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Abstract 
The 2015 Residential Energy Consumption Survey (RECS) national end-use estimates were produced in 
three steps: (1) the annual-level end-use energy consumption models, developed by energy-engineering 
experts (EEE), were applied to the 2015 RECS data and some weather data, outputting initial EEE end-use 
estimates; (2) the EEE end-use estimates were calibrated to the fuel-specific total consumption value for 
each sample respondent, followed by imputation for cases with missing total consumption values; and (3) 
the calibrated end-use estimates are multiplied by the survey weights to produce the 2015 national end-use 
estimates. In this paper, we keep (1) and (3) as fixed, but in (2) we implement two simpler but more direct 
Bayesian calibration methods than the official method in an attempt to increase the validity of the latter 
method and its published results. Uncertainty of the final official estimates are assessed against the posterior 
predictive distributions that are derived under one of the Bayesian models. 
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1. Introduction 

 
When you have a higher-level estimate, e.g., a national or annual total and also independent lower-level 
estimates, e.g., state or monthly totals, you may wish to calibrate the latter estimates against the former 
estimate. Such corrections or adjustments may be necessary for consistency or may just make sense if the 
higher-level estimate is based on more accurate census or administrative data while the lower-level 
estimates are based on more uncertain sample or predicted data. Another illustration is that a household 
may remember its total spending better than itemized amounts for a year. From utility companies, the U. S. 
Energy Information Administration (EIA) collects monthly electricity billing data for the respondents in 
the Residential Energy Consumption Survey (RECS). Those administrative billing data are checked, 
imputed where missing, and annualized to form annual total electricity consumption values for the RECS 
respondents. On the other hand, EIA utilizes energy-engineering-expert (EEE) knowledges to build a 
variety of annual-level end-use energy consumption models from RECS’s energy and housing-unit 
characteristics variables and from the administrative weather data variables. For each RECS respondent, 
these EEE models produce end-use electricity consumption estimates, which are calibrated against the 
annual total electricity consumption. (Notice that two kinds of administrative data are used for two entirely 
different purposes—for modeling something directly and for calibrating some modeled output.) Finally, 
national inferences are drawn with survey weights. Detailed and complete descriptions of the data and 
methodology for the most recent 2015 vintage are provided at EIA’s 2015 RECS Web 
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page https://www.eia.gov/consumption/residential/data/2015. In particular, end-use energy modeling and 
estimation methods are described in the report titled “Residential Energy Consumption Survey (RECS) 
2015 Consumption and Expenditures Technical Documentation Summary” (U. S. Energy Information 
Administration, 2018b). 
 
In this paper, two simple Bayesian calibration models are tried in the calibration step—in place of the so-
called minimum variance calibration method implemented for the 2015 RECS. The Bayesian models here 
are not only simple but also simpler in the sense that they are expected to under-fit the data or not to fit 
every part of the data. It is intentional, as a present goal is not to develop an individual-level Bayesian model 
for this calibration problem but to conduct a quick but meaningful study to check the validity of the official 
2015 RECS end-use inferences. Also, to make the validation study as impartial as possible, though it still 
is subjective, the Bayesian calibration models are internally pre-registered. That is, they are built before 
any data analyses and are unchanged during the data analyses. 
 

2. Bayesian End-Use Estimates Calibration Model I 
 
We consider calibrating the following twenty-five EEE end-use electricity consumption estimates against 
the total electricity consumption value for each of the 5,686 respondents in the 2015 RECS (which will be 
indexed by the subscript 𝑖𝑖 later): 

𝑥𝑥1 = Space heating, main and secondary 
𝑥𝑥2 = Air conditioning (central systems and individual units) 
𝑥𝑥3 = Water heating, main and secondary 
𝑥𝑥4 = All refrigerators 
𝑥𝑥5 = Cooking (stoves, cooktops, and ovens) 
𝑥𝑥6 = Clothes dryers 
𝑥𝑥7 = Freezers 
𝑥𝑥8 = Indoor and outdoor lighting 
𝑥𝑥9 = Clothes washers 
𝑥𝑥10 = Dishwashers 
𝑥𝑥11 = All televisions and related peripherals 
𝑥𝑥12 = Computers and related peripherals 
𝑥𝑥13 = Air handlers and boiler pumps used for heating and air handlers used for cooling 
𝑥𝑥14 = Evaporative coolers 
𝑥𝑥15 = Ceiling fans 
𝑥𝑥16 = Floor, whole house, and attic fans 
𝑥𝑥17 = Dehumidifiers 
𝑥𝑥18 = Humidifiers 
𝑥𝑥19 = Small kitchen appliances 
𝑥𝑥20 = Swimming pool pumps and heaters 
𝑥𝑥21 = Hot tub pumps and heaters 
𝑥𝑥22 = Electric vehicles 
𝑥𝑥23 = Electric parts of gas dryers 
𝑥𝑥24 = Devices and purposes surveyed for the sample cases interviewed only in the in-person mode 
𝑥𝑥25 = Unknown devices and purposes 

All are estimated in the annual kWh. Note that in the official 2015 RECS end-use microdata and tables a 
slightly modified set of end uses is used. For example, the end uses 𝑥𝑥22, 𝑥𝑥23, and 𝑥𝑥24 are rolled into the 
end use 𝑥𝑥25, which is labeled by “Other devices and purposes not elsewhere classified”. 
 
The first Bayesian calibration model assumes that the total electricity value 𝑦𝑦𝑖𝑖 is distributed normally with 
the mean 𝜇𝜇𝑖𝑖 and the standard deviation 𝜎𝜎 for the 2015 RECS housing-unit respondents 𝑖𝑖 = 1, …, 5,686: 
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𝑦𝑦𝑖𝑖  ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎2), 𝑖𝑖 = 1, …, 5,686. 

 
For each 𝑖𝑖, the mean 𝜇𝜇𝑖𝑖 is defined by the linear and additive function: 
 

𝜇𝜇𝑖𝑖 = 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽25𝑥𝑥25𝑖𝑖, 
 
where 𝑥𝑥1𝑖𝑖, …, 𝑥𝑥25𝑖𝑖 are the twenty-five EEE end-use electricity consumption estimates described in the 
above for the respondent 𝑖𝑖. The standard deviation 𝜎𝜎 is constant over 𝑖𝑖. This data model is simply a multiple 
linear regression model without the intercept. In the generalized linear model language, the link function is 
identity and equals the mean function. 𝑥𝑥1𝑖𝑖, …, 𝑥𝑥25𝑖𝑖 are given and considered fixed for all 𝑖𝑖. The total 
electricity consumption 𝑦𝑦𝑖𝑖 is always positive, but the normal approximation is used and expected to be 
reasonable as the 𝜎𝜎 will be made tight around the 𝜇𝜇𝑖𝑖 by its prior distribution discussed next.  
 
The prior distribution for the regression parameters 𝛽𝛽1, …, 𝛽𝛽25 is assumed to be a multivariate normal 
distribution: 
 

(𝛽𝛽1, … ,𝛽𝛽25)
⊤

 ~ Multi. Normal((1, … ,1)⊤, Ʃ),  
 
where the variance-covariance matrix Ʃ is a 25×25 diagonal matrix with diagonal entries (0.252, …, 0.252, 
12). 𝛽𝛽1, …, 𝛽𝛽25 are theoretically all positive, but the multivariate normal approximation is used and their 
means are set to 1’s because there is no prior information about positive or negative biases in 𝑥𝑥1𝑖𝑖, …, 𝑥𝑥25𝑖𝑖. 
The standard deviations for 𝛽𝛽1, …, 𝛽𝛽24 are made equal at 0.25 and rather tight or informative around the 
mean values of 1’s. We are less certain about 𝛽𝛽25 than 𝛽𝛽1, …, 𝛽𝛽24, however, and its standard deviation is 
made four times larger at 1. Note that the standard deviations can be interpreted as the coefficients of 
variation here. 
 
The prior for the scale parameter 𝜎𝜎 is a usual Gamma distribution but with thick and flat mass over the 
plausible scale value of 𝑦𝑦𝑖𝑖 or weakly informative: 
 

𝜎𝜎 ~ Gamma�Shape = 1,  Inverse Scale = 0.001�. 
 
A Gamma distribution is specified in order to take advantage of SAS’s GENMOD Procedure with BAYES 
options (SAS Institute, 2009). 
 
There are 26 parameters or priors, which are all conjugate for the likelihood function. Thus, the posterior 
distribution can be derived mathematically. Numerically, however, SAS uses the conjugacy sampling, that 
is, SAS samples directly from the target distribution (the multivariate normal posterior distribution), and 
the sample size of 3,000 is specified. (Otherwise, SAS uses Gibbs sampler with the adaptive rejection 
Metropolis sampling algorithm by default. MCMC diagnostics available are: Tables of Posterior 
Autocorrelations, Gelman-Rubin Diagnostics, Geweke Diagnostics, Raftery-Lewis Diagnostics, 
Heidelberger-Welch Diagnostics, Effective Sample Sizes, and Monte Carlo Standard Errors as well as Plots 
of Traces, Autocorrelations, and Posterior Distributions.) The SAS codes are provided in Appendix A. 
 
Before graphically describing the posteriors of the regression parameters, their priors are reminded in Figure 
1 with the means and the 50% and 95% ranges (the 95% range is omitted for 𝛽𝛽25). (All the parameter plots 
are produced by the R package ggplot2.) 
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Figure 1: Prior Means with 50% and 95% Ranges of Regression Parameters  

 
The posterior means and the 50% and 95% (equal-tail) credible intervals of the regression parameters are 
calculated from the 3,000 posterior sample cases and are graphed in Figure 2. 
 

 
Figure 2: Model I Posterior Means with 50% and 95% (Equal-Tailed) Credible Intervals of Regression 

Parameters 
 
With the data, some of the posterior means have become smaller than one (e.g., 𝛽𝛽1, 𝛽𝛽8, 𝛽𝛽13, and 𝛽𝛽14), 
while the others have become larger than one (e.g., 𝛽𝛽4 and 𝛽𝛽25). A few remain around one (e.g., 𝛽𝛽3, 𝛽𝛽9, 
𝛽𝛽23, and 𝛽𝛽24). The levels of uncertainty have decreased for most of the regression parameters, that is, their 
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posterior normal distributions are narrower than the prior counterparts, e.g., we are much less uncertain 
about 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3. The exception is 𝛽𝛽25, about which we are much more uncertain. This could be due 
to the bad EEE model estimate of 𝑥𝑥25 or the bad prior, or both. And, the distribution of 𝛽𝛽23 is almost 
unchanged. Note the lower tails of the posterior distributions of 𝛽𝛽13 and 𝛽𝛽14 cross 0 and recall none of the 
regression parameters are constrained to be positive. 
 
These posterior means may be interpreted absolutely. For example, 𝛽𝛽1 = 0.5 may suggest that the EEE 
model estimates of 𝑥𝑥1𝑖𝑖 are overestimated by a factor of 2. However, the posterior means of the regression 
parameters will be uniformly rescaled for each 𝑖𝑖 so that the sum of calibrated end-use estimates will equal 
to 𝑦𝑦𝑖𝑖. Thus, the relative sizes of the posterior means are more important. Recall that our current problem is 
calibration of the EEE model estimates of end-use consumption values, not estimation of the true regression 
parameters. 
 
The scale parameter 𝜎𝜎 is a nuisance parameter, but we note that its simulated posterior Gamma distribution 
has the mean of 4,451, the minimum of 4,401, and the maximum of 4,590. 
 
Finally, the posterior correlation matrix of the regression parameters shows a few negative correlation 
coefficients, though the variance-covariance matrix Ʃ of their prior was assumed diagonal. Those less than 
or equal to -0.2 are red-colored in Table 1. 
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Table 1: Model I Posterior Correlation Matrix of Regression Parameters 
 

Parameter beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] beta[8] beta[9] beta[10] beta[11] beta[12] beta[13] beta[14] beta[15] beta[16] beta[17] beta[18] beta[19] beta[20] beta[21] beta[22] beta[23] beta[24] beta[25] 
beta[1] 1                                                 
beta[2] 0.0 1                                               
beta[3] -0.4 0.0 1                                             
beta[4] 0.0 -0.1 0.0 1                                           
beta[5] 0.0 0.0 -0.1 -0.1 1                                         
beta[6] 0.0 -0.1 -0.2 0.0 -0.1 1                                       
beta[7] 0.0 0.0 0.0 -0.1 0.0 -0.1 1                                     
beta[8] -0.1 -0.1 0.0 -0.2 -0.1 -0.1 0.0 1                                   
beta[9] 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 1                                 
beta[10] 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 1                               
beta[11] 0.0 -0.1 -0.1 -0.2 0.0 -0.1 -0.1 -0.1 0.0 0.0 1                             
beta[12] 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 1                           
beta[13] 0.0 -0.2 0.1 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 1                         
beta[14] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1                       
beta[15] 0.0 -0.2 0.0 -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.0 1                     
beta[16] 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 1                   
beta[17] 0.0 0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 1                 
beta[18] 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 -0.2 1               
beta[19] 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 1             
beta[20] 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1           
beta[21] 0.0 0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 1         
beta[22] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1       
beta[23] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1     
beta[24] 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 1   
beta[25] -0.1 -0.1 -0.1 -0.2 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 -0.1 1 

 

 
400



3. Bayesian End-Use Estimates Calibration Model II 
 
The second Bayesian model to calibrate the twenty-five EEE end-use electricity consumption estimates 
against the total electricity consumption value for each respondent 𝑖𝑖 = 1, …, 5,686 assumes that the total 
electricity value 𝑦𝑦𝑖𝑖 is distributed folded-normally (at 0) with the mean 𝜇𝜇𝑖𝑖 and the standard deviation 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] 
that is partially pooled by the housing unit type ℎ and the Census Divisions 𝑑𝑑: 
 

𝑦𝑦𝑖𝑖  ~ Folded-Normal�𝜇𝜇𝑖𝑖,𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖]
2 �, 𝑖𝑖 = 1, …, 5,686. 

 
Note that unlike in Model I 𝑦𝑦𝑖𝑖 are constrained to be non-negative. (ℎ[𝑖𝑖], 𝑑𝑑[𝑖𝑖]) indexes the five housing unit 
types and the ten Census Divisions over 𝑖𝑖: 
 
ℎ =  1: Mobile home 

2: Single-family detached house 
3: Single-family attached house 
4: Apartment in a building with 2 to 4 units 
5: Apartment in a building with 5 or more units 

 
𝑑𝑑 = 1: New England 

2: Middle Atlantic 
3: East North Central 
4: West North Central 
5: South Atlantic 
6: East South Central 
7: West South Central 
8: Mountain North 
9: Mountain South 
10: Pacific. 

 
For each 𝑖𝑖, the mean 𝜇𝜇𝑖𝑖 is defined by the linear and additive function as in the Model I: 
 

𝜇𝜇𝑖𝑖 = 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽25𝑥𝑥25𝑖𝑖, 
 
where 𝑥𝑥1𝑖𝑖, …, 𝑥𝑥25𝑖𝑖 are the twenty-five EEE end-use electricity consumption estimates for the respondent 
𝑖𝑖, described in Section 2. The data model is a multilevel model without the intercept. The EEE model 
estimates 𝑥𝑥1𝑖𝑖, …, 𝑥𝑥25𝑖𝑖 are given and considered fixed for all 𝑖𝑖 as before. The total consumption value 𝑦𝑦𝑖𝑖 
is always positive in the sample, and the normal distribution is folded at 0 so that the distribution is 
constrained to be non-negative.  
 
The prior distributions for the first 24 regression parameters 𝛽𝛽1, …, 𝛽𝛽24 are assumed to be folded-normal 
distributions: 
 

𝛽𝛽1, … ,𝛽𝛽24 ~ Folded-Normal(1, 0.252) 
 
and for the last regression parameter 𝛽𝛽25: 
 

𝛽𝛽25 ~ Folded-Normal(1, 12). 
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These priors are assumed to be independent, and they are essentially identical to the multivariate normal 
prior in Model I. The only differences are the non-negativity constraints of the distributions. However, these 
constraints are relatively weak, given the mean and standard deviation hyper-parameters values. 
 
Now, there are 5 × 10 = 50 scale parameters 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖], and they are assumed to be distributed folded-
normally as: 
 

𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] ~ Folded-Normal�𝑠𝑠ℎ,𝑑𝑑 ,  𝑠𝑠ℎ,𝑑𝑑
2 �, 

 
where 𝑠𝑠ℎ,𝑑𝑑 is the sample standard deviation of (𝑦𝑦𝑖𝑖 − (𝑥𝑥1𝑖𝑖 + … + 𝑥𝑥25𝑖𝑖)) in ℎ[𝑖𝑖] and 𝑑𝑑[𝑖𝑖] over 𝑖𝑖. (Note that 
the hyper-parameters are made data-dependent or specified empirically.) The standard deviation of 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] 
is set to equal the mean of 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖], i.e., the coefficient of variation is specified as 1. This gives a lot of 
mass to the distribution from 0 to 𝑠𝑠ℎ,𝑑𝑑, as the distribution is folded at 0. 
 
Specifying a folded-normal distribution for the likelihood, the regression parameters, or the scale 
parameters is not possible in SAS GENMOD, nor is the hierarchical modeling. (SAS MCMC allows 
Bayesian analysis of a linear mixed, generalized linear mixed, or nonlinear mixed model.) With these 75 
priors, Stan is used from R. “Stan® is a state-of-the-art platform for statistical modeling and high-
performance statistical computation. ... Users specify log density functions in Stan’s probabilistic 
programming language and get: 

• full Bayesian statistical inference with MCMC sampling (NUTS, HMC) 
• approximate Bayesian inference with variational inference (ADVI) 
• penalized maximum likelihood estimation with optimization (L-BFGS) 

Stan’s math library provides differentiable probability functions & linear algebra (C++ autodiff). 
Additional R packages provide expression-based linear modeling, posterior visualization, and leave-one-
out cross-validation.” (Stan Development Team, 2018b). Stan “interfaces with the most popular data 
analysis languages (R, Python, shell, MATLAB, Julia, Stata) and runs on all major platforms (Linux, Mac, 
Windows)” and “is freedom-respecting, open-source software (new BSD core, some interfaces GPLv3)” 
(Stan Development Team, 2018b). 
 
Three independent chains of 1,000 warm-up cases and then 1,000 sample cases (without thinning) are 
generated by the NUTS (No-U-Turn Sample) of Stan—3,000 posterior sample cases in total (Hoffman and 
Gelman, 2014). (The RStan codes are provided in Appendix B.) There are no divergent transitions 
diagnosed. The log posterior distribution looks reasonable. The chains have mixed well according to the 𝑅𝑅� 
statistic and the sample draws are quite independent according to the effective sample sizes (Gelman et al., 
2013). The posterior means and the 50% and 95% (equal-tail) credible intervals of the regression parameters 
are graphed in Figure 3. 
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Figure 3: Model II Posterior Means with 50% and 95% (Equal-Tailed) Credible Intervals of Regression 

Parameters 
 
As a whole, these posteriors turn out to be quite similar to those derived by Model I in Figure 2. Although 
there is some wiggling or shifting of the posterior means, the posterior spreads show similar patterns. Also, 
all posterior means except that of 𝛽𝛽24 stay on the same sides with respect to the unit line. Again, these 
regression parameters are better to be interpreted in the relative magnitudes. 
 
The posterior distributions of the partially pooled scale parameters 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] are plotted in Figure 4, where 
the vertical line is drawn at the posterior mean 4,451 of the scale parameter 𝜎𝜎 in Model I. 
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Figure 4: Model II Posterior Means with 50% and 95% (Equal-Tailed) Credible Intervals of Scale 

Parameters 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] 
 

These posteriors are everywhere with varying uncertainty levels, but quite a few of them have 
tight distributions. Further pooling or regularization of the scale parameters may be possible for the 
housing unit types 2 (Single-family detached house) and 5 (Apartment in a building with 5 or more units). 
 
The priors of the regression parameters were assumed to be independent, which, of course, implies their 
correlation coefficients were zeroes. However, the posterior correlation matrix of the regression parameters 
shows a few negative correlation coefficients as in Model I. The coefficients less than or equal to -0.2 are 
red-colored in Table 2, most of which overlap with those in Table 1. 
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Table 2: Model II Posterior Correlation Matrix of Regression Parameters 
 

Parameter beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] beta[8] beta[9] beta[10] beta[11] beta[12] beta[13] beta[14] beta[15] beta[16] beta[17] beta[18] beta[19] beta[20] beta[21] beta[22] beta[23] beta[24] beta[25] 
beta[1] 1.0                         
beta[2] 0.0 1.0                        
beta[3] -0.3 -0.1 1.0                       
beta[4] 0.0 -0.2 0.0 1.0                      
beta[5] -0.1 0.0 -0.2 -0.1 1.0                     
beta[6] 0.0 -0.1 -0.2 -0.1 -0.1 1.0                    
beta[7] -0.1 0.0 0.0 0.0 0.0 -0.1 1.0                   
beta[8] -0.1 0.0 0.0 -0.2 0.0 -0.1 0.0 1.0                  
beta[9] 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 1.0                 
beta[10] 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.0 1.0                
beta[11] 0.0 -0.1 -0.1 -0.2 0.0 -0.1 0.0 -0.1 0.0 0.0 1.0               
beta[12] 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1 -0.1 1.0              
beta[13] 0.1 -0.2 0.0 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 1.0             
beta[14] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0            
beta[15] 0.0 -0.2 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 1.0           
beta[16] -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 1.0          
beta[17] 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 1.0         
beta[18] 0.0 0.0 0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 1.0        
beta[19] 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.1 0.0 0.0 0.0 0.0 1.0       
beta[20] 0.0 -0.2 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0      
beta[21] 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 -0.1 1.0     
beta[22] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 1.0    
beta[23] 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0   
beta[24] 0.0 0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.0  
beta[25] -0.1 -0.1 -0.1 -0.3 -0.1 0.1 0.0 -0.1 0.0 0.1 -0.2 -0.2 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 -0.1 1.0 
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Recall that Model II has 50 parameters, while Model I has 26 parameters. Is Model II more complex or 
does it fit the data better? It is not clear. Gelman (2018) says, “With unregularized estimation such as least 
squares or maximum likelihood, adding parameters to a model (or making a model more complex) leads to 
overfitting. With regularized estimation such as multilevel modeling, Bayesian inference, lasso, deep 
learning, etc. etc., the regularization adds complexity but in a way that reduces the problem of overfitting. 
So traditional notions of model complexity and tradeoffs are overturned.” 
 
4. Comparisons of National Inferences of 2015 Electricity End-Use Consumption Amounts 

 
A main checking point of the above calibration models is the national inference of the 2015 electricity 
consumption by the twenty-five end uses. To derive final end-use estimates from Models I and II, a ratio 
adjustment is applied to the calibrated EEE end-use estimates so that the final end-use estimates sum to the 
total for each 𝑖𝑖 while keeping the calibration factors ratios constant—i.e., uniform rescaling of the posterior 
regression parameters in each 𝑖𝑖 with the raw EEE end-use estimates being kept fixed. If the sum of the 
calibrated end-use estimates is greater than the total, the estimates are scaled down; otherwise, scaled up. 
The ratio-adjustment or uniform-rescaling factor varies from respondent to respondent and between the two 
Bayesian calibration models. Note that the survey weights are not constant for the respondents. Thus, the 
derivation of the national end-use estimates is not easily tractable conceptually, though simple 
computationally. Table 3 compares (1) the 2015 RECS national estimates of the twenty-five end-use 
electricity consumption amounts with the 50% confidence intervals, (2) the Model I national estimates by 
the posterior means with the 50% (equal-tailed) credible intervals, and (3) the Model II national estimates 
by the posterior means with the 50% (equal-tailed) credible intervals. The estimates are rounded to the 
nearest billions in kWh. 
 
Table 3: Comparisons of National Inferences of 2015 Electricity End-Use Consumptions in Billion kWh 

 
National RECS Method Bayesian Model I Bayesian Model II 

Estimate 50% 
lower 
bound 

50% 
upper 
bound 

Mean 25th 
percentile 

75th 
percentile 

Mean 25th 
percentile 

75th 
percentile 

𝑥𝑥1: Space heating 187 182 192 180 179 181 180 179 181 

𝑥𝑥2: Air conditioning 214 210 219 210 210 211 212 211 212 

𝑥𝑥3: Water heating 173 170 176 173 172 173 173 172 173 

𝑥𝑥4: Refrigerators 89 88 89 106 106 106 105 105 105 

𝑥𝑥5: Cooking 18 18 18 21 21 21 21 21 21 

𝑥𝑥6: Clothes dryers 
 

57 57 58 65 65 65 65 65 65 

𝑥𝑥7: Freezers 20 20 21 25 25 25 25 25 25 

𝑥𝑥8: Lighting 131 129 132 136 135 136 136 135 136 

𝑥𝑥9: Clothes washers 6 6 6 7 7 7 7 7 7 

𝑥𝑥10: Dish Washers 7 7 7 9 9 9 9 9 9 

𝑥𝑥11: TV and related 87 87 88 101 101 100 101 101 100 

𝑥𝑥12: PC and related 31 30 31 36 37 36 36 37 36 
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𝑥𝑥13: Furnace fans 31 30 31 32 32 32 32 32 32 

𝑥𝑥14: Evaporative 
coolers 

3 3 4 4 4 4 4 4 4 

𝑥𝑥15: Ceiling fans 23 23 23 25 26 25 25 25 25 

𝑥𝑥16: Other fans 18 18 18 20 21 20 20 21 20 

𝑥𝑥17: Dehumidifiers 15 15 16 16 16 16 16 16 16 

𝑥𝑥18: Humidifiers 8 7 8 8 8 8 8 8 8 

𝑥𝑥19: Small kitchen 
appliances 

24 23 24 27 28 27 27 28 27 

𝑥𝑥20: Swimming pools 14 13 14 15 15 15 15 15 15 

𝑥𝑥21: Hot tubs 7 6 7 8 8 7 7 8 7 

𝑥𝑥22: Electric vehicles 2 2 2 2 2 2 2 2 2 

𝑥𝑥23: Electric parts of 
gas dryers 

1 1 1 1 1 1 1 1 1 

𝑥𝑥24: CAPI Others 23 23 23 26 26 25 25 25 25 

𝑥𝑥25: Unknowns 79 76 82 15 15 14 14 15 14 

 
The final national end-use consumption estimates are quite similar between Models I and II, which is 
expected given the similarities in the posteriors of the regression parameters. And, they are close to the final 
national end-use consumption estimates of the 2015 RECS. All these estimates are rather precise at least at 
the national level. So, we focus on the point estimates or the mean estimates. (Note that in Models I and II 
some of the 25th percentile estimates are larger than the mean or 75th percentile estimates. Intuitively, for 
a given case, the three ratio adjustments make the final end-use estimates sum to the same total. So, if one 
ratio adjustment (say, the 25th) makes one end-use estimate larger than what the other ratio adjustment 
(say, the 75th) does, it has to make the other end-use estimate(s) smaller than what the other ratio adjustment 
does to those end-use estimate(s). That is, these ratio adjustments are zero-sum.) 
 
In Figure 5, the final national end-use consumption estimates of the 2015 RECS, Model I, and Model II are 
plotted together. The discrepancy in 𝑥𝑥25 (Unknowns) between the 2015 RECS estimate and those by 
Models I and II is very visible and substantively large. The latter estimates are quite a bit lower than the 
former. Although both Models I and II have produced posterior means of 𝛽𝛽25 that are almost three (while 
the prior mean was 1), we started with a relatively small EEE model estimate of 𝑥𝑥25, compared to the other 
end uses, and the uniform rescaling could not take advantage of the differential calibration of the EEE 
model end-use estimates. As a result, the final national estimate of 𝑥𝑥25 by Model I or II is likely to be 
underestimated and became in par with other “miscellaneous” end-use estimates. Recall that large 
uncertainty remained in the posterior of 𝛽𝛽25 by Model I or II, but the final national estimate of 𝑥𝑥25 appears 
quite certain. In the sense, we are certainly wrong about our national inference of 𝑥𝑥25, and there is some 
room to improve the calibration model for the EEE model estimate of 𝑥𝑥25 or/and the rescaling method for 
𝛽𝛽25, if not the EEE model estimate of 𝑥𝑥25 itself. 
 
One alternative is to specify a much larger mean in the prior for 𝛽𝛽25, e.g., 𝛽𝛽25 ~ Folded-Normal(5, 52). 
The standard deviation can be made smaller if one has stronger information. Also, the scale parameter 𝜎𝜎 or 
𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖]
2  could be regularized to be so small that the residuals 𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖 are pushed to zeros (or less than 0.5 

kWh). 
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Another alternative is, instead of the ratio adjustments, to accept the calibrated end-use estimates of 𝑥𝑥1, …, 
𝑥𝑥24 as they are and to add the residual 𝑦𝑦𝑖𝑖 − (𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽25𝑥𝑥25𝑖𝑖) to 𝛽𝛽25𝑥𝑥25𝑖𝑖 in each 𝑖𝑖. That is, 𝑥𝑥25 
absorbs not only the consumption by unknown end uses but also the EEE model estimation errors for all 
the end uses 𝑥𝑥1, …, 𝑥𝑥25. This latter alternative may not work well at the respondent level, but the national 
inferences would provide more model-dependent estimates that may be more directly checked and 
improved. 
 

 
Figure 5: Final National End-Use Consumption Estimates by the 2015 RECS, Model I, and Model II 

 
The discrepancy in 𝑥𝑥25 (Unknowns) between the 2015 RECS estimate and that by Model I or II must go 
somewhere, but it does not go to any particular end uses. It is spread over all the end uses roughly in 
proportion to the consumption. In the absolute term, higher national estimates by Model I or II are observed 
for 𝑥𝑥4 (Refrigerators), 𝑥𝑥6 (Clothes dryers), and 𝑥𝑥11 (TV and related). Meanwhile, Models I and II provide 
slightly lower estimates for 𝑥𝑥1 (Space heating) and 𝑥𝑥2 (Air conditioning) than the 2015 RECS. 
 
Our conclusion about the 2015 RECS national end-use estimates is not binary—valid vs. not valid. We 
have tried two simple Bayesian calibration methods and they have led to the final national end-use estimates 
that are quite understandable and mostly consistent with the 2015 RECS estimates. For that reason, we 
consider this study has helped us increase our confidence in the 2015 RECS national end-use estimates. 
 

4. Posterior Predictive Checking 
 
In a Bayesian analysis, the major output is a posterior distribution of some unknown parameter or quantity 
given some data. Further with the posterior, however, one can predict future data 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟: 
 

𝑝𝑝(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟|𝑦𝑦) = �𝑝𝑝(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟|𝛩𝛩)𝑝𝑝(𝛩𝛩|𝑦𝑦)𝑑𝑑𝛩𝛩, 

 
where 𝑝𝑝(𝛩𝛩|𝑦𝑦) is the posterior distribution of the parameter set 𝛩𝛩 and is proportional to the likelihood times 
the prior 𝑝𝑝(𝑦𝑦|𝛩𝛩)𝑝𝑝(𝛩𝛩). 𝛩𝛩 contains 𝛽𝛽1, … ,𝛽𝛽25 and 𝜎𝜎 in case of Model I and 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] in case of Model II. 
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The idea is to assess or measure any systematic discrepancies between 𝑦𝑦 and 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 in order to improve the 
model adequacy. 
 
Here, we compare the 2015 RECS national end-use estimates with the replicated national end-use estimates 
from the posteriors of Model II before the ratio adjustments, i.e., with the posterior predictive distributions 
of the Model-II-calibrated national end-use estimates. Thus, although a ratio adjustment is not applied to 
each end use of 𝑖𝑖, the survey weight is used. Because of the omission of ratio adjustments, the checking of 
the Bayesian calibration model is rather direct. In Figure 6, we graphically conduct such posterior predictive 
checking for, e.g., 𝑥𝑥1 (Space heating) with the R package ggplot2. 
 

 
Figure 6: Posterior Predictive Distribution of Model II Calibrated National Estimate of 𝑥𝑥1 (Space 

Heating) with Corresponding 2015 RECS Estimate at Vertical Line 
  

We can see that the Model II calibration model does not predict the 2015 RECS estimate of 𝑥𝑥1 (Space 
heating) very well. The posterior mean of the regression parameter 𝛽𝛽1 was about 0.5, and maybe it was too 
low. The ratio adjustment of 𝛽𝛽1 has managed to make ends meet. 
 
Finally, Figure 7 graphs the density of the 2015 RECS national estimates of 𝑥𝑥2 (Air conditioning) overlaid 
with fifty replicate densities from Model II (without ratio adjustments) with the R package bayesplot.  
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Figure 7: Density of 2015 RECS National Estimate of 𝑥𝑥2 (Air conditioning) Labelled by 𝑦𝑦 and Fifty 

Replicate Densities from Model II (Without Ratio Adjustments) Labelled by 𝑦𝑦 rep 
 
The band of replicate densities does not quite cover the density of the 2015 RECS national estimate of 𝑥𝑥2 
(Air conditioning), though they are close. Recall that the posterior mean of the regression parameter 𝛽𝛽2 
was about 1.2. The overestimation by Model II was corrected by the ratio adjustment as well in this 
example. 
 
The calibration models can be improved to describe better the relative relationships among the EEE model 
end-use estimates, as briefly discussed in the previous section. At this time, however, the ratio adjustments 
seem to play a bigger role than the calibration models in adjusting the EEE model end-use estimates. 
Perhaps, the calibration models can presuppose some systematic differences in (𝑦𝑦𝑖𝑖 − (𝑥𝑥1𝑖𝑖 + ⋯+ 𝑥𝑥25𝑖𝑖)) or 
in (𝑦𝑦𝑖𝑖 − (𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽25𝑥𝑥25𝑖𝑖)), whose prior mean was earlier assumed to be zero. In other words, we 
might restart by assuming there is some consumption in 𝑦𝑦𝑖𝑖 that is not accounted for by any of 𝑥𝑥1𝑖𝑖, …, 𝑥𝑥25𝑖𝑖 
and we might explicitly include some intercepts in the mean function 𝜇𝜇𝑖𝑖. For example, we could specify:  
 

𝜇𝜇𝑖𝑖 = 𝛼𝛼ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽25𝑥𝑥25𝑖𝑖, 
 
where 𝑖𝑖 and ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] are defined as before. The priors for the intercepts could be: 

 
𝛼𝛼ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖] ~ Normal�𝑚𝑚ℎ,𝑑𝑑 ,  𝑠𝑠ℎ,𝑑𝑑

2 �, 
 
where 𝑚𝑚ℎ,𝑑𝑑 and 𝑠𝑠ℎ,𝑑𝑑 are respectively the sample average and the sample standard deviation of (𝑦𝑦𝑖𝑖 − (𝑥𝑥1𝑖𝑖 
+ … + 𝑥𝑥25𝑖𝑖)) in ℎ[𝑖𝑖] and 𝑑𝑑[𝑖𝑖] over 𝑖𝑖, cf. the Model II priors for 𝜎𝜎ℎ[𝑖𝑖],𝑑𝑑[𝑖𝑖]. Note that this normal distribution 
is not constrained to be positive, as the differences and even 𝑚𝑚ℎ,𝑑𝑑 can be positive or negative. Then, the 
scale parameter 𝜎𝜎 can just regulate the residuals to be mostly within (0 ± 0.5) or rounding errors: 
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𝜎𝜎 ~ Folded-Normal(0, 0.252). 
 
The level of pooling of the intercepts controls the level of data fitting or estimation by the calibration 
models. If the intercept is made unique to each 𝑖𝑖, the estimation is basically customized for 𝑖𝑖.  
 
These formulations help us identify and estimate any biases in 𝑦𝑦𝑖𝑖, but if we are not allowed to modify 𝑦𝑦𝑖𝑖, 
then those biases would have to be re-distributed back to 𝛽𝛽1𝑥𝑥1𝑖𝑖, … ,𝛽𝛽25𝑥𝑥25𝑖𝑖 at the end. In a larger context 
of measuring errors, modeling errors, and weighting errors, Minato (2017) conducts some Bayesian 
analysis. 
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Appendix A. SAS Codes for Bayesian Model I 
 

data input025_1; 
length _NAME_ $ 3 _TYPE_ $ 4; 
input  _NAME_ $   _TYPE_ $    x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25; 
datalines; 
.   MEAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
x1  COV  0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x2  COV  0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x3  COV  0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x4  COV  0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x5  COV  0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x6  COV  0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x7  COV  0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x8  COV  0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x9  COV  0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x10 COV  0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x11 COV  0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x12 COV  0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 
x13 COV  0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 
x14 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 
x15 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 0 
x16 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0 
x17 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 
x18 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 
x19 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 
x20 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 
x21 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 
x22 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 
x23 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 
x24 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 
x25 COV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
; 
 
proc genmod data = recs2015w; 
model y = x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25  
  /dist = normal link = identity noint;  
bayes  
  seed        = 2017  
  outpost     = postsurg 
  coeffprior  = normal(input = input025_1) 
  scaleprior  = gamma(shape = 1 iscale = 0.001) 
  diagnostics = (autocorr ess Geweke Heidelberger mcerror Raftery Gelman(nchain = 3)) 
  thinning    = 1 
  nbi         = 1000  
  nmc         = 3000 
  statistics (alpha = 0.05 percent = 2.5, 5, 25, 50  75, 95, 97.5) = (corr cov summary interval); 
store model_store;  
code file = 'model_store.sas';  
run; 
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Appendix B. RStan Codes for Bayesian Model II 
 

stanmodelcode <- " 
data { 
  int<lower = 0>          N;                     // The number of respondents (housing units) 
  int<lower = 1>          K;                     // The number of end uses 
  int<lower = 1>          TYPEHUQ[N];            // The housing type variable 
  int<lower = 1>          H;                     // The number of housing types in TYPEHUQ 
  int<lower = 1>          DIVISION[N];           // The Census Division variable 
  int<lower = 1>          D;                     // The number of Census Divisions in DIVISION 
  matrix<lower = 0>[N, K] x;                     // The EEE model end-use estimates as the predictors 
  vector<lower = 0>[N]    y;                     // The annualized total energy consumption (kWh) 
  matrix<lower = 0>[H, D] sd_y_minus_x_sum_by;   // The sample std. dev. of (y - the sum of x) in [h, d] 
} 
parameters { 
  vector<lower = 0>[K]    beta;   // The regression coefficients, completely pooled 
  matrix<lower = 0>[H, D] Sigma;  // The regression error terms, partially pooled 
} 
transformed parameters {  // Linking the predictors to the mean of the distribution of y 
  vector<lower = 0>[N] mu; 
  for (n in 1:N) { 
    mu[n] = x[n] * beta; 
  } 
} 
model { 
  for (k in 1:(K - 1)) { 
    beta[k] ~ normal(1, 0.25);  // The priors of the regression coefficients for x1, .., x24 
  } 
  beta[K] ~ normal(1, 1);       // The prior of the regression coefficient for x25 
  for (h in 1:H) { 
    for (d in 1:D) { 
      Sigma[h, d] ~ normal(sd_y_minus_x_sum_by[h, d], sd_y_minus_x_sum_by[h, d]); 
    }  // The folded-normal distributions with the sample standard deviation of the residuals 
  } 
for (n in 1:N) { 
  y[n] ~ normal(mu[n], Sigma[TYPEHUQ[n], DIVISION[n]]);  // The data model or likelihood 
  } 
} 
generated quantities {  //The posterior predictive distributions of y, beta1x1, ..., beta25x25 
  real y_rep[N]; 
  matrix[N, K] x_rep; 
  for (n in 1:N) { 
    y_rep[n] = normal_rng(mu[n], Sigma[TYPEHUQ[n], DIVISION[n]]); 
    if (y_rep[n] < 0) y_rep[n] = 0;  // Forcing y_rep to be non-negative 
    for (k in 1:K) { 
      x_rep[n, k] = normal_rng(x[n, k] * beta[k], Sigma[TYPEHUQ[n], DIVISION[n]]); 
      if (x_rep[n, k] < 0 || x[n, k] == 0) x_rep[n, k] = 0; 
    }  // Forcing x_rep to be nonnegative or 0 when x is 0 
  } 
} 
" 
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set.seed(20170801) 
fit <- stan(model_code = stanmodelcode,  
            model_name = "EUMEC", 
            iter       = 2000,    
            warmup     = 1000,  
            thin       = 1,  
            chains     = 3, 
            verbose    = false, 
            control    = list(max_treedepth = 10, adapt_gamma = 0.05, adapt_delta = 0.8, adapt_kappa = 0.75), 
            init       = "random",  
            algorithm  = c("NUTS", "HMC", "Fixed_param") 
) 
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