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Abstract 
Replicate weights used with surveys are becoming more available and expected for public use data. Data 
users can use replicate weights to estimate their own variances for point estimates or use them with 
sophisticated software for multivariate analyses.  
 
This paper will discuss how to produce replicate weights with a reduced number replicates for the 
jackknife and other replication estimators – including using balanced repeated replication and successive 
difference replication. Our focus will be the use of these estimators with systematic random sampling 
from an ordered list. The reduced number of replicates is needed because data users require a reasonable 
number of replicates in their analysis. The paper will compare all of the replication estimators and 
examine how the reduction of replicates impacts the resultant variance estimators. 
 
Key Words: variance estimation, jackknife estimator, balanced repeated replication, successive difference 
replication 
 
 

1. Introduction 
 
Many surveys use a single-stage sample design to select more than two units per strata (nh > 2).  The 
sample is often selected with systematic random sampling from an ordered list or simply sys.  The sys 
sample design can produce estimates with smaller variances than simple random sample without 
replacement (srswor) when the auxiliary information used with the sort order is associated with the 
variable of interest.  We seek replication variance estimators that achieve the following three goals with 
respect to estimating the variance of a sys sample design.   
 
G1. Replication variance with a varying number of replicates.  The number of replicates should be 
amendable so that we can manage the number according to our needs.  We prefer to provide a large 
number of replicates to reduce the variance of the variance estimators, but understand in practice that we 
are all constrained by real-world file sizes and run times. 
G2. Simple estimator of the variance of a sys sample design.  We aim to have an expression of the 
variance estimator that is simple.  The variance estimator will be used by an audience with varying levels 
of sophistication. 
G3. Appropriate for sys.  We also would like estimators that are appropriate for estimating the variance 
from a systematic random sample and do not overestimate the variance as srswor variance estimators 
generally do.   
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The replication estimators that we consider include the jackknife (both the regular jackknife and the 
delete-a-group jackknife), the successive difference replication (SDR) estimator, and an application of the 
balanced repeated replication (BRR) estimator for sys.   
 
In a related variance estimation problem, with two-stage sample designs, we sometimes try to estimate the 
second-stage variance apart from the overall variance.  We show how an application of SDR and BRR 
can lead to estimators of the second-stage variance where the sample design within the first-stage units is 
sys.  Additionally, we also discuss an estimator suggested by Rizzo and Rust (2011). 
 
1.1 Review of Systematic Sampling 
For the remainder of our discussion, sys will be used as shorthand for systematic random sampling from 
an ordered list.  We abbreviate sys this way because systematic sampling from an unordered or randomly 
ordered list can be shown to be equivalent to simple random sampling (Madow and Madow 1944).  For 
our discussion, we focus solely on equal probability selection and selecting sample in only one 
dimension.  Other names for sys include “linear systematic sampling” (Murthy and Rao 1988) and “1-in-a 
sampling” (Gregoire and Valentine 2008). 
 
The sample design sys is easy to implement and can be very efficient compared with srswor.  To 
implement sys, we first sort the universe by a variable that is known for every unit in the universe.  With a 
defined sampling interval k > 0, we randomly generate r from a uniform distribution on the interval (0, k 
].  The units selected are spaced in multiples of the sampling interval from the first selection, i.e, 

 kir * , i = 1, 2, ,.., n and we define  .  as the ceiling function or the next largest integer.   

 
We say that sys can be efficient in the sense that the sample design can produce estimates with small 
sample variances as compared to srswor.  Cochran (1977) relates the efficiency of sys to the intra-cluster 
correlation.  Although the inter-cluster correlation is not the same as a simple correlation, both provide a 
measure of the association between the variable of interest and variable(s) used to sort the universe prior 
to sample selection.  If the variable of interest is highly associated with the sort variable, the sample 
design can be very efficient. 
 
The efficiency of sys can also be understood in the context of the term implicit stratification used by 
Megill et al. (1987). This way of thinking was also discussed by Cochran (1977) where, the universe as a 
sorted list is divided into  kNn /ˆ   implicit strata.  The first  k  units are in the first strata, the next 

  1k  to  k2  units are in the second strata,…, and the last stratum from ( − 1) ×   to N.  The 

random number r determines the random selection within the first implicit stratum and each of the 
subsequent strata.  Since the universe is sorted, each stratum has units that are similar to each other with 
respect to the sort variable.  This can be efficient when the sort variable and the variable of interest are 
associated, since the implicit stratification would also group units that are similar to each other with 
respect to the variable of interest. 
 
Excellent summaries of sys and estimating variances from sys can be found in Iachan (1982), Wolter 
(1984), Murthy and Rao (1988), and Bellhouse (1988).  In the next section, we review successive 
differences (SD) in preparation of our discussion of SDR. 
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1.2 Notation 
In most cases we can define the general linear statistic of interest for a single-stage stratified sample 
design as 

                                                                                =  

∈  

                                                                          (1) 

and we define a general nonlinear statistic of interest as = ( ) in terms of linear totals Y where h 
indexes the set of all possible strata and k indexes the universe of interest Uh for stratum h.   For example, 
if θ  was the ratio estimator then = /  and the totals Y1 and Y2 are defined as in (1).  An estimator Y 
is 

                                                                               =   

∈  

                                                                     (2) 

where sh is the sample in each stratum h and an estimator of θ is =  that is defined in terms of 

estimated totals as in (2). The replicate estimate for replicate r is defined as =  and replicate 

totals are defined as 
 

                                                                               =   

∈  

                                                                  (3) 

where the replicate weight wrk is a function of the regular weight wk and a replicate factor  that we 
subsequently define for each different replication method.  In our paper, we take the simplest case of a 
replicate weight where the replicate weight is equal to the product of the sample weight and the replicate 

factor, i.e., = .  Often other weighting adjustments like adjustments for noninterviews or 
adjustments that use known totals are applied to the   and separately for each replicate as a way for the 
replicate estimator to account for the variability due to the additional weighting adjustments.    

 

2. Replication Variance Estimators for Single-Stage Stratified Sample Designs 
 
In this section, we review several replicate estimators that can be applied to single-stage stratified sample 
designs.  We begin with the jackknife and discuss the original jackknife, the delete-d jackknife, and the 
grouped jackknife.  Although we will focus on the grouped jackknife as a replication estimator, we 
include the original jackknife and the delete-d jackknife for comparisons and because we also discuss 
how they are related to the grouped jackknife.   

Additionally, we will examine the SDR and BRR estimators.  The SDR estimator is especially suited for 
estimating variances of sys.  Developed by Fay and Train (1995), it is a replication estimator that mimics 
the SD estimator that was discussed by Wolter (1984) as an estimator of variances of sys sample designs.  
The last estimator we examine is BRR which is not normally considered for estimating the variance of a 
sys sample design.  We show a way of applying it that piggybacks on the basic ideas of SDR. 

Before we begin we note that we already know that the jackknife is not suitable for measuring the 
variance of the estimates from a sys sample design.  As noted by Kott (2001) with respect to the delete-a-
group jackknife (DAGJK), “[l]et us assume that the sample was selected without replacement but the 
selection probabilities are all so small, and the joint selection probabilities are such, that using the with-
replacement variance estimator is appropriate (this rules out systematic sampling from a purposefully-
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ordered list).”  The reason we include the jackknife in our discussion is that we want to include it in our 
numerical comparisons to show how well it performs with respect to sys.   

 
2.1 Delete-1 Jackknife (JK-1) 

The original jackknife variance estimator of the variance of  leaves out one sample unit for each 
replicate and is defined as   

                                                       =
 − 1

 ( )
 − ̅

( )
                                                  (4)

∈∈

 

where 

̅
( )
 = ( )

 

∈

/  . 

 

The replicate estimate of a general total of Y by leaving out unit k  of strata h  is defined as 
 

,
 =   

 

∈  

 

∈

+
 

 − 1
  

 

∈  

 

The replicate factors for JK-1 are expressed as 
 

, =
1 ℎ ≠ ℎ                        
0 ℎ = ℎ    =

/( − 1) ℎ = ℎ    ≠
 

 
With respect to our goals, G1: JK-1 cannot vary the number of replicates: the number of replicates for JK-
1 is equal to the sample size, so the number of replicates is generally too large, G2: the variance estimator 

 is generally complex since the mean of the replicate estimates in (4) only includes replicates 

from the same stratum, and G3: we know it is not appropriate for the sys sample design, but we include it 
because it is a precursor of the JK-d and DAGJK.  
 
2.2 Delete-d Jackknife (JK-d) 
The JK-d leaves out dh sample units for each replicate and is defined as   
 

                                                =
 −  

 ∙  ( )
 − ̅

( )
 

∈

                                                   (5) 

 

where =   sets of size dh are removed, and the average replicate estimate is defined as 

̅
( )
 = ( )

 / . 

 

The replicate estimate of a general total of Y by leaving out unit k  of strata h  is defined as 
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∈
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and replicate factors for JK-d are expressed as 
 

, =
1 ℎ ≠ ℎ                        
0 ℎ = ℎ    =

/( − ) ℎ = ℎ    ≠
 

 
How to delete groups.  An issue that we highlight throughout this paper is how replicates are formed and 
that question is answered by understanding how sample units are deleted for each replicate.  With the JK-

d, the number of replicates is equal to the number of groups that are deleted or = ∑ .  For the JK-d 
estimator, Shao and Tu (1995) suggests three way to form the groups.  
 
(M1) Use all possible samples.  
(M2) Random samples. 
(M3) Balanced subsampling (p. 197) where a balanced subsample has the following properties: 

1) Every unit i appears in the same number of subsamples 
2) Every pair ( i, j ) appears in the same number of subsamples 

See also John (1971) for more about balanced incomplete block design (BIBD). 

With respect to our goals, G1: DAGJK can vary the number of replicates, G2: the variance estimator 

 is generally too complex since the mean of the replicate estimates in (5) only includes replicates 

from the same stratum, and G3: we know it is not appropriate for the sys sample design. 
 
2.2 Delete-a-Group Jackknife (DAGJK) 
The grouped jackknife (Shao and Wu 1989) or the delete-a-group jackknife (Kott 2001) leaves out group 
Dr (the set of sample units such that ∈ ) for each replicate r and the number of replicates is R.  
Additionally, the groups Dr are disjoint and cover the entire sample, i.e., = ⋃  and ∩ = ∅  
where ≠ ′.  We also define dhr as the number of sample units left out for a given stratum h and group 

Dr.  Then define the replicate estimate of  by leaving out group Dr for replicate r as 
 

 =
− 1  − ̅   

and the replicate estimates is defined as 

 =
 

 −  
  

 

∈  

∉  

 

 

For the DAGJK, the variance estimator is (3) and the replicate factors are expressed as  
 

=
/( − ) ∉

0 ∈
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How to delete the groups?  Kott (2001) suggests “[i]n order to estimate var(t) with a DAGJK, we first 
order the strata in some fashion and then order the PSUs within each stratum randomly. The sample is 
partitioned into R systematic samples using the ordered list.”  Bienias, Kott, and Evans (2003) say that 
“[t]he technique divides the first-phase sample into mutually exclusive and nearly equal variance groups.” 

 
Deleting groups for sys.  Per forming groups, both DAGJK and JK-d with method (M2) forms groups by 
randomly ordering the original sample.  This generally means that the estimator is appropriate for srswor 
and not sys.  For use with the sys sample design, instead of randomly ordering, we deleted groups that 
were sys samples from the original sys sample.  Our aim of removing groups that were sys samples from 
the original sys sample was to “replicate” the sys sample design in each replicate.   
 
With respect to our goals, G1: DAGJK can use a reduced set of replicates, G2: the variance estimator 

 is generally simple, and G3: we know it is not suitable for the sys sample design, but we 

include it in our comparisons.  With respect to G2, DAGJK is chosen over the JK-d since the DAGJK is 
generally simpler to implement than the JK-d since the JK-d requires different averages of replicates for 
different strata.  Most software can handle this, but not all.  Second, forming groups with the DAGJK is 
simpler than with the JK-d.   

 
2.4 Successive Difference Replication (SDR) 
The SDR estimator as described by Fay and Train (1995) mimics the successive difference (SD) estimator 
and under conditions given by Ash (2014), the SDR estimator is equivalent to the SD estimator 
 

                                           =
1
2

(1 − ) (  −  ) + (  −  ) .                                          (6) 

where f is the sampling fraction.  The SDR variance estimator is expressed as 

                                                               = (1 − )
4  −                                                         (7) 

with replicate factors  

                                                                    , = 1 + 2 , − 2 ,                                                             (8) 

 
With respect to our goals, G1: Ash (2014) showed that SDR can use a reduced set of replicates, G2: the 

variance estimator  is not complex, and G3: the SD and SDR estimators are especially suited for 

sys sample designs.   
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2.5 Application of Balanced Repeated Replication (BRR-SYS) to sys 
The general BRR variance estimator of McCarthy (1966) works with sample designs that have many 
strata and a sample size of nh = 2 units per strata. For our discussion, we consider Fay’s Method (Dippo, 
Fay, and Morganstein 1984) due to its improved properties as described by Judkins (1990).  The BRR-
FAY variance estimator is expressed as 

=
1

(1 − )
 −  

and the replicate estimates are defined as 

 = ,

,
1 + , (1 − ) + ,

,
1 − , (1 − )

 

 

 
and the replicate factors can be expressed as 

, =
1 + (1 − ) , = 1
1 − (1 − ) , = 2

 

In our notation a Hadamard matrix H has elements arow,column which correspond to astrata, replicate.   
 
How to form pseudo strata and half samples for sys.  We suggest applying BRR to a sys sample design 
using the same rationale and general approach as SDR uses.  SDR mimics SD and SD works because it 
treats a sys sample design as a stratified sample design with one unit selected per strata or implicit 
stratification (Megill et al. 1987). The SD estimator uses a collapsed strata approach to estimate the 
variance of all possible adjacent pairs of strata within the sys sample.   
 
With BRR, we apply the same approach by collapsing the implicit strata that have one sample unit into a 
pseudo stratum also referred to as a variance stratum.  BRR refers to each of the two sample units as half 
samples.  We suggest collapsing each consecutive and non-overlapping pair and then estimating the 
stratum variance with BRR.  So SDR and our suggested application of BRR compare with one another in 
that SDR will use the set of all possible adjacent pairs (1,2), (2,3), (3,4)…and BRR will use one of the 
two sets of all possible adjacent and non-overlapping pairs, i.e. (1,2), (3,4), (5,6)...   

The ordered sample units k are assigned to the variance strata ℎ  and half sample   as described in Table 
1 
 

Table 1. Assignment of Variance Strata and Half Sample within each Second-Stage Unit i 
Sample unit k 1, 2, 3, 4, 5, 6,… 

Cycle c 1, 1, 1, 1, 1, 1,…, 1, 1, 2, 2, 2, 2,… 

Variance strata ℎ   1, 1, 2, 2, 3, 3,…, R, R, 1, 1, 2, 2,… 

Half sample   1, 2, 1, 2, 1, 2,…, 1, 2, 1, 2, 1, 2,… 

 
Result 2 in the Appendix provides the justification of Fay’s Method and Result 3 shows how our 
application of  is equivalent to  
 

                                               
1

(1 − )
− =  +                                                   (9) 
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and we refer to the variance estimator of (9) as  , where 

 =
1

2(2 − 1)
  

  

−
 

   
 

 

is the sum of several nh = 2 srswr variance estimators, one for each stratum ℎ  and where 
 

=
 
 

   
 

  
−

 
 

   
 

        
−

      

   

 

 

 
and the estimated total of variance stratum ℎ  is 

 
=

1
2

  

  
 

 

 
The estimator   is the sum of n / 2 with replacement variance estimators, one for each  
pseudo strata ℎ .  The extra term  has an equal number of positive and negative terms, does not equal 
zero, but approximately cancels out. 
 
With respect to our goals, G1: Our application of BRR can use a reduced set of replicates, G2: the 
variance estimator  is generally simple, and G3: we think it should similarly mimic the SD 
estimator as SDR does so it should be suited for sys sample designs.  This will be examined further in our 
empirical examples. 
 

3. Replication Variance Estimators for Second-Stage Variance 
 
In this section, we discuss a different problem: replication variance estimators for the estimation of the 
second-stage variance from a two-stage sample design.  We consider three different replication methods: 
an application of SDR and BRR and the estimator suggested by Rizzo and Rust (2011).  We begin by 
reviewing estimation for a two-stage sample design.   
 
3.1 Review of Two-Stage Variance Estimation  
Let the overall total of the variable of interest yk be defined as = ∑ , the total of stratum h as =
∑ ∈  , and the total for first-stage unit i as = ∑ ∈  .  We estimate the overall total as = ∑ , 

the total of stratum h as = ∑ ∈  , and the total for first-stage unit i as = ∑ ∈  where 

=  and w2k are the sample weights for the first and second stages, respectively.  
 

                                                                            =
∈

                                                             (10)
∈

 

Using notation from Särndal et al. (1992; p. 137), we can express the variance of Ŷ  as =
  +  .  Our interest lies not in the first-stage variance   but in the second-stage 

variance which can be expressed as 
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=  
∈

 

 

The estimator of the two-stage variance is as =  +   and the estimator of the 

second-stage variance is 

=
∈

 

We want to find simple and easy-to-use replication estimator of  . 

 
3.2 Application of SDR for Second-Stage Variance Estimation 

Our proposed estimator is a slight modification of the SDR estimator described by Ash (2014).  Here we 
define the replicate factors for sample unit k and replicate r as 

 

                                                       = 1 + 1 − 2 ℎ , − 2 ℎ ,                                              (11) 

 
The replicate factors (11) are applied to the two-stage weight wi wk and then the variance estimator (6) is 
applied.  More formally and following the outline of Theorem 1 of Ash (2014):  
 
Theorem 1:  Let = ∑ ∑ ∈  be the overall sample size and nhi be the second-stage sample size of 

first-stage sample unit i of stratum h.  Define the combined vector of the variable of interest as ′ =
 … , for stratum h as ′ =  … , and with each first-stage sample unit 

′ =  …  as the n × 1 weighted observation vector, where the order of the observations 

reflects the sort order of sys. 
 
(a) Choose a Hadamard matrix of order k ( = ), where nhi ≤ k.   
(b) Choose a RA that assigns two rows ( , ) to each unit i in the sample.  Let the RA define Ci 

connected loops of  units in each connected loop c.  There may be more than one connected loop 

within a PSU, but a given connected loop does not cross multiple PSUs. 
(c) Choose the m = n rows of H corresponding to the RA to make the m × k matrix M.  The order of the 
rows of M should correspond to the first row of the RA.  For example, the first row of M should be row 

1ia  of H, the second row should be row 2ia  of H, etc.   Next define the m × m shift matrix as =

( , , … ) where the mc × mc one row shift matrices Sc are defined to identify the position of the 

second row ib  of the RA in M.  In general, each shift matrix Sc will be a shift-up, shift-down, or a 2 × 2 

shift matrix (see the subsequently defined S4). 
 
Define the estimator for each replicate total r as 
 

=
∈∈
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where the replication factors are as in (11), = , =  and the matrix of replicate factors 
is  

= ′ +  # 2−
3
2 − 2−

3
2 . 

 

We also define =  … , ′ =  … , and within each first-stage sample 

unit ′ = (1 − ) .  Im is a m × m identity matrix and 1m is a m × 1 vector of 1s.  The individual 

values of the replication factor within the matrix are defined for each unit i (rows of F) of replicate r 
(columns of F) as in (42).  Then the SDR variance estimator for the second-stage variance  
 

=
4  −  

 
is equivalent to the sum of Ci different SD2 estimators for each first-stage unit i.  
 
Result 4 of the Appendix provides the proof for Theorem 1.  The estimator works for two reasons: 
(a) The connected loops are formed within each first-stage unit i.  This ensures that we have an estimator 

of the form of (6) for each first-stage unit. 

(b) The first-stage weight   is squared by the sum of squares and becomes 1/   in . 

 
3.3 Application of Balanced Repeated Replication (BRR-SYS2) for Second-Stage Variance 
Estimation of sys 
 

We propose a replication variance estimator of  that is similar to our BRR estimator of a sys 
sample.  The estimator has an extra level of complexity due to the first-stage sample design.  Given a two-
stage stratified sample design with nh = 2 first-stage units per the first-stage stratum h, and ni second-stage 
sample units within each first-stage unit i, define the estimator for the replicate total of the variable of 
interest y for each replicate r as 
 

                                                                        =
∈∈

                                                              (12) 

 
where the first-stage weight is =  and the second-stage weight is .  We can rewrite (12) as  
 

=
∈

 

`  
where R2 is defined in Table 3 below. With the first-stage, define the values of ℎ 

∗ as shown in Table 2.  
 

Table 2: Assignment of ℎ 
∗ 

ℎ 
∗ 1, 2, 3, 4, 5, 6,…, 2L-1, 2L 

First-stage strata h 1, 1, 2, 2, 3, 3,…,   L,   L 

First-stage unit i 1, 2, 1, 2, 1, 2,…,   1,   2 
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where L is the total number of first-stage strata?. For our result, we have assumed that nh = 2 for all of the 
first-stage strata h, but this result works with any number of first-stage units nh: we only need to assign a 
unique ℎ 

∗ to each first-stage unit. 
 
Within the first-stage stratum h and first-stage unit i, define the variance strata ℎ  and half sample  for 
the ordered sample units k as shown in Table 3. 
  

Table 3: Assignment of Variance Strata and Half Sample within each First-Stage Unit i 
Sample unit k 1, 2, 3, 4, 5, 6,… 

Cycle   1, 1, 1, 1, 1, 1,…, 1,  1, 2, 2, 2, 2,…, Ci, Ci 

Variance strata ℎ   1, 1, 2, 2, 3, 3,…, R2, R2, 1, 1, 2, 2,…, 2, 2 

Half sample  1, 2, 1, 2, 1, 2,…, 1,  2,  1, 2, 1, 2,…, 1, 2 

 
Choose a Hadamard matrix H1 that is R1 × R1 with elements ∗, , and choose a Hadamard matrix H2 

that is R2 × R2 with elements , .  We note that R1 ≥ 2 L; that is, the dimension of H1 must be at least as 

large as the total number of first stage units but it can be larger since we don’t need to use all of the rows 
of H1.  Let = ⨂  be a R × R Hadamard matrix where R = R1 · R2 with elements 

, =
 
∗, , ,  and where ⨂ denotes the Kronecker product.  

 
Next, define the replicate factors as 

, =
1 + (1 − ) ∗, , , = 1

1 − (1 − ) ∗, , , = 2
 

 
Define the estimator for each replicate total as 
 

= ,

∈

 

 
Then the BRR-FAY variance estimator is equivalent to the sum of n / 2 srswr variance estimators for  

= 2 in each stratum h and an extra term , i.e., 
 

1
(1 − )

− =
+

∈

 

 
where 

=
1

2(2 − 1)
−

 

 

 

and 

= − −

 
 

 

 

 
and the estimated total of variance stratum ℎ  is 
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=

1
2

 

 

 
Result 6 of the Appendix, provides the proof. 

 
3.4. Rizzo and Rust (2011) 

Another replication method for estimating  is suggested by Rizzo and Rust (2011) and further 

examined empirically by Kali et al. (2011).  First, define the estimator of the total of y as in (10) where 

= .  Also, define the estimator for each replicate total r as 
 

                                                                      = ,

∈

                                                       (13)
∈

 

with replicate factors 

, =
1 + , ∈       

1 − , ∈       
1 otherwise

 

 
Divide the second-stage sample units into groups  and  are such that ∪ =  ,  ∪ = ∅ , 
and the number of sample units in  and  is /2 .  How the sample units are divided into groups  
and  is not explained in Rust and Rizzo (2011). For our use with sys, and we assigned every other 
sample unit explicitly from the original sort order into the two groups.  We considered this way of 
dividing the sample into groups  and  since it mimics the sys sample design.   
 
Result 7 of the Appendix shows that  
 

= − =
1

−
∈

 

 
so that the average of the previous expression over all replicates is also equivalent to the srswr estimator 
with groups Ai and Di. 
 
4. Empirical Examples 
To compare the variance estimators from a single-stage sys sample design, we used the 3rd grade 
population given in Valliant, Dorfman and Royall (2000).  This population has N = 2,427 students and 
each student had a variable for a region indicator (with four values), a math score, and a science score.  
The math and science scores had a correlation of 0.67 and their relationship is shown in Figure 1. 
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Figure 1. Distribution of Math and Science Scores 

 
Using the region indicator and the science score as sort variables for sys, we applied four different sort 
orders that varied the effectiveness of the sort orders to order the population with respect to the math 
scores.  Figure 2 demonstrates the sort orders where the horizontal axis is the sort order and the vertical 
axis is the math score.  The first sort order in the upper left of Figure 2 represents a random sort.  Here we 
assume that no information is available and therefore no information related to the variable of interest is 
incorporated into the sample design.  The upper right of Figure 2 shows the sort order using the science 
variable, which results in a sort similar to Figure 1.  The bottom left sorts the universe by region and then 
science within region.  If there is a region effect, this sort should be an improvement over the of the sort 
of science alone.  The last sort in the bottom right uses the variable of interest, the math score, as the sort 
variable.  This is the opposite extreme from the random sort where we have information that completely 
describes the variable math. 

 

 
Figure 2. Four Sort Orders of Science Scores for sys 

 
For each of the sort orders of Figure 2, we selected ns = 15,000 sys random samples of size n = 

100 with equal probability of selection and estimated the total math score, i.e., = ∑ ∈  
where the weight is wk = 2,427 / 100.  Figure 3 shows the distribution of the estimated math 

score totals . 
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Figure 3. Variances of Estimates of Total Math Scores for the Four Sort Orders of Science Scores 

 

To evaluate the three variance estimators, we produced the measures of Table 2 based on the 15,000 
random sys samples from each of the four sort orders. 

  

Table 2. Evaluation Measures for Variance Estimators 
Measure Defined as… 
Bias Ratio 

 =  

Mean Squared Error 
= −  

 
Coverage Ratios The percent of times that the confidence intervals 

 ± /  included the value of Y 

 

For each of the nsim = 15,000 samples s, we estimated  and .  The expectation with respect to the 

sample design is defined as = ∑ ⁄ .   

 
Figure 4 presents the bias ratios where the horizontal axis varies by the sort order (0-random, 2-science, 
3-region/science, 4-math) and the number of replicates (8, 20, 32, 40).  The four bars for each sort order 
and number of replicate combination represent the four variance estimators that we considered: JK-1, 
DAGJK, BRR, and SDR.  The red horizontal line in Figure 4 identifies where the bias ratio is 1.0 or 
where there is no bias. 
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Figure 4. Bias Ratios of Variance Estimators 

 
In Figure 4, we see that both JK-1 and DAGJK overestimate the variance, often to a large degree. Both 
SDR and BRR underestimate the variance with SDR consistently having bias ratios closer to 1.0 than 
BRR.  Oddly with the DAGJK, the bias increased as the number of replicates increased.  With the 
DAGJK, as the number of replicates increased, the number of sample deleted decreased.  We think that as 
the number of sample units decreased, the sample units left looked less and less like a sys sample. 
 
Figure 5 presents the MSEs of the three estimators DAGJK, SDR, and BRR.  The horizontal axis varies 
by the sort order (0-random, 2-science, 3-region/science, 4-math) and the number of replicates (8, 20, 32, 
40).   
 

 
Figure 5. MSEs of Variance Estimators 

 
In Figure 4, we see that the DAGJK has the largest MSEs, BRR the smallest, and SDR are generally just 
larger than BRR. 
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Figure 6 presents the coverage ratios of the three estimators DAGJK, SDR, and BRR.  The horizontal axis 
varies by the sort order (0-random, 2-science, 3-region/science, 4-math) and the number of replicates (8, 
20, 32, 40).  The red horizontal line in Figure 6 identifies the 90% coverage – we expect that 90% of the 
coverage ratios have 90% coverage.   
 

 
Figure 6. Coverage Intervals 

 
In Figure 6, we see that the DAGJK overestimated the coverage ratios, which was no surprise given the 
overestimates shown by the bias ratios.  BRR regularly underestimates the coverage ratios and SDR 
regularly overestimates them.  With the sort order 2-math, BRR provide a pronounced underestimate 
which we cannot explain.  
 
5. Conclusions 
We have shown that the variance from a sys sample design can be estimated with a variety of replication 
variance estimators that can vary the number of replicates.  For a single-stage sample design, our 
empirical examples provide evidence that SDR and our application of BRR are both reasonable estimators 
of a sys sample design.  We think SDR has a slight edge over BRR since the MSEs of the SDR were 
smaller than BRR and the confidence intervals from SDR were conservative overestimates where the 
coverage intervals for BRR were under estimates.    
 

We presented replicate variance estimators for , but we did not demonstrate them.  This is left as 

future work. 
 
Although it is not discussed in the paper, we think we should consider a slightly different version of our 
modification of the BRR for sys of Results 2 and 6.  Instead of only using the n / 2 adjacent 
nonoverlapping pairs of implicit strata, we should have used all ( n – 1 ) possible pairs of adjacent implicit 
strata as done with SDR.  The application of this would require an additional term of ( n / ( n – 1 ) ) in the 
replicate factor that would be needed for the same reason it’s needed in SDR: to average the n – 1 
variance strata and then expand that average to all n implicit strata.  Each sample unit would be used 
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twice in this estimator; this seems odd but it is what is represented in SDR.  Results 2 and 6 of the 
Appendix would require some but not great modifications to show that this would work. 
 
This report is released to inform interested parties of ongoing research and to encourage discussion of 
work in progress. Any views expressed on statistical, methodological, technical, or operational issues are 
those of the authors and not necessarily those of the U.S. Census Bureau. 
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Appendix 

 

Result 1. Let the srswr estimator of the totals of the variable of interest y be defined as  
 

=
1

∈

 

 
then the following two expressions of its variance estimator are equivalent: 
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2  ( − 1)
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=
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                       (A1.1) 
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Note that (A1.1) is stated slightly differently by Tillé (2006; p. 57).  In (A1.1), we have explicitly 
included the random variable Xi that defines the randomization of the srswr estimator, where Xi is a 
multinomial random variable defined for each stratum h with parameters pi and Nh.   
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Result 2.  General Justification of Fay’s Method of Balanced Repeated Replication (BRR-FAY).  
Let the statistic of interest be a total of some variable of interest yk  
 

=
∈∈

 

 
Given a two-stage stratified sample design with nh = 2 units per the first-stage stratum h, the estimator of 
the total of some is 
 

=
∈∈

= +  

 
where the first-stage weight is =  and the second-stage weight is .  We also define the replicate 
estimator as 
 

= ,

∈∈

 

with the replicate factors  
 

, =
1 + (1 − ) , = 1
1 − (1 − ) , = 2

 

 
the BRR-FAY variance estimator with perturbing factor k and is equivalent to the srswr variance 
estimator for nh = 2, one in each stratum h, i.e., 
 

=
1

(1 − )
− =

1
2(2 − 1)

− .
∈

 

 
Proof.  Begin with the difference  
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= (1 − ) ,

∈

− ,

∈

 

 

Define the estimator of the first − stage unit  of stratum ℎ as , =
∈

 and note that  

when = , then  
 

− = (1 − ) ,
,

,
− ,

,
 

 
Next, square the difference  
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Given that the values of ,  come from a Hadamard matrix, which has rows and columns that are   

orthogonal, we know that  , =  and , , = 0, so we can simplify the previous line as 

 

                                                                        ,

,
− ,

,
.                                                                (A2.1) 

 
Now (A2.1) is equivalent to the variance estimator of srswr for each stratum h.  This result is stated in 
Wolter (1985; p 123), but we provide a fuller explanation.  With our specific case of = 2, we have 

= 2 ,  and (A2.1) becomes 
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              (A2.2) 

 
 
We can see that (A2.1) is the same as the left side of (A2.2) with nh = 2 so that  
 

1
(1 − )

− =
1

2(2 − 1)
−

∈

 

 
and this shows that BRR-FAY variance estimator is equivalent to the sum of several srswr variance 
estimators for nh = 2, with one for each first-stage strata h. 
 
 
Result 3.  Application of Balanced Repeated Replication for estimating the variance of a 
single-stage sys sample design (BRR-SYS).  Given a single-stage stratified sample design with n > 2 
units, define the total of the variable of interest y as 
 

=
∈

 

 
and note that we can rewrite the previous expression as  
 

=

   
 

 

 
Choose a R × R Hadamard matrix H with elements 

 ,  
.  Then the ordered sample units k are assigned to 

the variance strata ℎ  and half sample   as described in Table A3.1. 
 

Table A3.1: Assignment of Variance Strata and Half Sample 
Sample unit k 1, 2, 3, 4, 5, 6,… 

Cycle  
  1, 1, 1, 1, 1, 1,…, 1, 1, 2, 2, 2, 2,… 

Variance strata ℎ   1, 1, 2, 2, 3, 3,…, R, R, 1, 1, 2, 2,… 

Half sample   1, 2, 1, 2, 1, 2,…, 1, 2, 1, 2, 1, 2,… 

 
 
The cycles c are needed if n / 2 > R – we repeat the assignment of the of the variance strata ℎ  and half 
sample   to the same Hadamard matrix. 
 
Next, define the replicate factors as 
 

, =
1 + (1 − )

 ,   = 1
1 − (1 − )

 ,   = 2
 

 
 

 
2760



Appendix 

 

Then the estimator for each replicate total r is 
 

= ,

   
 

 

 
And the BRR-FAY variance estimator is equivalent to the sum of n / 2 srswr variance estimators with  
= 2 sample units within each pseudo stratum ℎ  and an extra term , i.e., 
 

                         
1

(1 − )
− =  +                     (A3.1) 

 
and we refer to the variance estimator of (A3.1) as  , where 
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or with all of the subscripts 
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−

 
 

   
 

        
−

      

  

  
 

 
 

 

 
and =  , = /  and the estimator of the mean of y for each variance stratum is defined as 
 

 
=

1
2

  

  
 

 

 
Proof.  Begin with the difference 
  

− = ,

   
 

−

   
 

 

 
We note our abuse of notation: the sample weight wk for unit k and 

 
 for half sample i' are both 

shorthand for  
 
 

  
 or the sample weight for unit k of half sample   of variance stratum ℎ  of cycle c.  

We choose to include the least amount of subscripting by keeping what is essential at that point of the 
result, reduce the clutter of the subscripting, and assume the rest of the subscripting is understood and 
known.  We do this similarly with    

. 
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Next, square the difference  
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Further, we sum over the replicates and divide by (1 − )  
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Given that the values of 

 ,  come from a Hadamard matrix, which has rows and columns that are   

orthogonal, we know that  
 , =  and 

 ,  , = 0, so we can simplify the previous 
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(A3.2) 
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Now the second expression of (A3.2) is  and the first expression is equivalent to the sum of n / 2 of 
srswr variance estimators for each variance stratum ℎ .  With our specific case of n we have 

 
=

 
/2 

and the second expression of (A3.2) becomes 
 

  
−
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    (A3.3) 

 
We can see that (A3.3) is the same as the left side of (A1.1) in each of the ∙  variance stratum ℎ  so 
that  
 

1
(1 − )

− =
1

2(2 − 1)
−

 

   
 

+  

 
and this shows that our application of the BRR-FAY variance estimator is equivalent to the srswr 
variance estimator in each R ∙ C variance stratum ℎ . 
 
Note that when the number of cycles C = 1, = 0.  When C > 1,  is the sum of an equal number 
of positive and negative terms which do not exactly cancel each other; however, do approximately cancel 
each other. 
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Result 4. Application of Successive Difference Replication for estimating   (SDR-
SSU).  With replicate factors for sample unit k and replicate r  
 

, = 1 + 1 − 2 ℎ , − 2 ℎ ,  

then 

                                                                                 
4  −                                                                     (A4.1) 

 
is a replication estimator of  where  is estimated with the SDR estimator.   
 
Proof. We begin by restating the replicate factors in matrix notation as 
 

= ′ + ′ # 2 − 2  

 
The SDR estimator given in (A1) can be expressed as 
 

4
′ ′ + ′ # 2 − 2 − ′ ′ ′ ′ + ′ # 2 − 2 − ′ ′ ′ 

=
4

′ ′ # 2 − 2 ′ ′ # 2 − 2 ′ 

=
4

 # ′ 2 − 2 ′ 2 − 2 ′  #  

 
Because    ⊆   , it can be shown that = .  With this result, the variance 
becomes  

4
 # ′( − )( )( − )′  #  

=
1
2

 # ′( − )( − )′  #  

=
1
2

 # ′( − − ′)  #  

 
The last line follows from the lemma in Ash (2014) and has a constant value for any choice of H.  By 
noting the block diagonal structure of S and given that each connected loop was formed within each first-
stage unit i of stratum h, we can write the estimator as 
 

1
2

(1 − ) (2 − − )
∈

 

 
where the within second-stage variance is estimated with the SDR variance estimator 
 

= (1 − )
1
2

(2 − − )  
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= (1 − )
1
2

1
(2 − − )  

 
where each of the c = 1 to Ci connected loops are of the form (22) and 
 

=
∈

 

 
 
Result 5.  Let H1 be a R1 × R1 Hadamard matrix with elements     and Let H2 be a R2 × R2 Hadamard 

matrix with elements    .  Let = ⨂  be a R × R Hadamard matrix where R = R1 · R2 with 

elements  .  In our notation any element with a prime, i.e., ℎ , denotes a unit that is different than an 
element without a prime or simply ℎ ≠ ℎ  and ⨂ denotes the Kronecker product.  Then we know the 
following are true because H1, H1, and H are all Hadamard matrices. 

 ,   
 

 
1
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1
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iff one of the following three expressions is true: 
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                                                          ,   
,  

 
 ,   

,  
 

2

2

1

1

= 0                                                     (A5.4) 

 

We can relate the subscripts of ,
  to the subscripts of  ,    and  ,    as 

r1 = ( r div R1 ) + 1   and    r2 = r mod R1      

h1 = ( h div R1 ) + 1  and     h2 = h mod R1  

The div function is integer portion of simple division and the mod function is the integer 
remainder from division.  For example, 7/2 = 3½ so 7 div 2 = 3 and 7 mod 2 = 1. 

 

Result 6.  Application of Balanced Repeated Replication for estimating  (BRR-SSU).  
Given a two-stage stratified sample design with nh = 2 first-stage units per the first-stage stratum h, and ni 
second-stage sample units within each second-stage unit i, define the estimator for the replicate total of 
the variable of interest y for each replicate r as 
 

                                                                        =
∈∈

                                                             (6.1) 

 
where the first-stage weight is =  and the second-stage weight is .  We can rewrite (A6.1) as  
 

=
∈

 

 
With the first-stage, define the values of ℎ 

∗ as shown in Table A6.1.  
 

Table A6.1: Assignment of ℎ 
∗ 

ℎ 
∗ 1, 2, 3, 4, 5, 6,…, 2L-1, 2L 

First-stage strata h 1, 1, 2, 2, 3, 3,…,   L,   L 

First-stage unit i 1, 2, 1, 2, 1, 2,…,   1,   2 

 
For our result, we have assumed that nh = 2 for all of the first-stage strata h, but this result works with any 
number of first-stage units nh: we only need to assign a unique ℎ 

∗ to each first-stage unit. 
 
Within the first-stage stratum h and first-stage unit i, define the variance strata ℎ  and half sample  for 
the ordered sample units k as shown in Table A6.2. 
  

Table A6.2: Assignment of Variance Strata and Half Sample within each Second-Stage Unit i 
Sample unit k 1, 2, 3, 4, 5, 6,… 

Cycle   1, 1, 1, 1, 1, 1,…, 1,  1, 2, 2, 2, 2,…, Ci, Ci 

Variance strata ℎ   1, 1, 2, 2, 3, 3,…, R2, R2, 1, 1, 2, 2,…, 2, 2 

Half sample  1, 2, 1, 2, 1, 2,…, 1,  2,  1, 2, 1, 2,…, 1, 2 
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Choose a Hadamard matrix H1 that is R1 × R1 with elements ∗, , and choose a Hadamard matrix H2 

that is R2 × R2 with elements , .  We note that R1 ≥ 2 L – the dimension of H1 must be at least as large 

as the total number of first stage units but it can be larger since we don’t need to use all of the rows of H1.  
Let = ⨂  be a R × R Hadamard matrix where R = R1 · R2 with elements , =

 
∗, , ,  and 

where ⨂ denotes the Kronecker product.  
 
Next, define the replicate factors as 

, =
1 + (1 − ) ∗, , , = 1

1 − (1 − ) ∗, , , = 2
 

 
Define the estimator for each replicate total as 
 

= ,

∈

 

 
Then the BRR-FAY variance estimator is equivalent to the sum of n / 2 srswr variance estimators for  

= 2 in each stratum h and an extra term , i.e., 
 

1
(1 − )

− =
+

∈

 

 
where 

=
1

2(2 − 1)
−

 

 

 

and 

= − −

 

 

 

 
 
Proof.  Begin with the difference  
 

− = ,

∈

−
∈

 

 
We note our abuse of notation: the sample weight  for half sample  is shorthand for     

 
  

 or 

the sample weight for unit k of half sample   of variance stratum ℎ  of cycle c of first-stage unit i and 
first-stage stratum h.  We choose to include the least amount of subscripting by keeping what is essential 
at that point of the result, reduce the clutter of the subscripting, and assume the rest of the subscripting is 
understood and known.  We do this similarly with      

. 
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, + 1 − (1 − ) , ∗ ,
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= (1 − ) ℎ∗, 1

 
, − (1 − ) ℎ∗ , 1
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= (1 − ) ℎ∗, 1

 
, − ℎ∗, 1

 
,                                     

∈

 

= (1 − ) ℎ∗, 1

 
, −

∈

                                                                          

 
Next, note that we can change the summation over all first-stage strata and first-stage units in the 
following way 

                                                                           
∈

↔     
 
∗

                                                                 (A6.2) 

 
and we can change the sum of all replicates as 
 

                                                                            ↔  
 

                                                                   (A6.3) 

 
Next, square the difference  

− = (1 − ) ℎ 
∗

 
ℎ∗, 1

 
, −

 
∗
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= (1 − )
 
∗ ∗,

ℎ′ , 2
−

 

                                       

+
ℎ′ , 2 ℎ′′, 2

− −
 

+
ℎ′ , 2

− −

 

 

+
ℎ′ , 2 ℎ′′, 2

− −

 

 

 
∗

 

 

+(1 − )
 
∗

 
 
∗∗

 
∗, ∗∗,

ℎ′ , 2
−

 

                                                                     

+
ℎ′ , 2 ℎ′′, 2

− −
 

+
ℎ′ , 2

− −

 

 

+
ℎ′ , 2 ℎ′′, 2

− −
∗

∗ 

 

 
∗∗

 
∗∗

 
∗

 
∗

 

 
The previous expression shows how ∗,  relates to the first stage and how 

ℎ′ , 2
 relates to the variance strata of the second stage.  The second and fourth 

terms of the top part and the entire bottom part of the previous expression will be equal to zero due to this construction. 
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= (1 − )
 
∗

∗, ℎ′ , 2
−

 

                                      

+ ∗, ℎ′ , 2

 

ℎ′′, 2

 − −

∗∗ ∗

 

+ ∗, ℎ′ , 2
− −

 

 

+ ∗, ℎ′ , 2 ℎ′′, 2
− −

 

 

 
∗

 

+(1 − )
 
∗

 
 
∗∗

 

∗, ∗∗, ℎ′ , 2
−

 

                                                                   

+ ∗, ∗∗, ℎ′ , 2 ℎ′′, 2
− −

 

+ ∗, ∗∗, , − −

 

 

+ ∗, ∗∗, ℎ′ , 2 ℎ′′, 2
− −

 

 

 
∗∗

 
∗∗

 
∗

 
∗

 

 
Further, sum over the replicates, divide by (1 − ) , and apply (A6.3). 
 

1
(1 − )

− =
1

(1 − )
−
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=
(1 − )
(1 − )  

∗

∗, ,
  

−                  

+ ∗, , ,
  

− −
 

+ ∗, ,
  

− −

 

 

+ ∗, , ,
  

− −

 

 

 
∗

 

+
(1 − )
(1 − )  

∗
 
∗∗

∗, ∗∗, ,
  

−
 

                                                                              

+ ∗, ∗∗, , ,
  

− −
 

+ ∗, ∗∗, ,
  

− −

 

 

+ ∗, ∗∗, , ,
  

− −

 

 

 
∗∗

 
∗∗

 
∗

 
∗
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Given (A5.1) – (A5.4) from Result 5, we can simplify the previous expression as 
 

                  
 
∗

−
 

+ − −

 

 

∗

                          (A6.4) 

 
or the following after reapplying (A6.3) and noting that 

 
∗ = 1/ . 

 

                
1

−
 

+ − −

 

 

∈

                       (A6.5) 

 
Now, apply Result 3 to the top expression in (A6.5) and recognize the bottom expression as , which 
leads to our desired result. 
 

1
(1 − )

− =
+

∈

 . 

 
where 
 

= −
 

 

and 

= − −
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Result 7.  Rizzo and Rust (2011).  Define the estimator for the replicate total of the variable of 
interest y for each replicate r as 

=
∈∈

 

 
where the first-stage weight is =  and the second-stage weight is .  Also, define the estimator 
for each replicate total r as 

= ,

∈∈

 

 
Divide the second-stage sample  for first-stage unit i into groups  and  are such that ∪ =  
and  ∪ = ∅ .  Next, define the replicate factors as 
 

, =
1 + , ∈
1 − , ∈

1 otherwise
 

 
Then with the previous replicate factors, the replicate variance estimator is equivalent to a srswr variance 
estimator where the sample units of  and  are treated as clusters selected with replacement, i.e., 
 

1
− =

1
−

∈

 

 
Proof. Beginning with the difference 
 

− = ,

∈

−
∈

 

= , −
∈∈

 

= , −
∈

+ , −
∈∈

 

= 1 + , −
∈

+ 1 − , −
∈∈

 

= 1 + , − 1
∈

+ 1 − , − 1
∈∈

 

= ,

∈

− ,

∈∈

 

= ,

∈

−
∈∈
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where =
∈

 ,  =
∈

, and  = + .   

 
then 

− =
1

, −
∈

 

 
Next, square the difference  

− =
1

−
∈

 

=
1

, −
∈

+
1 1

, , − −
∈∈

 

 
Further 
 
1

− =
1 1

ℎ, −
∈

+
1 1 1

ℎ, ℎ′,
− −

∈∈

 

=
1 1

ℎ, −
∈

+
1 1 1

ℎ, ℎ′,
− −

∈∈

 

 

since , =   and , , = 0, we can simplify the previous line as 

1
− =

1
−

∈

 

 

Now consider = −  as the variance estimator of a srswr variance estimator where the 
sample units of  and  are treated as clusters selected with srswr. 
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