y
given x is Bernoulli(p), where p depends on the value of x. The probability function
for Y is then given by

P (y) = py(1− p)1−y. (1)

This implies that P (Y = 1) = p and P (Y = 0) = 1− p.
By exploring its graph, we could see that a linear model is bad for this case

because we get values of p that are less than 0 or greater than 1 against varying
values of x. So we replace p with the odds quantity(

p

1− p

)
.

This is to guarantee we always have a positive number. Taking the natural log
gives,

ln

(
p

1− p

)
,

which is called the logit function. Now this guarantees that it no longer has to
be a positive number, but can be any real number. Hence, the model for logistic
regression is

ln

(
p

1− p

)
= β0 + β1x. (2)

By solving for p in equation 2, we end up with the logistic function

p =
e(β0+β1x)

1 + e(β0+β1x)
. (3)

By exploring the graph of the logistic function, we can see that 0 ≤ p ≤ 1 which
makes sense for this kind of regression. And β0 determines the location, while β1
determines direction (increasing/decreasing) and steepness.

2.2 Fitting the Logistic Regression Model with Zero Intercept

Let us suppose that we want to develop a model that can predict the outcome
probabilities of an inter-league competition in which both leagues have n teams. For
such a contest, each team will have a known rank within its league. Now, suppose
that these ranks are given by i and j, and let pij denote the probability that the
team with rank i defeats the team with rank j. Then, a model for the probabilities
must satisfy some definite properties:

Property 1: pij + pji = 1 for all i, j ∈ {1, 2, · · · , n}.
This must be true because, provided that ties are not allowed, the events that

team i wins and that team j wins are complementary events.
Since the two competing teams are in different leagues, there exists the possi-

bility that they could have the same rank such that i = j. It then follows from
Property 1 that:

25

Property 2: pii =
1

2
for all i ∈ {1, 2, · · · , n}.

We propose that such model is given by the logistic regression model with zero
intercept, where x = rankA - rankB. From 3, if β0 = 0, then the probability that
Team A beats Team B is given by

p(x) =
e(β1x)

1 + e(β1x)
. (4)

Now suppose that Team A and Team B are equally ranked in their respective
leagues. Then x = rankA - rankB = 0, implying that

P (A beats B) = p(0) =
e0

1 + e0
=

1

2
.

The graph will be symmetric about the point (0,
1

2
) and follows that when x =

0, p(0) =
1

2
. Thus this model satisfies Property 1.

Also, this model satisfies Property 2, since

P (A beats B) + P (B beats A) = p(x) + p(−x)

=
e(β1x)

1 + e(β1x)
+

e(−β1x)

1 + e(−β1x)

=
e(β1x)

1 + e(β1x)
+

e(−β1x)

(1 + e(−β1x))
· e

(β1x)

e(β1x)

=
e(β1x)

1 + e(β1x)
+

1

1 + e(β1x)

=
1 + e(β1x)

1 + e(β1x)
= 1.

Since all the required properties are satisfied, the logistic regression model with zero
intercept is a good choice to model the probability that Team A beats Team B in
an inter-league tournament. We will next proceed to fitting this model.

We merge equation 1 and equation 4 into

P (y) =

(
eβ1x

1 + eβ1x

)y
·

(
1

1 + eβ1x

)1−y

=
eβ1xy

1 + eβ1x
. (5)

So given a set of data with a finite number of independent observations, to fit the
logistic regression model with zero intercept in equation 5 to these data requires us
to estimate the value of the unknown parameters β1. Least squares is the most often
used method for estimating the unknown parameters in linear regression. But this
method cannot be applied to a model with dichotomous response variable because
it forces the estimators to lose the desirable statistical properties, as demonstrated
by Hosmer and Lemeshow (1989). So we invoke the method of maximum likelihood
following the approach of Hosmer and Lemeshow (1989). In a more general sense,
this method produces values for the unknown parameters that maximize the proba-
bility of getting the observed or given set of data. The likelihood function basically
demonstrates the probability of the given data as a function of the unknown param-
eters and it is first constructed before applying the method of maximum likelihood.
The values that maximize this function are the maximum likelihood estimators of
the parameters. And these resulting estimators are described to agree most closely

26

with the given data. So, we find these values from the logistic regression model with
zero intercept.

Since we assumed to have independent observations, the likelihood function of
equation 5 is:

L(β1;Y1, Y2, · · · , Yn) =
n∏
i=1

(
eβ1xiyi

1 + eβ1xi

)
(6)

By principle, the method of maximum likelihood estimation requires that we use
an estimate of β1 whose value maximizes equation 6. It is mathematically easier
to work with the log function of equation 6 as argued by Hosmer and Lemeshow
(1989). Taking the natural log of both sides of equation 6 produces

lnL(β1;Yi) = ln
n∏
i=1

(
(eβ1xi)yi

1 + eβ1xi

)
,

=
n∑
i=1

ln(eβ1xi)yi −
n∑
i=1

ln(1 + eβ1xi),

=
n∑
i=1

yi(β1xi)−
n∑
i=1

ln(1 + eβ1xi).

So, letting l(β1;Yi) = lnL(β1;Yi), we have

l(β1;Yi) = β1

n∑
i=1

xi · yi −
n∑
i=1

ln(1 + eβ1xi). (7)

Now, to find the value of β1 that maximizes L(β1;Yi) we differentiate equation 7
with respect to β1 and set the result to zero. Taking derivatives yields

∂l(β1;Yi)

∂β1
=

n∑
i=1

xi · yi −
n∑
i=1

(
xie

β1xi

1 + eβ1xi

)

=
n∑
i=1

xi · yi −
n∑
i=1

xi

(
eβ1xi

1 + eβ1xi

)

=

n∑
i=1

xi

(
yi −

eβ1xi

1 + eβ1xi

)
.

Now, setting the derivative to zero gives

n∑
i=1

xi

(
yi −

eβ1xi

1 + eβ1xi

)
= 0. (8)

Unfortunately, the form of equation 8 makes it unfeasible to solve directly. So,
we will need to apply some numerical approximation procedure to estimate its
solution. The value of β1 from equation 8 is denoted by β̂1 and it is called the
maximum likelihood estimate of β1. This represents the predicted or fitted value
for the logistic regression model with zero intercept.

3. Numerical Approximation Procedures

3.1 Bisection Method

Sauer (2012) discussed that the bisection method uses the intuitive concept of
bracketing the root, which is done first to ensure that a root exists for an equation.

27

This method converges to only one root of the equation and does not give any clue
whether there are additional solution(s) for the equation or how to find them, as
shown by Levy (2010), and by Gerald and Wheatley (2004). Hence, it is said to be
linearly convergent.

Sauer (2012) showed with an example that the bisection method is one of the
linearly convergent methods, by observing the solutions from the point they begin
to converge. That is, it was observed that the number of accurate decimal places
increases by one for each iteration.

Definition 1. Linear Convergence:
An iterative method is said to satisfy linear convergence at rate R if

lim
j→∞

Ψj+1

Ψj
= R < 1,

where Ψj is the error at iteration j.

Sarra (2018) made mention of the fact that many other numerical approximation
procedures also share significant characteristics with the bisection method. This
idea is summarized in a corollary of the Intermediate Value Theorem(IVT). The
general algorithm for the bisection method developed by Sauer (2012) can be used
to find solutions of equations manually. Some applications of this method are also
described by Sauer (2012) and by Gerald and Wheatley (2004) using MATLAB.
So, starting with some closed interval [u, v] of a function f(x), after m number of
iterations, the interval [um, vm] will have a length of

(v − u)

2m
.

The best estimate of a solution is obtained by selecting the midpoint;

zc =
u+ v

2
.

Hence, the error of the solution at the mth iteration (Ψm) and function evaluation
(Λ) proposed by Sauer (2012) and by Sarra (2018) now becomes

Ψe = |zc − a| ≤
v − u
2m+1

and Λ = m+ 2,

where zc is the value of the midpoint, and a is the solution of f(x). To assess the
efficiency of the bisection method, Sauer (2012) suggested that we can measure how
much accuracy is obtained for each Λ. And each Λ reduces the uncertainty in the
solution by some number divisible by 2. So, we know a root is accurate within some
k decimal places if the value of Ψ is below 0.5 ∗ 10−k. It is worthy of note that the
desired level of accuracy for the solution decides how many iterations that should
be carried out when solving by hand. But when using computer programs, Sauer
(2012) suggested we define the stopping criteria or tolerance (tol), which sets a limit
to the number of possible correct digits. According to Sarra (2018) we can achieve
that by setting

m ≥ log2

(v − u
tol

)
.

This formula only exists for the bisection method; other methods require other
criteria, and the importance of this stopping criteria is described by Sarra (2018)
Levy (2010) made us understand that the bisection method would always converge

28

import RootFinders as RF
from math import cos , log , c e i l , fabs , copys ign
−−
de f b i s e c t i o n (f , u , v , t o l=1e−9):

fu , fv = f (u) , f (v)
N = i n t (c e i l (l og ((v−u)/ t o l)/ l og (2 . 0)))

the number o f i t e r a t i o n s
b = [] # an empty l i s t
f o r i in range (N) :

w = (v + u) / 2 . 0
b . append (w)
fw = f (w)
i f fu ∗ fw < 0 : # b∗ i s in [u ,w]

v , fv = w, fw
e l s e : # x∗ i s in [w, v]

u , fu = w, fw
b . append ((u+v)/2) # new midpoint i s the best e s t imate
re turn b

Figure 1: Python code for the bisection method.

to a root and described how to identify how close we get to a solution after some
number of iterations. Sarra (2018) proposed the bisection algorithm in Python as
shown in Figure 1.

Let us explore this method with the following example:

Example 1. Find the approximate root of xex − 1.
From Figure 3, we get an approximate root of 0.567143290390959 after 37 iter-

ations in about 0.03 seconds.

3.2 Newton’s Method

This is also referred to as the Newton-Raphson method. Sauer (2012) stated
that it is known to converge more quickly than the bisection method and other
linearly convergent methods. Sarra (2018) argued that Newton’s method can be
extended easily to higher dimensions. These and many more are the reasons why
it is popular and widely used. Sarra (2018) mentioned that this method resulted
from Newton’s solution to Kepler’s equation and argued that Newton’s method is
also a fixed point iteration, but a clever choice of the iteration function results in
its quicker convergence. We understand from Levy (2010) that Newton’s method
does not always converge, for example f(x) = tan−1x. Gerald and Wheatley (2004)
argued that Newton’s method might converge to a different solution or diverge
completely if the initial guess is not quite close enough to the solution or root.

For any function f(a), to find its root using Newton’s method, we start with an
initial guess a0, and then draw a line of tangent at a0 to f , following the works of
Sauer (2012) and of Gerald and Wheatley (2004). So, invoking the equation of a
tangent line formula, given the point (a0, f(a0)) and slope (f ′(a0)), we have

b− f(a0) = f ′(a0)(a− a0),

29

−−
de f newton (f , fp , b0 , t o l=1e−10,maxIt =50):

i t e r = 0
ba = [] # empty l i s t
ba . append (b0) # add i n i t i a l guess to l i s t
b = b0
db = 100 # increment
fb = f (b) # r e s i d u a l
fpb = fp (b)
whi l e abs (db)> t o l and abs (fb)> t o l and i t e r<=maxIt :

db = −fb / fpb
b += db
fb = f (b)
fpb = fp (b)
ba . append (b)
i t e r += 1

return ba
−−
de f newtonImproved (f , fp , b0 , t o l=1e−10,maxIt =50): # 3rd order

db , fb = 100 , 100 # f o r the f i r s t i t e r a t i o n
i t e r = 0
ba = [] # an empty l i s t
ba . append (b0)
b = b0
whi le f abs (db)> t o l and fabs (fb)> t o l and i t e r<=maxIt :

fb = f (b)
fpb = fp (b)
db = −fb / fpb
fb2 = f (b + db)

an extra func t i on eva lua t i on
db2 = −(fb+fb2)/ fpb # extra d i v i s i o n
b += db2
ba . append (b)
i t e r += 1

return ba

Figure 2: Python code for two Newton approximation procedures.

import RootFinders as RF
import math
from pylab import ∗
de f f (x) : r e turn x∗math . exp (x) − 1
xStar = 0.567143 # r e f e r e n c e s o l u t i o n
a , b = −2, 2 # search on i n t e r v a l [a , b]
t o l = 1e−10 # t o l e r a n c e
x = RF. b i s e c t i o n (f , a , b , t o l)
p r i n t (’ The approximate root i s { : 1 . 1 5 f } ’ . format (x [−1]))

Figure 3: Finding the root of xex − 1 with the bisection method.

30

run −t newtonExample2 . py
import RootFinders as RF
import math
from pylab import ∗
de f f (x) : r e turn x∗math . exp (x) − 1
de f fp (x) : r e turn x∗math . exp (x) + math . exp (x)
xStar , x0 = 0.567143 , 0 . 3
x = RF. newton (f , fp , x0)
p r i n t (’ The approximate root i s { : 1 . 1 5 f } ’ . format (x [−1]))

Figure 4: Using Newton’s method to find the root of xex − 1.

which is also a first order Taylor polynomial, according to Sarra (2018). Now, we
set b = 0 to get the x-intercept, which is the point where the tangent line intercepts
with the x-axis, to get:

−f(a0) = f ′(a0)(a− a0)⇒ (a− a0) =
−f(a0)

f ′(a0)
⇒ a = a0 −

f(a0)

f ′(a0)

which is the algebraic formula for Newton’s method. Repeating this procedure to
solve for each ai, i ≥ 1 results in having the following iterative formula.

Letting a0 be the initial guess,

ai+1 = ai −
f(ai)

f ′(ai)
for i ≥ 0. (9)

Error at the mth iteration is defined as: em = am− c, where c be a root of f(a).
Sauer (2012) described with an example to show that Newton’s method is one of the
quadratically convergent methods, by observing the solutions from the point they
begin to converge. That is, it was observed that the number of accurate decimal
places in ai doubles approximately on each iteration.

Definition 2. Quadratic Convergence:
An iterative method is said to satisfy quadratic convergence if

S = lim
j→∞

Ψj+1

Ψ2
j

<∞,

where Ψj is the error at iteration j.

Further discussions on other properties the Newton’s method exhibits such as
quadratically convergent, linearly convergent and how Newton’s method relates to
other methods, are discussed by Sauer (2012), Levy (2010), Gerald and Wheatley
(2004), and Sarra (2018). Gerald and Wheatley (2004) described the general algo-
rithm for Newton’s method. Sarra (2018) developed Newton’s method in Python
as shown in Figure 2.

Let us explore this method with the following example:

Example 2. Find the approximate root of xex − 1.
From Figure 4, using an initial guess of 0.3, we get an approximate root of

0.567143290409784 after 6 iterations in about 0.02 seconds.

31

run −t impNewtonExample2 . py
import RootFinders as RF
import math
from pylab import ∗
to l , maxIt = 1e−16, 50
de f f (x) : r e turn x∗math . exp (x) − 1
de f fp (x) : r e turn x∗math . exp (x) + math . exp (x)
xStar , x0 = 0.567143 , 0 . 3 # to avoid f l o a t d i v i s i o n by zero
x = RF. newtonImproved (f , fp , x0 , to l , maxIt)
p r i n t (’ The approximate root i s { : 1 . 1 5 f } ’ . format (x [−1]))

Figure 5: Using improved Newton’s method to find the root of xex − 1

3.3 Improved Newton’s Method

Yao (2014) proposed a concept of accelerating an iterative method for solv-
ing algebraic equation by adding a simple term to the method having an order k
convergence rate and increase the order of convergence to (2k−1). The order of con-
vergence as defined by Yao (2014), is simply a measure of how quickly an iterative
method converges to the actual solution or root. This method was demonstrated by
Yao (2014) using an easy algebraic equation of 5th order convergence but eventually
used 4 function values on each iteration. When this method is applied to Newton’s
method with quadratic convergence, it can attain a cubic convergence, which gives
us the improved Newton’s method.

Definition 3. Cubic Convergence:
An iterative method is said to satisfy cubic convergence if

T = lim
j→∞

Ψj+1

Ψ3
j

<∞,

where Ψj is the error at iteration j.

This method is valid for equation 8 since it is a system of equation that can be
solved by Newton’s method. We know that obtaining the root of f(a) using the
Newton’s method requires we solve

f(ai) + f ′(ai) · ei = 0. (10)

This is second order convergent and follows from equation 9, where ei = ai+1 − ai,
ei being the error at each iteration i, i ≥ 0. Hence, to find the root of f(a) using
the improved Newton’s method, we add the term f(ai + ei) to Newton’s iterative
formula in equation 10 and solve again to get

f(ai + ei) + f(ai) + f ′(ai) · λi = 0,

where ai+1 = ai + λi. Adding the term improves the formula from being second
order convergent to third order convergent as illustrated by Yao (2014). Sarra (2018)
developed the improved Newton’s method in Python as shown in Figure 2.

Let us explore this method with the following example:

Example 3. Find the approximate root of xex − 1.
From Figure 5, using an initial guess of 0.3, we get an approximate root of

0.567143290409784 after 5 iterations in about 0.02 seconds.

32

Figure 6: Convergence plot of the three approximation procedures.
Plot of log(error) against number of iterations for bisection (yellow), Newton’s (red),
and improved Newton’s (green) method.

We observe from the convergence plot in Figure 6 as coded in 7 that the improved
Newton’s method is the fastest of the three methods, converging after 5 iterations
and taking only about 0.01 seconds.

Other numerical approximation procedures such as fixed point iteration, secant
method, Muller’s method, etc., were discussed by Sauer (2012), Levy (2010), Gerald
and Wheatley (2004), and Sarra (2018).

4. Simulation Study

In this section we simulate data that fits equation 8 to test the goodness of
the estimator, compare the three numerical approximation procedures - bisection,
Newton’s and improved Newton’s methods and to examine if the estimator has a
normal distribution. We fix the values of β1 and x for varying values of y. Using
Python, the code for equation 8 is shown in figure 8.

For this simulation, we consider an inter-league tournament involving six teams
from two different leagues. The rank of each team within its league is given, so we
calculate x, which is the difference in ranks for all 36 possible pairings as shown in
Table 1.

Ranks 1 2 3 4 5 6

1 0 -1 -2 -3 -4 -5

2 1 0 -1 -2 -3 -4

3 2 1 0 -1 -2 -3

4 3 2 1 0 -1 -2

5 4 3 2 1 0 -1

6 5 4 3 2 1 0

Table 1: Difference in ranks in a 6-team inter-league competition

33

run Example . py
from pylab import ∗
import math
import RootFinders as RF
to l , maxIt = 1e−16, 50
a , b = −2, 2 . 6 # search on i n t e r v a l [a , b]
de f f (x) : r e turn x∗math . exp (x) − 1
de f fp (x) : r e turn x∗math . exp (x) + math . exp (x) # f ’ (x)

xStar = 0.567143 # exact s o l u t i o n
x0 = 0 .3 # i n i t i a l guess

x = RF. b i s e c t i o n (f , a , b , t o l)
x = array (x)
eB = abs (xStar − x)

x = RF. newton (f , fp , x0 , to l , maxIt)
x = array (x)
e = abs (xStar − x)

x = RF. newtonImproved (f , fp , x0 , to l , maxIt)
x = array (x)
eN = abs (xStar − x)

rho = (log10 (eB[−1]) − l og10 (eB [−2]))/ (log10 (eB[−2])
− l og10 (eB [−3]))
p r i n t (’ B i s e c t i o n { : 1 . 1 5 f } ’ . format (x [−1]))

rho = (log10 (e [−2]) − l og10 (e [−3]))/ (log10 (e [−3])
− l og10 (e [−4]))
p r i n t (’ Newton { : 1 . 8 f } ’ . format (x [−1]))

rho = (log10 (eN[−3]) − l og10 (eN [−4]))/ (log10 (eN[−4])
− l og10 (eN[−5]))
p r i n t (’ improved Newton { : 1 . 8 f } ’ . format (x [−1]))

semi logy (range (0 , l en (e)) , e , ’ r ’ , range (0 , l en (eN)) , eN , ’ g ’ ,
range (0 , l en (eB)) , eB , ’ y ’)

y l a b e l (’ $ log$ (e r r o r) ’) ; x l a b e l (’ Number o f i t e r a t i o n s ’)

show ()

Figure 7: Python code for convergence plot.
Finding the root of xex − 1 and showing the convergence plot of bisection, Newton
and improved Newton’s method

34

import func t i on as F
import math
import numpy as np
x = input (’ Enter va lue s o f x : ’)
x i = x . s p l i t () # convert input to an ar r ray
x i = [f l o a t (a) f o r a in x i]
y = input (’ Enter va lue s o f y : ’)
y i = y . s p l i t ()
y i = [f l o a t (a) f o r a in y i]
CP = np . dot (x i , y i) # dot product
de f func (b) :
S = 0
f o r a in x i :

exp = ((a ∗(math . exp ((b)∗ a)))/(1+math . exp ((b)∗ a)))
S += exp
fb = CP − S

return fb

Figure 8: Python code for logistic regression model with zero intercept.
This code is for Equation 8.

4.1 Simulation Process

With fixed value of β1 and fixed values of x shown above, we simulate the values
of y using Python. (See Figure 9.) Our choice of β1 is dependent on the steepness
of the logistic regression curve with zero intercept. The simulation process is as
follows:

1. We set the value of β1 = 0.5 and set the values of x to range from −5 to 5,
which follows from the result in Table 1.

2. We evaluate the probability, p for each value of x using the logistic regression
with zero intercept model.

3. Using the result from step 2 above, we generate random binomial values of y
for n = 1, which guarantees a Bernoulli distribution.

4. We estimate the value of β1 by computing equation 8 with the fixed values of
x and values of y gotten from step 3.

5. We record the value of the estimate, number of iterations taken to converge,
and system time, for each numerical approximation procedure.

6. We repeat steps 3− 5, 50 times.

7. We repeat steps 1− 6, for β1 = 1.

4.2 Simulation Output

When β1 = 0.5, we observe that the mean estimate is approximately 0.5 which
justifies the goodness of the estimator. (See Table 4.) We also found that the
average iteration required by bisection, Newton’s and improved Newton’s method

35

#ipython /home/ agboola /Documents/Python/ s i m t r i a l . py \
> /home/ agboola /Documents/Python/ s im data1 . txt
import random
import math
import numpy as np
va lue s = l i s t (range (1 , 7 , 1))
#sequence o f number from 1 to 6
va lues1 = l i s t (range (1 , 7 , 1))
f o r a in va lue s :
f o r b in va lues1 :
x = b−a
p r in t (x)
p = (math . exp (0 . 5∗ x))/(1+math . exp (0 . 5∗ x))

p r o b a b i l i t y by log . reg . with zero i n t e r c e p t
y = np . random . binomial (1 , p , 1)
p r i n t (y)

Figure 9: Python code for simulating values of y.

to converge are 36, 6 and 5 respectively. (See Table 2.) And we found that the
average system time it took for bisection, Newton’s and improved Newton’s method
to run are 0.025, 0.012 and 0.009 seconds respectively.

When β1 = 1, we observe that the mean estimate is approximately 1 which
justifies the goodness of the estimator. (See Table 5.) We also found that the av-
erage number of iterations required by bisection, Newton’s and improved Newton’s
method to converge are 36, 7 and 6 respectively. (See Table 3.) And we found that
the average system time it took for bisection, Newton’s and improved Newton’s
method to run are 0.052, 0.035 and 0.026 seconds respectively.

5. Conclusion and Future Work

5.1 Conclusion

In statistics, a new model or approach for estimation is considered valid after
justifying the goodness of the estimator and goodness of the model. This study
was able to justify the goodness of the estimator, which followed from the results in
Chapter 4. (See Tables 4 and 5.) We also used the simulation process to examine
whether the estimator has a normal distribution. But, when β1 = 0.5, we found
evidence that the estimator is not normal using the Kolmogorov-Smirnov test. (See
Table 4.) This was also complemented by the Q-Q plot and histogram. (See Table
4.) We also observed that the improved Newton’s method is the fastest of the
three numerical approximation procedures, taking an average of 5 iterations and
approximately 0.009 seconds, as shown in Table 2. Also, when β1 = 1, we observed
that the estimator is not normal using the Kolmogorov-Smirnov test. (See Table
5.) This was also complemented by the Q-Q plot and histogram. (See Table 5.)
And similarly, we observed that the improved Newton’s method is the fastest of the
three numerical approximation procedures, taking an average of 6 iterations and
approximately 0.026 seconds, as shown in Table 3.

It should be noted that we would not be using the Mean Square Error for logistic
regression as it is being used for linear regression. Michael A. Nielsen (2015) gave

36

Table 2: Table of values when β1 = 0.5.
Showing the approximate estimate, number of iterations, and system time for bi-
section, Newton’s and improved Newton’s method for β1 = 0.5.

37

Table 3: Table of values when β1 = 1.
Showing the approximate estimate, number of iterations, and system time for bi-
section, Newton’s and improved Newton’s method for β1 = 1.

38

a thorough mathematical explanation in his book, but it was summarized from a
Bayesian perspective in that it is “because our prediction function is non-linear
(due to sigmoid transform). Squaring this prediction as we do in MSE results in a
non-convex function with many local minimums.”

5.2 Future work

1. Implementation of the model: This study focused on proposing logistic
regression with zero intercept as a new approach to estimating preference
probability based on ranks. As mentioned earlier, we are yet to determine the
goodness of the model as applied to real-life data. We tried simulating data,
hoping it could mimic a real-life scenario and give us a true representation of
the model’s effectiveness but we have no idea whether reality would conform
to our model, and we did not have enough time to dig for real data and
implement. This presents an intriguing area for future research.

2. Comparing varying ranks with preference probability: The preference
probability for equal ranks is most obvious in this study, which is one of the
properties our statistical model satisfies and one of the reasons why the model
is considered in this study. But it does not mention or compare the probability
when we have equal or varying values of x with varying ranks. For instance,
P (Rank1 > Rank4) and P (Rank3 > Rank6) or vice-versa. This is open to
further work to see what interesting things happen in the above cases.

3. Structure of Python module for the model: The Python code for equa-
tion 8 only permits the user to input corresponding values of x and y. Though
it supports the “copy” and “paste” option, but formatting the data be-
fore copying could be painful when dealing with very large files. This is open
to further work if we need to compare numerical approximation procedures,
since we already have statistical packages and software that estimates logistic
regression using Newton’s method, as found in SAS.

4. Unequal number of teams: We assumed we should have equal numbers of
teams for the inter-league competition, which might not always be the case in
reality. Hence, further work could consider how to format the model to suit
this special case.

5. Additional predictors: We could explore other factors that can influence
the preference probability asides from known ranking, such as number of wins
prior to the game. We can achieve that by introducing additional predictors
to our model.

6. Possibility of ties: We could also explore ways that allow the possibility of
ties.

REFERENCES

Bradley, R. A., and Terry, M. E. (1952), “Rank Analysis of Incomplete Block Designs: I. The
Method of Paired Comparisons,” Biometrika Trust, 39 Issue 6, 324–345.

Brendan F. (2017), “Machine Learning Cheatsheet: Logistic Regression,” revision 016f83bb, online
book.

Gerald, C. F., and Wheatley, P. O. (2004), “Applied Numerical Analysis,” Pearson Education.

39

Table 4: Table of measures and graphs for estimates when β1 = 0.5.
Showing measures of moments, tests for normality and graphs of Q-Q plot and
histogram of estimates when β1 = 0.5.

40

Table 5: Table of measures and graphs for estimates when β1 = 1.
Showing measures of moments, tests for normality and graphs of Q-Q plot and
histogram of estimates when β1 = 1.

41

Holland, D., and Wessells, R. (1998), “Predicting Consumer Preferences for Fresh Salmon: The
Influence of Safety Inspection and Production Method Attributes,” Agricultural and Resource
Economics Review, 27 1, 1–14.

Hong, C., Jung, M., and Lee, J. (2010), “Prediction Model Analysis of 2010 South Africa World
Cup,” Journal of the Korean Data and Information Science Society, 21 Issue 6, 1137–1146.

Hosmer, D. W., and Lemeshow, S. (1989), “Applied Logistic Regression,” John Wiley and Sons.
Jong-June, J., and Yongdai, K. (2013), “Revisiting the Bradley-Terry Model and its Application

to Information Retrieval,” Journal of the Korean Data and Information Science Society, 24 no.
5, 1089–1099.

Levy, D. (2010), Introduction to Numerical Analysis, lecture notes.
Lo, V. S. Y., Bacon-Shone, J., and Busche, K. (1995), “The Application of Ranking Probability

Models to Racetrack,” Management Science, 41, no. 6, 1048–1059.
Nielsen, M. A., (2015), “Neural Networks and Deep Learning,” online book.
Sarra, S., (2018), “Applied Numerical Analysis,” lecture notes.
Sauer, T., (2012), “Numerical Analysis,” Pearson Education.
Sham, P. C., Curtis, D., (1995), “An Extended Transmission/Disequilibrium Test (TDT) for Mul-

tiallele Marker Loci,” Ann Hum Genet, 59, 323–336.
Stigler, S. (1994), “Citation Patterns in the Journals of Statistics and Probability,” Statist. Sci.,

9, 94–108.
Tierney L., (1997), “Generalized Linear Models in Lisp-Stat,” lecture notes.
Willoughby, K. A. (2002), “Winning Games in Canadian Football,” College Mathematics Journal,

33, 215–220.
Yao, J. (2014), “An Easy Method to Accelerate an Iterative Algebraic Equation Solver,” Journal

of Computational Physics, 267, 139–145.

42

