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Abstract

Data quality and data validation using p-values obtained from a Gaussian mixture

model (GMM) are studied and applied to numerical form data. Generally numerical forms

completed by individuals are sparse in the sense that not all �eld values are populated

by all individuals. Thus, estimation of the GMM parameter from sparse data is required.

An expectation-maximization approach is derived here for a particular type of GMM under

sparse data conditions. Given the estimated GMM parameter, the p-value of each populated

�eld is calculated and used to detect anomalous �elds. Performance of the approach is

compared to manual data quality and validation and found to have similar performance in

the detection of anomalous �eld values.
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1. Introduction

Many government agencies use forms to collect data from respondents and are in-

terested in the quality of that data. In particular, the Internal Revenue Service

devotes extensive resources to both manual and automated detection of data errors

in form submissions. There are certain very time-consuming routine manual review

processes where employees identify which �elds of a form have anomalous values,

or issues. Replicating these manual reviews with a model-based approach frees up

scarce resources and ensures consistency in the review process. Use of an unsuper-

vised model is advantageous, as the model can be estimated after changes in tax law

without waiting for new tagged examples to be generated.
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A tax form completed by many respondents can be represented as a sparse ma-

trix � respondents only populate �elds which are relevant to them. This sparsity

can complicate analysis and necessitate the application of specialized sparse data

approaches. Parker [7] modeled sparse form data as Gaussian and applied parame-

ter estimation approaches from [9]. In this paper, we extend this work by modeling

sparse form data using a Gaussian mixture model (GMM). The GMM potentially

allows the multi-modal nature of form data to be captured. As some forms may be

completed by millions of respondents, we are interested in maximum likelihood (ML)

GMM parameter estimation, as ML estimates have desirable asymptotic properties

with increasing data size. Even under non-sparse conditions, no explicit ML GMM

parameter estimate is known and the expectation-maximization (EM) algorithm is

generally applied, see, e.g., [5]. Under sparse conditions, McMichael [6] in 1996 de-

veloped an EM algorithm that did not require imputation of unpopulated �elds and

estimated the covariances using steepest descent. More recently Delalleau, Courville

and Bengio [1] developed an EM approach where the unpopulated �elds are imputed

and applied it to handwritten digit recognition. Silva and Deutsch [11] developed a

similar approach and applied it to geological data.

Here we constrain the covariances to be diagonal and develop an EM approach

that does not require imputation of unpopulated �elds. The resulting estimation

equations are particulary straightforward, allowing application to very large data

sets.

Given models trained on a large body of forms, we apply a hypothesis testing

framework to detect issues at the individual �eld level. Let H1 denote the hypoth-

esis that a particular �eld on a particular form is anomalous. Let H0 denote the

hypothesis that a particular �eld on a particular form is not anomalous. If the prob-

ability density functions (pdfs) of the forms under the two hypotheses are known,

then optimum decision rule in the Neyman-Pearson sense is given by the likelihood

ratio test [3, p. 32, Thm. 1]. The true pdf under H1 is di�cult to estimate when

the number of forms con�rmed to be anomalous is low. IRS forms will change due

to Tax Cuts and Jobs Act of 2017 and numbers of con�rmed, anomalous new forms

may initially be low. If the pdf for H0 is the only one known, then a composite
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hypothesis test may be appropriate [3]. Composite hypothesis testing problems are

notoriously di�cult and general optimality of approaches may be di�cult to prove.

In practice, Bayesian approaches, see, e.g., [8] and the generalized likelihood ratio

test, see, e.g., [10] are often applied. Here we perform anomaly detection without

requiring a pdf for H1 using the probability of the observed value, or a value more

extreme, under the pdf for H0. This is equivalent to calculating the p-value of the

observation under the GMM. Although this approach is simple and intuitive, we

do not believe it has been previously applied to form data anomaly detection using

GMMs.

The above model training and anomaly detection approaches were applied on a

data set consisting of over 10 million tax forms. Specialized numerical approaches

were applied to minimize computations while maintaining numerical precision. Per-

formance of the overall approach was measured using tax forms with known anoma-

lies.

2. Sparse Gaussian Mixture Model

2.1 Model Speci�cation

We assume that we have data from n forms and each form consists of k numerical

�elds. We assume the k-dimensional vector of �elds is distributed according to a

GMM with r mixtures. Thus a k-dimensional vector of �elds generated by the

mth mixture has a probability density function (pdf) given by N (µm, Rm), where

N (µm, Rm) represents the Gaussian pdf with k × 1 mean vector µm and k × k

covariance matrix Rm.

In general, however, not all �eld values are populated for all forms. For the

tth form, 1 ≤ t ≤ n, we assume that 0 < kt ≤ k �elds are populated, and k − kt

are unpopulated. Let the data from all forms be represented as yn = {yt, . . . , yn}

where the kt-dimensional vector yt denotes the populated line items from the tth

form. Let sn = {st, . . . , sn} where st ∈ {1, . . . , r} denote the sequence of mixtures

corresponding to yn. The conditional pdf of yt given st = m is N (Htµm, HtRmH
′
t)

where Ht is a kt × k sub-matrix of the k × k identity matrix I where the rows of

I corresponding to the indices of the unpopulated �elds for the tth form have been
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deleted.

Let p(yn;φ) denote the pdf of yn where φ = {αm, µm, Rm}rm=1 is the GMM

parameter consisting of the r means, r covariances and r scalar mixture weights

with
∑

m αm = 1. We have that

p(yn;φ) =
n∏
t=1

r∑
m=1

p(yt|st;φ)p(st;φ)

=
n∏
t=1

r∑
i=1

αi
exp

(
−(yt −Htµi)′(HtRiH

′
t)
−1(yt −Htµi)/2

)
(2π)kt/2|HtRiHt|1/2

(1)

where | · | denotes a matrix determinant [9].

2.2 Parameter Estimation

We aim for the maximum likelihood (ML) estimate of the parameter φ given the

data yn, that is

φ̂ = arg max
φ

p(yn;φ) (2)

The parameter φ of the GMM cannot be explicitly estimated even when the data is

not sparse. As is generally done in the non-sparse case, we estimate φ here using the

EM algorithm to obtain a sequence of estimates {φ̂j} . The EM algorithm guarantees

that each parameter estimate in the sequence has non-decreasing likelihood, i.e.,

p(yn; φ̂j+1) ≥ p(yn; φ̂j). Parameter estimates in the EM are obtained by maximizing

the conditional expected value of the logarithm of the likelihood of the complete data,

i.e.,

φ̂j+1 = arg max
φ

E{log p(yn, sn;φ)|yn; φ̂j} (3)

We de�ne the complete data to be the populated observations and the mixture

sequence {yn, sn} without including the un-populated �elds, see, [10]. The choice

of complete data within an EM formulation is often arbitrary and di�erent choices

generally lead to di�erent algorithms. In this case, if we were to include the un-

populated values as part of the complete data, the parameter estimation equations

would require imputation for missing data values, see, e.g. [1, 11]. Our complete data

choice avoids imputation of the un-populated values when the {Rm} are constrained
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to be diagonal, resulting in particularly straightforward estimation equations.

Substituting the de�nitions for the relevant pdfs into (3) yields

φ̂j+1 = arg max
φ

n∑
t=1

∑
st

ξt(st, φ̂j)×

(log |HtRstH
′
t| − (yt −Htµst)

′(HtRstH
′
t)
−1(yt −Htµst) + logαst) (4)

where ξt(st, φ̂j) = p(st|yt; φ̂j) is the a posteriori mixture probability. Di�erentiating

(4) by the individual µm, setting the resulting equation to zero, and then solving for

µm yields

µ̂j+1
m =

(
n∑
t=1

ξt(m, φ̂j)H ′yt
R−1
yt
Hyt

)−1 n∑
t=1

ξt(m, φ̂j)H ′yt
R−1
yt
yt. (5)

This expression can be considerably simpli�ed when the {Rm} are constrained to

be diagonal matrices. Let zt = H ′tyt and let zt(i) denote the ith element of zt. With

diagonal {Rm}, the ith element of µ̂j+1, denoted by µ̂j+1(i) simpli�es to

µ̂j+1
m (i) =

∑n
t=1 ξt(m, φ̂

j)zt(i)∑n
t=1 ξt(m, φ̂j)1t(i)

(6)

where 1t(i) is an indicator function such that

1t(i) =

 1 if zt(i) is populated

0 otherwise.
(7)

Thus, for diagonal {Rm}, the mean estimates are weighted arithmetic means of the

populated �elds.

Constraining the covariances to be diagonal also simpli�es covariance estimation.

Assume that Rm is diagonal with elements {σ2
m(i), i = 1, . . . , k}. Di�erentiating (4)

with respect to each of the {σ2
m(i)}, setting the result to zero, and solving yields

σ̂2
m(i)j+1 =

∑n
t=1 ξt(m, φ̂

j)1t(i)(zt(i)− µm(i))2∑n
t=1 ξt(m, φ̂j)1t(i)

(8)

Thus, the diagonal variance estimates are weighted sample variances of the populated

�elds.

 
471



Mixture weight {αm} estimation is done using Lagrange multipliers to maximize

(4) under the constraint
∑

m αm = 1, see, e.g., [4, Lemma 2, p. 1042], yielding

α̂j+1
m =

1
n

∑
t

ξt(m, φ̂j) (9)

To complete the EM algorithm we need the following expression for the a posteriori

mixture probability

ξt(m, φ̂j) = p(m|yt; φ̂j)

=
α̂jm p(yt|m; φ̂j)∑r

m′=1 α̂
j
m′ p(yt|m′; φ̂j)

. (10)

The EM algorithm is thus given by (6), (8), (9) and (10).

2.3 Anomaly detection

Let Yt denote kt-dimensional random vector representing the form competed by the

tth individual and let yt denote a realization of Yt. Let φ denote the parameter

corresponding to a form that is not anomalous. Detecting an anomaly for the ith

�eld on the tth form is expressed as identifying which of the following hypotheses is

true:

H0 : Yt(i) ∼ p(yt(i);φ),

H1 : Yt(i) ∼ p(yt(i);φ′) where φ′ 6= φ. (11)

In statistical parlance, this is a classi�cation problem for one simple and one com-

posite hypothesis [3]. H0 is a simple hypothesis as the observations are described

by a known pdf. H1 is a composite hypothesis as the observations are described by

a pdf known only to be a member of a family of pdfs. A variety of approaches are

available for composite hypothesis testing. One approach, if φ is assumed random

with a known prior distribution, is to represent the composite hypothesis as a simple

hypothesis using a Bayesian approach, see, e.g., [8]. Another approach is to apply

the generalized likelihood ratio test, see, e.g., [10]. Here we perform anomaly detec-

tion using the probability of the observed value, or a value more extreme. This is
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equivalent to calculating the p-value of the observation under the GMM. With this

approach the decision is made according to

Pr(|Yt(i)| > yt(i);φ)
H1
≷
H0

η (12)

where η is a threshold. If only one-sided anomalies are of interest, then the proba-

bility in the decision rule can be adjusted to be Pr(Yt(i) > yt(i)) or Pr(Yt(i) < yt(i))

as appropriate. Applying the speci�c form of the GMM pdf, (12) becomes

r∑
m=1

αm Pr(|Yt(i)| > yt(i)|st = m;φ)
H1
≷
H0

η (13)

which can be calculated using numerical routines for the Gaussian cumulative dis-

tribution function.

3. Implementation and Numerical Results

3.1 Implementation

The techniques of section II were implemented using Python and Fortran and aug-

mented where appropriate with explicit calls to basic linear algebra subprograms

(BLAS), see e.g. [2, 9]. The use of Fortran for the most computationally burden-

some parts of the EM algorithm provided an order of magnitude computational

speedup over using Python alone. We applied an approach due to West [12] to

improve numerical properties of the algorithm. In the parlance of West, applying

the �text book� approach to {σ2
m} estimation can result in loss of numerical preci-

sion. Numerical precision can be improved by the �two pass� method at the cost of

additional computation. Building on earlier work, West describes a stable weighted

estimate update that reduces the risk of loss of numerical precision while requir-

ing minimal increase in computation. Applying West's update here we have that

Mi(1) = Htyt, Si(1) = 0 and

Mi(t) = Mi(t− 1) +
ξt(i)∑t
τ=1 ξτ (i)

(Htyt −Mi(t− 1))

Si(t) = Si(t− 1) +
ξt(i)

∑t−1
τ=1 ξτ (i)∑t

τ=1 ξτ (i)
(Htyt −M(t− 1))� (Htyt −M(t− 1))
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with i = 1, . . . , r and t = 2, . . . , n and where � represents element-wise multiplica-

tion. The �nal estimates are given by µ̂j = Mj(n) and the diagonal entries of R̂i

are given by Si(n)/
∑n

t=1 ξi(t).

3.2 Results

The approaches described here were tested using a sample of an anonymized form

database consisting of n = 10, 000, 000 entities from tax �lings from 2012-2014 who

had each populated some, or all of, k = 177 real-valued form �elds on an indi-

vidual 1040 US tax return and aggregated schedules. This data is populated on

a yearly basis by taxpayers to calculate their tax liability, and contains informa-

tion about a wide variety of earnings, assets, expenses and business ownership. On

average the data set was under 7% populated. We used r = 10 mixtures. To ini-

tialize the EM, forms were ordered using (
∑kt

i=1 yt)/kt and then partitioned into r

equally sized groups. The sample means and variances of the r groups constituted

the EM algorithm's initial mean and variances estimates. With each EM itera-

tion the likelihood increased. Iterations were ceased once the convergence criterion

log p(yn; φ̂j+1) − log p(yn; φ̂j) < nδ, with δ = .0001, was satis�ed. The number of

iterations required for convergence was 29. The �nal log-likelihood normalized by n

was -163.45.

Using the resulting GMM parameter estimate, �eld-level quality validation was

performed using (13) accounting for the directionality of the anomalies of interest

as discussed above (12). The p-value obtained was treated as the test statistic in

the binary hypothesis formation. To measure the anomaly detection performance

we used 1, 603, 591 forms from 2012-2014 that had undergone two types of manual

validation to identify anomalies. The �rst manual validation is routine, where �eld

values appearing anomalous were identi�ed using a comparatively quick review of

the form and associated information. The second manual validation was detailed and

performed over an extended time, with many supporting documents, and other types

of relevant information. We considered the detailed result to represent the ground

truth against which the performance of the model (and the routine review) was

assessed. We considered two relevant error meters: a false alarm, i.e., an anomaly
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detected by the model (or routine review) that did not arise in the detailed review,

and a detection, i.e., an anomaly detected by the model (or routine review) that did

arise in the detailed review. As η in (13) is changed, the number of false alarms and

detections arising from the model changes. The locus of the relative frequencies of

false alarms and detections as η is varied is called a receiver operator characteristic

(ROC) curve. The ROC curve of the test (13) across all �eld values appears in

Fig. 1. Also represented in this ROC curve is the �xed point representing the false

alarms and detections obtained by the routine review. This plot shows that the

model obtains similar performance as the manual routine review.

ROC Curve

False Alarm Rate

D
et

ec
tio

n 
R

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Anomaly Detection Model
Routine Review

Figure 1: ROC curve showing performance of anomaly detection approach and
�xed-point showing performance of routine review

4. Discussion

We have developed a simple and intuitive EM algorithm for GMM parameter esti-

mation using sparse data that avoids imputation of unpopulated �eld values. Key to

avoidance of imputation was the EM algorithm's complete data de�nition and the

diagonal covariance constraint. The model was applied for form quality validation

using a hypothesis testing formulation. The test statistic in the hypothesis test was

the probability of the observed value, or a value more extreme. This test statis-
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tic corresponds to the p-value of the observation. This test did not require known

anomalous forms but known anomalous forms were used for performance measure-

ment. We showed performance of the approach was comparable to a routine review

of the model in detecting �eld anomalies. In practice, the results of the routine

review are available to the detailed review, and would be expected to in�uence the

detailed review. This suggests that direct performance projections of our results

here would be conservative if our model were to replace the routine review.
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