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Abstract
This paper presents a survey of central limit theorems for dependent data, emphasizing
on cases when the dependence is not quanti�ed. New central limit theorems are provided
for some time series examples with better properties than known results (when mixing
is assumed). The given results are used to estimate the mean and provide con�dence
intervals for the mean of several populations. Several statistical models are considered
and tests are provided to show the importance of the results. Some of these theorems use
the CLT of Kipnis and Varadhan for reversible Markov chains and other results use the
Lindeberg's condition for arrays of independent data. The use of a smoothing kernel allows
us to prove a theorem that provides con�dence intervals for an ARFIMA model without
explicit use of the fractional di�erence parameter or its estimate. Several setups are used
to illustrate the use of the results. While developing these concepts, we use simulations to
show that even when some assumptions of the theorems are violated, the estimators that
are proposed still perform well on large samples. We provide some comparisons that can
help applied statisticians and encourage the use of these methods. Several statistical models
are considered.

Key Words: Keywords: Reversible Markov chains, long range dependence, central limit
theorem, ARFIMA Models, Dependence, Testing hypotheses.

1. Introduction

1.1 Motivation and Problem Setup

We often need to have inference and do some hypothesis testing for the mean of
a population. To address these questions, it is common to either assume a model
for the data or use non-parametric methods. But the most di�cult challenge comes
when the data is not independent. Perhaps, one usually asks if anything is "really
independent". Statistical applications lack tools for analyzing data with dependence.
Most of the available results rely on various assumptions on the dependence structure
of the sequence of observations, making their use very di�cult because of the need
to quantify properly the dependence to check the underlying conditions. Without a
proper central limit theorem, it is very hard to do anything other than estimating the
parameter of interest of any problem. We try here to propose an alternative to usual
notions that are heavily based on assumptions of independence or some measures of
dependence. In the work Longla and Peligrad (2018) is proposed a new central limit
theorem. The proposed central limit theorem is applied here to various statistical
models and the outputs are compared with known results. It is assumed that we have
a stationary and ergodic sequence (Yi, i ∈ Z) with �nite variance (var(Y0) = σ2

Y <

∞). Let µY = EY0. The sample mean Ȳn =
1

n

n∑
i=1

Yi =
1

n
SYn (by the Birkho� ergodic

theorem) satis�es lim
n→∞

Ȳn = µY . Without other information on the dependence

structure of (Yi)i∈Z , obviously, such a sequence might not satisfy the central limit
theorem. Therefore, it is impossible to use to use common methods for estimation
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or testing problems. The new central limit theorem was inspired by the Nadaraya-
Watson estimators. This theorem doesn't require a dependence structure for the
sequence of Y observations, but rather introduces a new independent sequence of
random variables that allows to control for the unknown structure of the dependence
in the Y observations. We propose a study of the performance of the given theorem
in applications on large and relatively small sample data sets.

1.2 Structure of the paper

In the �rst section of this paper, we provide the purpose of the work. In section 2
we provide necessary de�nitions and notations. In section 3 we propose a review of
central limit theorems and in section 4 we have applications to various statistical
models. Section 5 covers some simulations and discussion. The appendix of SAS
codes id proposed in section 6.

2. De�ntions, notations and useful notions

For the purpose of this paper, as in Longla and Peligrad (2018), we shall say that a
sequence (Yi)i∈Z has long range dependence if var(SYn )/n → ∞ and short range if
var(SYn ) behaves linearly in n.

Given a sample (Xi, Yi)1≤i≤n from a random vector (X,Y ) on a probability
space (Ω,K, P ), the well-known Nadaraya-Watson estimator (see Nadaraya (1964)
and Watson (1964), or pages 126-127 in H�ardle (1991)) is de�ned by

m̂n(x) =
1

nhnf̂n(x)

n∑
i=1

YiK(
1

hn
(Xi − x)),

where

f̂n(x) =
1

nhn

n∑
i=1

K(
1

hn
(Xi − x)).

Longla and Peligrad (2018) mention that under various smoothness assumptions
on (X,Y ) and various dependence assumptions on the process (Xi, Yi)i∈Z , the speed
of convergence of m̂n(x) to the conditional mean of Y was pointed out in numerous
papers. The dependence structure considered in the literature is rather restrictive, of
the weak dependence type, such as mixing conditions, function of mixing sequences
or martingale-like conditions. They mention for instance results in Bradley (1983),
Collomb (1984), Peligrad (1992), Yoshihara (1994), Bosq (1996), Bosq et.al. (1999),
Long and Qian (2013), and Hong and Linton (2016) among many others.

2.1 De�nitions and notations

We assume that (ξn, n ∈ Z) is a stationary Markov chain de�ned on a probability
space (Ω,F ,P) with values in a general state space (S,A). The marginal distribution
is denoted by π(A) = P(ξ0 ∈ A). Assume there is a regular conditional distribution
for ξ1 given ξ0 denoted by Q(x,A) = P(ξ1 ∈ A| ξ0 = x). Let Q also denote the
Markov operator acting via (Qf)(x) =

∫
S f(s)Q(x, ds). Next, let L2

0(π) be the set of
measurable functions on S such that

∫
f2dπ <∞ and

∫
fdπ = 0. For some function

f ∈L2
0(π), let

Xi = f(ξi), Sn =
n∑
i=1

Xi, σn = (ES2
n)1/2. (1)
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Denote by Fk the σ��eld generated by ξi with i ≤ k.
For any integrable random variable X we denote Ek(X) = E(X|Fk). Under

this notation, E0(X1) = (Qf)(ξ0) = E(X1|ξ0). We denote by ||X||p the norm in
Lp(Ω,F ,P).

All throughout the chapter ⇒ denotes weak convergence, [x] is the integer part
of x and →P denotes convergence in probability. The notation an ∼ bn means
an/bn → 1 as n → ∞; an = o(bn) means an/bn → 0 as n → ∞. By conditional
convergence in distribution, denoted by Yn|F0 ⇒ Y, we understand that for any
function g which is continuous and bounded

E0(g(Yn))→P Eg(Y ) as n→∞.

In other words, let Px be the probability associated with the Markov chain started
from x and let Ex be the corresponding expectation. Then, for any ε > 0

P{x : |Exg(Yn)− Eg(Y )| > ε} → 0.

We also use the notion of slowly varying function in the following sense.

De�nition 1 A function h de�ned on positive integers is said to be slowly varying in
the strong sense if there exist a continuous function f : (0,∞) → (0,∞) such that
h(n) = f(n), ∀n ∈ N, and ∀t > 0, limx→∞ f(tx)/f(x) = 1.

De�nition 2 Let (Ω,K ,P) be a probability space. A measurable function T : Ω→ Ω
is said to be measure-preserving if for all A ∈ K , P(T−1(A)) = P(A).

For any measure-preserving transformation T and any random variable Y , (Xn =
Y oTn−1, n ∈ N) is a strictly stationary stochastic process. On the other hand, any
strictly stationary stochastic process X = (X1, X2, · · · ) can be determined by the
left shift transformation on R∞ de�ned by T ((x1, x2, · · · )) = (x2, x3, · · · ).

De�nition 3 Let T be a measure-preserving transformation an Y a random variable
on (Ω,K ,P). The invariant σ-�eld of the stationary process de�ned by T and Y is
I = {A ∈ K : T−1(A) = A}

De�nition 4 The partial sum Sn of random variables X1, · · · , Xn is said to be at-
tracted (respectively, partially attracted) to a distribution D as n→∞, if there are
sequences of real numbers an and bn with an > 0, an →∞, such that

Sn − bn
an

⇒ D as n→∞ (respectively, along a subsequence of those integers).

De�nition 5 A distribution function F is stable if its characteristic function is of the
form

φ(t) = e
itd−c|t|a(1+ib t

|t|ω(t,a))
,where 0 < a ≤ 2,−1 ≤ b ≤ 1, c ≥ 0, d ∈ R and

ω(t, a) =

{
tan πa

2 if a 6= 1

− 2
π ln |t| if a = 1.

The number a is called the exponent of the stable distribution F . The normal
distribution is a stable distribution with exponent a = 2, and the Cauchy distri-
bution is a stable distribution with exponent a = 1. A stable distribution is an
in�nitely-divisible distribution.
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De�nition 6 A cumulative distribution F on the real line is said to be in�nitely divis-
ible if for every positive integer n, there exist n independent identically distributed
random variables Xn1, · · · , Xnn, whose sum Sn has the distribution F .

These notions are often used in proofs of central limit theorems. When dealing with
partial sums of random variables, the following Lindeberg condition is often used as
in Longla and Peligrad (2018).

Condition 1 The sequence of random variables (Xn, n ∈ N) is said to satisfy the

Lindeberg condition if for every ε > 0, lim
n→∞

1

σ2
n

n∑
i=1

EX2
i I(|Xi| > εσn) = 0.

2.2 Martingales

The theory of martingales is undoubtedly one of the most important topics in prob-
ability theory. Its use in the proof of convergence theorems is due to the martingale
decomposition of sums of random variables. A martingale is a mathematical model
for a fair wager. It takes its name from "la grande martingale", the strategy for
even-odds bets in which one doubles the bet after each loss, trying to recover his
loss on the �rst win. To model this mathematically, keep track of the succession of
fortune after each bet (Xi, i ∈ N). Having fortune Xi at the time we place the i

th

bet, we will know certain things, including our fortune at the time (information, σ-
algebra of the past and present), but we will not know the result of the bet (future).
Our winnings at the ith bet are (Xi−Xi−1, 1 ≤ i ≤ n). The martingale requirement
is that the expected winning knowing the past is zero (see Williams (1991) for more
on Martingales).

De�nition 7 Let (Ω,F , P ) be a probability space. Let Xk be Fk-measurable, where
Fk ⊂ Fk+1 ⊂ F . The sequence (Fk, k ∈ N) is called a �ltration. Moreover, if Xk

is integrable and E(Xk+1|Fk) = Xk, then (Xk,Fk) is called a martingale; and if Xk

is integrable and E(Xk+1|Fk) = 0, then (Xk,Fk) is called a sequence of martingale
di�erences.

2.3 Tightness conditions for random measures

An important step in the proof of functional central limit theorems is the use of
tightness conditions. Tightness conditions ensure continuity of every limiting pro-
cess. To prove that a sequence of S-valued random variables Xn with distributions
µn converges weakly to a limiting random variable X with distribution µ, the �rst
step is to show that {µn, n ∈ N} is a relatively compact subset of M1(S), equipped
with the topology of weak convergence (called weak topology). This means that
any sequence from the set {µn, n ∈ N} has a weakly convergent subsequence. The
second step is then to show that all such weak limits are equal to µ. For more on this
topic, see Billingsley (1968) and Durrett (1996). Theorem 8.1 of Billingsley (1968)
reads as follows.

Theorem 2 Let (P,Pn, n ∈ N) be probability measures on (C[0, 1],C ). If {Pn, n ∈ N}
is tight and �nite dimensional distributions of Pn converge weakly to those of P, then
Pn ⇒ P.
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3. Central limit theorems

A result from Ibragimov (1962) states that if the sequence (Xn, n ∈ N) is a strictly
stationary strongly mixing sequence, then Sn can be attracted only by a stable
law. Moreover, if this law has exponent α, then an = n1/αh(n) with h(n) a slowly
varying function. Cogburn (1960) showed, that Sn can be partially attracted only
to in�nitely divisible laws.

3.1 Theorems related to mixing conditions

This section contains the de�nitions and a short list of results based on mixing
coe�cients. We provide results including a functional central limit theorem for an
additive functional associated to a Metropolis-Hastings algorithm, with the variance
of partial sums behaving asymptotically like nh(n) (where h is a slowly varying
function). We will use CLT as short for central limit theorem throughout the rest
of this paper. We introduce the historical background linking mixing coe�cients to
the theory of CLT for functionals of stationary Markov chains as in Longla (2013).
A special situation where analogs of the classical results are valid without additional
assumptions is Theorem 1.1 from Kipnis and Varadhan (1986) that reads as follows.

Theorem 3 (A functional CLT for martingale di�erences) Let (Xj , j ∈ Z) be a sta-
tionary ergodic process such that E[Xn+1|Fn] = 0 a.e., where Fn is the σ-�eld gener-
ated by (Xj , j ≤ n). For such a martingale di�erence sequence

1√
n

(X1 + · · ·+X[nt])

converges weakly to the Brownian motion with variance σ2, provided E[X2] = σ2 <
∞.

Earlier, Ibragimov (1975) proved the following.

Theorem 4 Suppose the stationary process (Xi, i ∈ N) satis�es ρ-mixing. Let
E(X0) = 0, E(|X0|2+δ) < ∞ for some δ > 0, and let σ2

n → ∞. Then, the ran-
dom variables Sn/σn are asymptotically normal and the functional CLT holds.

The problem in applications is that we don't have the value of σn. Therefore, it
is di�cult to use this result, even when this variance is known up to a parameter.
A review of central limit theorems can be found in the survey by Jones (2004),
where Corollary 2 states consequences of existing theorems for Harris ergodic Markov
chains from which the following holds.

Corollary 1 Suppose (Xi, i ∈ N) is a Harris ergodic Markov chain with stationary
distribution π. Let f : R→ R be a Borel function such that Eπf(X0) = 0. Assume
one of the following conditions holds.

1. (Xi, i ∈ N) is geometrically ergodic and E|f |2+δ(X) <∞ for some δ > 0;
2. (Xi, i ∈ N) is polynomially ergodic of order m, EπM <∞ and E|f |2+δ(X) <

∞, where mδ > 2+δ andM is a nonnegative function such that ||Pn(x, .)−π(.)|| ≤
M(x)n−m; or

3. (Xi, i ∈ N) is polynomially ergodic of order m > 1, EπM < ∞ and there
exists B <∞ such that |f(X)| < B π-almost surely.

Then, for any initial distribution of X0, as n→∞, the functional CLT holds.

For ρ-mixing sequences, the conditions are less restrictive. This is due to the fact
provided on page 190 of Ibragimov and Rozanov (1978) that we combine with a
result of Shao Qi-Man (1989) in the following.
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Theorem 5 Let (Xn, n ∈ N) be a second order centered stationary sequence. If
∞∑
n=1

ρn
n

< ∞, then Xn has a continuous spectral density f(λ). If, in addition,

f(0) 6= 0, then σ2
n = 2πf(0)n(1 + o(1)). Moreover, the functional CLT holds.

The proof of the CLT was provided by Ibragimov (1975) and the proof of the func-
tional CLT was given by Shao Qi-Man (1989). Ibragimov (1975) has also proved
the following. According to this result, for any stationary ergodic Markov chain
generated by copulas from the Frechet family (see Loongla (2015) ), the CLT holds.
Same as for Theorem 4 the di�culty lies in �nding the value of the variance of
partial sums. In Theorem 5, the variance of partial sums is of order n but has a
parameter f(0) that is in general not easy to �nd. We will show below that using
a di�erent estimator for the mean of a sample solves this issue for some sequences.
For φ-mixing sequences, using Wn(t) = n−1/2σ−1

n S[nt], Peligrad (1985) has shown
the following.

Theorem 6 Let (Xn, n ∈ N) be a centered stationary second order φ-mixing sequence
with σ2

n →∞. Assume the Lindeberg Condition 1 is satis�ed, then Wn(t)⇒W (t).
If, in addition, φ1 < 1, then Wn(t)⇒W (t) implies Condition 1.

Considering reversible Markov chains that we use as examples, Theorem 6 is equiv-
alent to the following.

Theorem 7 Let (Xn, n ∈ N) be a centered stationary ergodic second order sequence
with σ2

n → ∞. If φ1 < 1, then the Lindeberg Condition 1 holds if and only if
Wn(t)⇒W (t).

Peligrad and Utev (2006) also present a results on CLT and functional CLT. See
Peligrad (2006) for a recent on the invariance principles (functional CLT) for sta-
tionary processes.

3.2 Theorems related to reversible Markov chains

A Markov chain is reversible if the operator its transition probabilities induce on
L2 is self-adjoint. In other words, the Markov chain is called reversible if Q = Q∗,
where Q∗ is the adjoint operator of Q. The condition of reversibility is equivalent
to requiring that (ξ0, ξ1) and (ξ1, ξ0) have the same distribution. For reversible
Markov chains, theorems require less assumptions than in general. One of the classic
theorems in this case is due to Kipnis and Varadhan (1986), who have shown the
following:

Theorem 8 For any reversible stationary Markov chain (ξj , j ∈ Z) de�ned on a state
X with distribution π, and for any mean zero function f such that

∫
f2(x)π(dx) <∞

and n−1E(f(ξ1) + · · ·+ f(ξn))2 → σ2
f <∞, the reversible Markov chain de�ned by

(1) satis�es the functional CLT.

Remark 1 If f is a vector valued function, then essentially the same result is valid.
The vector valued process Wn(t) converges weakly to a multidimensional Brownian
motion with the corresponding covariance matrix.

Many authors have looked at this case. Zhao et al. (2010) analyzed the case when
σ2
n = nh(n), with h a slowly varying function. They have shown by example that
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the conditional distribution of Sn/
√
V ar(Sn) need not converge to the standard

normal distribution in this case; and have developed su�cient conditions for conver-
gence to a (possibly non-standard) normal distribution. In addition, they provided
an example of reversible Markov chain satisfying (??), for which the central limit the-
orem holds with a di�erent normalization. Some results consider mixing properties
as that of Roberts and Rosenthal (1997):

Theorem 9 Let (ξi, i ∈ N) be a reversible geometrically ergodic Markov chain with
stationary distribution π, (Xi = f(ξi), i ∈ Z) with Eπf(X0) = 0 and Eπf2(X0) <∞.
Then for any initial distribution of ξ0, as n→∞, n−1/2Sn =⇒ N(0, σ2

f ).

Note that Theorem 9 uses geometric ergodicity and reversibility. These two condi-
tions imply exponential ρ-mixing (see Longla and Peligrad (2012) ), which implies
convergence of V ar(Sn)/n to σ2

f . So, the assumptions of this theorem are stronger
than those of Kipnis and Varadhan (1986). There is a considerable amount of papers
that further extend and apply this result to many models. Kipnis and Landim (1999)
applied it to interacting particle systems, Tierney (1994) considered applications to
Markov Chain Monte Carlo. Wu (1999), Zhao and Woodroofe (2008) tackled the
law of the iterated logarithm, Derriennic and Lin (2001) and Cuny and Peligrad
(2012) considered the CLT started at a point for a stationary irreducible and aperi-
odic Markov chain with uniform marginal distribution. This type of Markov chain
is interesting since it can easily be transformed into Markov chains with di�erent
marginal distributions. Longla, Peligrad and Peligrad (2012) pointed out a func-
tional CLT under a normalization other than the variance of partial sums. Markov
chains of this type are often studied in the literature from di�erent points of view(see
Doukhan et al (1994), Rio (2000 and 2009) , Merlev�ede and Peligrad (2013)). Re-
cently, Longla (2017) has shown that for a reversible Markov chain of the form
(Yi = Xiβ + εi, 1 ≤ i ≤ n), where εi is a mean zero reversible and ergodic Markov
chain that is independent of the random sample of (Xi, 1 ≤ i ≤ n) the following
results holds:

Theorem 10 The least squares estimator of the slope in the given linear regression
model β̂ satis�es the CLT in the form

√
n(β̂ − β)→ N(0,

σ2
ε

σ2
x

), where β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

. (2)

In the proof of Theorem 10, it was actually shown that for any stationary reversible
and ergodic Markov chain (εi, 1 ≤ i ≤ n), and any independent random sample
(Xi, 1 ≤ i ≤ n) such that E(X) = 0,

1√
n

n∑
i=1

Xiεi → N(0, σ2
xσ

2
ε). (3)

If we consider εi = Zi − µZ for any reversible square integrable Markov chain with
mean µz, (Zi, 1 ≤ i ≤ n), the following holds.

Theorem 11 For any ergodic reversible square integrable Markov chain (Zi, 1 ≤ i ≤
n), and for any independent mean zero random sample (Xi, 1 ≤ i ≤ n), as n→∞,

using µ̂z =
1

nX̄

n∑
i=1

XiZi as estimator of µz,

√
nX̄(µ̂z − µz)→ N(0, σ2

xσ
2
z). (4)
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Note that µ̂z is an unbiased estimator of µz. The following assertion is based on
consistency of X̄ for random samples.

Remark 2 It is also true that for the modi�ed estimator µ̂∗z = 1
nµx

∑n
i=1XiZi when

µx 6= 0 and var(
∑n

1 Zn)/n→ σ2
z as n→∞, under the conditions of Theorem 4 the

central limit theorem holds in the form

√
n(µ̂∗z − µz)→ N(0, σ2

z). (5)

These estimators µ̂z and µ̂∗z are unbiased estimators of µz. The asymptotic
variance variance of µ̂∗z is of order σ

2
x while that of µ̂z is a more complex. In Remark

2, we have a case to which applies the Kipnis and Varadhan central limit theorem.
We will provide a comparison of the these estimators to Z̄.

3.3 General theorems

In this section, we are concerned with central limit theorems for sequences for which
the dependence structure is not de�ned in advance.

3.3.1 Mean estimation

Here, we are concerned with the problem of mean estimation in absence of modelled
dependence. Assume that we have a population (Xi, 1 ≤ i ≤ n) of dependent
observations. We are interested in estimating the mean and build a con�dence
interval for the estimate or do some tests of hypotheses. We consider that K is a
symmetric, bounded density function and√

nhn(Ȳn − µY )→P 0, (6)

nh5
n → 0 and nhn →∞ as n→∞, (7)

which is implied by
nhnvar(Ȳn)→ 0. (8)

Note that we can always �nd a sequence (hn)n≥1 satisfying both conditions (7)
and (8), provided var(Ȳn)→ 0. In this case, Longla and Peligrad (2018) have shown
the following:

Theorem 12 Assume that (Yi, 1 ≤ i ≤ n) is a stationary and ergodic sequence
with �nite second moments and conditions (7) and condition (6) are satis�ed. Also
assume that K satis�es Condition A and that (Xi, 1 ≤ i ≤ n) is an i.i.d. sequence
of random variables, independent of Y, having a bounded density function f(x),
continuous and di�erentiable at the origin, with f(0) 6= 0. Then we have

√
nhn√
Y 2
n

(r̂n − µY )⇒ N(0,
1

f(0)

∫
K2(x)dx).

where Y 2
n =

∑n
i=1 Y

2
i /n and r̂n = 1

nhf(0)

∑n
i=1K(Xi

h )Yi.
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They have also shown that under the conditions var(Ȳn) = o(n−4/5) and µY 6= 0,
the optimal bandwidth to be used in the con�dence intervals is

ho = [
f(0)BY 2

n

n(f”(0)A)2(Ȳn)2
]1/5, A =

∫
x2K(x)dx and B =

∫
K2(x)dx.

This theorem is in the spirit of Longla (2017) of works to provide a way to
construct tools for analysis of data when the dependence structure is not known or
easily quanti�able.

For applications, the following tables were provided in Longla and Peligrad
(2018).

Kernel Gaussian Epanechnikov Uniform Quartic

A|B 1|1/(2
√
π) 1/5|3/5 1/3|1/2 1/7|5/7

Table 1: Values of A and B for various kernels

In Table 1 we have values of A and B for each of the provided kernels.

Distribution Gaussian χ2(2) Cauchy

f(0)||f ′′(0)| 1/
√

2π|1/
√

2π 1/2|1/8 1/π|2/π

Table 2: Values of f(0) and |f ′′(0)| for various distributions

Table 2 discloses the values of f(0) and |f ′′(0)| for the Gaussian, χ2(2) and
Cauchy distributions.

Density of X

Kernel Gaussian χ2(2) Cauchy

Gaussian ( y2n
n
√

2ȳ2n
)1/5 ( 16y2n

n
√
πȳ2n

)1/5 (
√
πy2n

8nȳ2n
)1/5

Epanechnikov (15
√

2πy2n
nȳ2n

)1/5 (480y2n
nȳ2n

)1/5 (15πy2n
4nȳ2n

)1/5

Uniform (9
√
πy2n

n
√

2ȳ2n
)1/5 (144y2n

nȳ2n
)1/5 (9πy2n

8nȳ2n
)1/5

Quartic (35
√

2πy2n
nȳ2n

)1/5 (1120y2n
nȳ2n

)1/5 (35πy2n
4nȳ2n

)1/5

Table 3: Optimal Bandwidths

With these tables, one can �nd the optimal strategy to minimize the variance
by noticing that the asymptotic relative e�ciency is independent of the the sample
of observations of interest. Using the optimal bandwidths, if σ2

i is the asymptotic
variance and Ai, Bi, fi(0) and f ′′i (0) are the parameters for the estimator i, then
the relative e�ciency e is

e =
σ2

1

σ2
2

=
(B1/B2)4/5(A1/A2)4/5(f ′′1 (0)/f ′′2 (0))2/5

(f1(0)/f2(0))6/5
.

Therefore, the following Table 4 provides the information to take into account
for the choice of the density and Kernel in applications.

When not using the optimal bandwidths, the e�ect of bandwidth changes because
the optimal bandwidths on depend of the kernel. We obtain Table 5.

It is clear that not using the optimal bandwidths prioritizes the Gaussian kernel
and the use of χ2(2) or standard normal distribution for X, while using the optimal
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Density of X

Kernel Gaussian χ2(2) Cauchy

Gaussian 47% 97% 51%

Epanechnikov 48% 100% 53%

Uniform 46% 95% 50%

Quartic 48% 100% 53%

Table 4: Asymptotic relative e�ciencies (relative to: χ2(2) for X and quartic kernel)

Density of X

Kernel Gaussian χ2(2) Cauchy

Gaussian 80% 100% 66%

Epanechnikov 38% 47% 31%

Uniform 45% 56% 36%

Quartic 32% 39% 25%

Table 5: Asymptotic relative e�ciencies (relative to: χ2(2) for X and Gaussian
kernel)

bandwidths prioritizes the use of χ2(2) exclusively forX among checked distributions
(see Table 4 and Table 5). These tables are exact and don't depend of the sample
of observations to be analyzed.

Remark 3 For statistical applications, the condition µY 6= 0 is not an issue because
we can always add an arbitrary constant to each of the data points without changing
any of the conditions of the theorem. It is indeed just a condition to avoid the case
when the MSE cannot be minimized over �nite non-zero values of h.

4. Applications to statistical models

Recalling that for the normal kernel and the standard normal distribution for X the

estimator of the mean of the sequence (Yi, 1 ≤ i ≤ n) is r̂n =
1

nh

n∑
i=1

Yiexp(−
1

2
(
Xi

h
)2),

we will de�ne below test statistics for testing for the di�erence of means for some
statistical models and build some con�dence intervals. If the χ2(2) distribution is
used for X with the standard normal kernel, then the estimator is

r̂n =

√
2

nh
√
π

n∑
i=1

Yiexp(−
1

2
(
Xi

h
)2).

Finally, using the quartic kernel and χ2(2) for X, the estimator is

r̂n =
15

8nh

n∑
i=1

Yi(1− (
Xi

h
)2)2I(|Xi| < h).

4.1 Con�dence interval for the mean

For a sample of observations {Yi.1 ≤ i ≤ n} with unquanti�ed dependence, based
on Theorem 12, a (1− α)100% con�dence interval for the mean µY is
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r̂n −
(
Y 2
n

∫
K2(x)dx

nhf(0)

)1/2

× zα/2, r̂n +

(
Y 2
n

∫
K2(x)dx

nhf(0)

)1/2

× zα/2

 ,

where P (−zα/2 < Z < zα/2) = 1−α, and Z is a standard normal variable. Using
the the standard normal distribution for X we obtainr̂n −

(
Y 2
n

nh
√

2

)1/2

× zα/2, r̂n +

(
Y 2
n

nh
√

2

)1/2

× zα/2

 , (9)

and using the Gaussian kernel and χ2(2) as distribution for X, we obtainr̂n −
(

Y 2
n

nh
√
π

)1/2

× zα/2, r̂n +

(
Y 2
n

nh
√
π

)1/2

× zα/2

 . (10)

Using the quartic kernel and χ2(2) for X, we obtainr̂n −
(

10Y 2
n

7nh

)1/2

× zα/2, r̂n +

(
10Y 2

n

7nh

)1/2

× zα/2

 . (11)

Finally, using the Epanechnikov kernel and χ2(2) for X, we obtainr̂n −
(

6Y 2
n

5nh

)1/2

× zα/2, r̂n +

(
6Y 2

n

5nh

)1/2

× zα/2

 . (12)

4.2 Con�dence interval for the mean of a reversible Markov chain

If the sample (Yi, 1 ≤ i ≤ n) is from a reversible Markov chain and we generate an
independent random sample of (Xi, 1 ≤ i ≤ n) from a mean zero square integrable
distribution, the the following is a (1− α)100% con�dence interval for the mean of
Y . {

µ̂n −
σxSz√
n|X̄|

× zα/2, µ̂n +
σxSz√
n|X̄|

× zα/2
}
. (13)

The drawback of this estimator is that the variance tends to be large, but it very
quickly converges to the true value of the mean.

4.3 Testing for the mean of a single variable or di�erence of means.

For a test on the di�erence of means of a paired stationary sequence ((Zi,Wi), i =
1 · · ·n), one can use (Yi = Zi − Wi, i = 1 · · ·n), d - the di�erence of means, we
use the test for a single variable on the di�erence of the two observations as in the
standard case for independence.

Z =
r̂n − d√

1√
2hnn2

∑n
i=1 Y

2
i

− is approximately standard normal.

Reject the null hypothesis in the appropriate critical region. Notice that this
test puts no assumptions on the distribution of Y , except for the existence of the
variance.
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4.4 Testing for di�erence of means for equal sample sizes

For a test on the di�erence of means of two independent stationary sequences
(Mi, i = 1 · · ·n) and (Wi, i = 1 · · ·n) , one can use (Yi = Mi − Wi, i = 1 · · ·n).
If d is the di�erence of means, then

Z =
r̂n − d√

1√
2hnn2

∑n
i=1(W 2

i +M2
i )
− is approximately standard normal.

Reject the null hypothesis in the appropriate critical region. Notice that in this
case the same observations are used to smooth W and Z. We will compare below
this test statistic to the one used in case of unequal sample siezes.

4.5 Testing for the mean for unequal sample sizes

For a test on the di�erence of means of two independent stationary sequences
(Mi, i = 1 · · ·n) and (Wi, i = 1 · · ·m) d - the di�erence of means and the normal
kernel and standard normal for X.

r̂M,W =
1

nhn

n∑
i=1

Mi exp[−1

2
(

1

hn
Xi)

2]− 1

mhm

m∑
i=1

Wi exp[−1

2
(

1

hm
X∗i)

2],

Z =
r̂M,W − d√

1√
2hnn2

∑n
i=1M

2
i + 1√

2hmm2

∑m
i=1W

2
i

.

Reject the null hypothesis in the appropriate critical region. Notice that in this case
the di�erent observations are used to smooth W and M .

4.6 Testing for di�erence of more than two means for equal sample size

For a test on the di�erence of three independent treatment levels (observations
within each of the treatments form a stationary ergodic sequence (Mji, i = 1 · · ·n, j =
1, 2, 3). We de�ne

Z(j, n) =
r̂n√

1√
2hnn2

∑n
i=1M

2
ji

.

Z =
1

3

(
[Z(1, n) − Z(2, n)]2 + [Z(1, n) − Z(3, n)]2 + [Z(2, n) − Z(3, n)]2

)
is ap-

proximately χ2(2).
Reject the null hypothesis for large values.

5. Simulations and comparisons

Consider estimation of the mean of a sample of observations from Yi = Zi + µ,
where Zi is an ARFIMA(0, d, 0) (Auto-Regressive Fractionally Integrated Moving
Average). In the literature, it is shown that this process is ergodic with variance of
partial sums var(Ȳn) = cn2d−1 for 0 ≤ d < .5 (see Longla and Peligrad (2018) and
Hosking (1981)). We will present here the results of simulations of this model and
the conclusions.
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5.1 Using µ̂n to estimate the mean of shifted ARFIMA(0, d, 0)

On the example of the ARFIMA(0,d,0) given above, the conditions of the CLT
for this estimator are violated, but it still estimates almost to perfection the mean
of population Y under standard normal samples for the test population X. The
standard error of this estimator behaves like an inverse normal random variable
because

√
nX̄ → N(0, 1).

Table 6: Applications to ARFIMA(0, d, 0)

(a) d=.3 and −.3 +Bernoulli(.3)

Size 500 100 50

µ̂n -3.92 -3.79 -4.23

Std(µ̂n) 11.09 2.81 1.89

(b) d=.3 and Normal(0, 1)

Size 500 100 50

µ̂n -99.38 - 98.8 -99.56

Std(µ̂n) 23.66 12.49 4.16

(c) d=.7 and -2+χ2(2)

Size 500 100 50

µ̂n 49.8 50.96 50.53

Std(µ̂n) 52.67 12.0 13.8

(d) d=.9 and Normal(0, 1)

Size 500 100 50

µ̂n 48.93 50.42 48.69

Std(µ̂n) 11.16 6.24 6.35

5.2 Using µ̂n and r̂n to estimate µ for some reversible Markkov chain

Longla (2015) proposed conditions for mixing properties of mixtures of copulas that
generate reversible Markov chains. A class of copulas for such Markov chains was
the Frechet family of copulas C(x, y) = aW (x, y) + (1 − a)M(x, y), for 0 ≤ a ≤ 1.
This copula is the joint distribution of a bivariate random variable (U, V ) with
uniform marginals on (0, 1). It generates reversible Markov chains with any initial
distribution (see Longla and Peligrad (2012), Longla (2013) or Longla (2015) for
more). Technically, any sample from any Markov chain generated by this copula
will be a string made of two values X0 and 1 −X0 with changes depending on the
value of a. The number a is typically the probability to obtain 1−x after obtaining
x for the previous sample point. So, the larger a, the more �ips we will have in the
sample. Our aim here is to apply the results of the study to the population mean
and compare the performances of various estimators.

Table 7 (a)-(d) indicate some sample results from the Markov chains with dis-
tributions given in the headings and having transition probabilities de�ned by the
Frechet copula with parameter a. To generate observations from these stationary
Markov chains, if F is the cumulative distribution of Y , we generate a Markov
chain (Ui, 1 ≤ i ≤ n) with uniform distribution as marginals ad Frechet copula for
transitions, then set Yi = F−1(Ui) for i = 1, · · · , n. The estimators r̂n and m̂un
are applied to the same data set with the same sample (Xi, 1 ≤ i ≤ n) from the
standard normal distribution.

5.3 Estimation of µ for Markov Chain with Clayton copula

Copulas are bivariate distributions that are used to capture the strength of the de-
pendence between random variables. When using a copula to model the dependence
for a bivariate random variable with uniform marginals, the conditional distribution
for transitions is the derivative with respect to the �rst variable of the copula (see
Nelsen (2006) or Longla and Peligrad (2012)). Thus, to obtain the data we generate
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Table 7: Applications to the Frechet family of copulas

(a) a = .3 and Y = N(50, 1)

Size 500 100 50

µ̂n 50.42 49.75 49.87

Std(µ̂n) 7.79 1.99 3.74

r̂n 45.09 53.04 45.03

Std(r̂n) 3.62 6.90 9.09

Ȳ 50 50.01 49.95

Std(Ȳ ) .17 .25 .61

(b) a = .5 and Y = Normal(6, 9)

Size 500 100 50

µ̂n 5.44 6.47 5.77

Std(µ̂n) 14.54 15.92 3.79

r̂n 5.44 5.94 5.37

Std(r̂n) .44 .83 1.11

Ȳ 5.97 5.91 6.06

Std(Ȳ ) .80 1.42 .73

(c) a = .7 and Y = N(200, 4)

Size 500 100 50

µ̂n 200.45 199.99 198.11

Std(µ̂n) 52.37 .31 11.38

r̂n 201.12 166.53 233.94

Std(r̂n) 14.50 27.59 36.35

Ȳ 200.09 199.99 199.68

Std(Ȳ ) 1.51 .01 2.68

(d) a = .7 and Y = Normal(−10, 4)

Size 500 100 50

µ̂n -10.13 -9.87 -10.14

Std(µ̂n) 2.31 1.32 2.80

r̂n -9.77 -9.42 -8.68

Std(r̂n) .72 1.38 1.82

Ȳ -10.01 -10.01 -10.01

Std(Ȳ ) .06 .28 .18

a Markov chain with uniform marginals and Clayton copula for transition probabil-
ities (Zi, 1 ≤ i ≤ n). This is done using the Clayton copula and its derivative

C(u, v) = (u−α + v−α − 1)−1/α, Cu(u, v) = u−α−1(u−α + v−α − 1)−1/α−1.

Knowing the previous value u0 of the Markov chain, the following is obtained by
generating a value from the distribution Cu(u0, v) (see Nelsen (2006) for more).
An independent observation vi is generated from the uniform distribution. Then

Zi = (u−α0 (v
−α/(α+1)
i −1)+1)−1/α. We then set (Yi = F−1(Zi), 1 ≤ i ≤ n), where F

is the cumulative distribution of the invariant distribution of the generated Markov
chain. The estimators use the same sample of X values from the standard normal
distribution.

Sample size mean n=100 µ = −5 n=100 µ = 50

Estimate - Standard error EST STD EST STD

µ̂n −5.29 8.50 53.20 16.82

r̂n, Gaussian kernel, h0 −5.28 .71 51.26 6.94

r̂n, Gaussian kernel, h = n−.19 −5.14 .68 49.74 6.55

r̂n, Gaussian kernel, h = n−.21 −5.27 .72 50.97 6.86

r̂n, Epanechnikov kernel, h0 −4.16 .59 39.97 5.72

r̂n, Epanechnikov kernel, h = n−.19 −4.97 .84 46.25 8.04

r̂n, Epanechnikov kernel, h = n−.21 −5.18 .88 46.22 8.42

Table 8: Estimates and Standard deviations for α = 3, Y follows t with df = 2.

Entries of Table 8 are estimates of the mean and their standard deviations for
each of the estimators applied to the same data set. The fourth row for example
means that r̂n is computed using the optimal bandwidths ho and the Gaussian kernel.
The data set is a reversible Markov chain generated by the Clayton copula having
shifted t-distribution with two degrees of freedom as invariant marginal distribution
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with mean µ. A SAS function is used to �nd Y = F−1(Z) for each of the Z
observations generated via the Clayton copula.

It can be seen from Table 8 that r̂n de�ned via the Epanechnikov kernel per-
forms poorly on estimation compared to other scenarii no matter what bandwidths
are used, but provided a smaller standard error comparable to that of the Gaus-
sian. Table 8 also shows that moving away from the optimal bandwidths increases
accuracy and estimation when the Epanechnikov kernel is used. Overall, µ̂n clearly
estimates better than all these estimators as the sample size increases.

Sample size mean n=1000 µ = 500 n=1000 µ = 500

Estimate - Standard error EST STD EST STD

µ̂n 499.01 191.65 505.26 88.63

r̂n, Gaussian kernel, h0 500.14 27.47 513.07 27.47

r̂n, Gaussian kernel, h = n−.19 493.82 25.63 509.33 25.63

r̂n, Gaussian kernel, h = n−.21 500.13 27.47 513.06 27.47

r̂n, Epanechnikov kernel, h0 398.41 22.64 409.65 22.64

r̂n, Epanechnikov kernel, h = n−.19 418.82 31.43 420.64 31.43

r̂n, Epanechnikov kernel, h = n−.21 422.24 33.68 422.44 33.68

Table 9: Estimates and Standard deviations for α = 3, Y follows t with df = 2.

Entries of Table 9 indicate that the variance of r̂n stabilizes for large samples
and depends only on the kernel and the distribution of X. This is due to the fact
that the sequence of observations is ergodic (This implies that the average of squares
observations converges to the mean of the population). It is clear that the estimators
performs very well even in cases when some of the assumptions are violated. The
optimal bandwidths are shown to be not necessarily best for estimation.

6. Appendix

6.1 SAS code for µ̂ and ARFIMA(0, d, 0) of Table 6

%MACRO ARIMA(n);
** Delete possible present sets;
proc datasets lib= work memtype=data nolist; delete BOSS; delete XYSet; delete
Xset; delete Last; quit;
/**Creating The random sample of Innovations**/
Data AR;
%do t=1 %to &n+1;
e=rand('normal',0,1); output; %end; run;
/**Creating The ARFIMA Sample of Y for estimation**/
proc iml; use AR; read all var e; call fdif(Y, e, d);
create ARMA var {Y e}; /** create data set **/
append; /** write vectors into the data set**/
close ARMA; /** close the data set **/
Data ARMA; Set Arma; If Y='.' then delete; Y=Y+50; run;
proc univariate data=ARMA noprint;
var Y ; output out=BOSS MEAN=M1 stddev= S1; run;
DATA XSet; /**Creating The random sample of X **/
%do t=1 %to &n;
X=rand('Normal', 0,1); output;%end; run;
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/**Creating data set of X and Y**/
proc iml; use XSet; read all var{X}; use ARMA; read all var {Y };
use Boss; read all var{S1 M1};
create XYSet var {X Y S1 M1}; /** create data set **/
append; /** write vectors into the data set**/
close XYSet; /** close the data set **/
DATA XYhSet; Set XYSet; Z=X*Y; run;
proc univariate data=XYhSet noprint;
var X Z; output out=FINAL MEAN= M4 M3; run;
Data Last; set Final; set Boss;
Sigma=S1/abs(M4); muhat=M3/M4; run;
proc print data=laST;run;
%MEND;
%ARIMA(n); run; ***Running the macro.*

This macro can be used to generate samples from any distribution of X and any
ARMA(0, d, 0). In the DATA set ARMA, Y = Y + 50 adds the value of µ to be
estimated. This value can be changed to see the variation for various values of the
mean. Using the code, the variance of X is assumed to be 1. Thus, if a a distribution
is chosen, the values need to be rescaled to have variance 1. The innovations of the
ARFIMA are given as e, the fractional di�erence parameter is d. The sample size
is n, argument of the Macro shall be typed in to run the Macro after inputting the
parameters of interest.

6.2 SAS code for Table 7

%MACRO FRECHET(a, n); ** Delete possible present sets;
proc datasets lib= work memtype=data nolist; delete BOSS; delete Begin; quit;
/**Creating The random from Markov chain with Frechet transition copula**/
Data Begin;
do i=1 to &n;
Y1=0; output; end; run;
proc iml; Use Begin; read all var{Y 1}; Y1[1]= rand('uniform');
do i=2 to &n;
U=rand('uniform'); j=i-1; v1=Y1[j];
if U< &a then do; Y1[i]=v1;end;
If u >&a then do; Y1[i]=1-v1; end; end;
create Frechet var{Y 1}; /** create data set **/
append; /** write vectors into the data set**/
close Frechet; /** close the data set **/
Data SampleY; Set Frechet;
Y=Probit(Y1)+50; YY=Y*Y; run;
proc univariate data=SampleY noprint;
var Y YY; output out=BOSS MEAN=M1 M2 stddev= S1 S2; run;
DATA H; Set Boss;
%do i=1 %to &n;
h=(M2/(&n*(M1**2)*(2**.5)))**.2; output; %end; run;
DATA XSet; /**Creating The random sample of X **/
%do t=1 %to &n;
X=rand('Normal', 0,1); output; %end; run;
/**Creating data set of X and Y**/
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proc iml;
use XSet; read all var{X}; use SampleY;
read all var{Y }; use H; read all var{h S1 M1};
create XYSet var{X Y h S1 M1}; /** create data set **/
append; /** write vectors into the data set**/
close XYSet; /** close the data set **/
DATA XYhSet; Set XYSet;
Z1=Y*exp(-(X/h)**2/2)/h; Z=X*Y; Y2=Y**2; run;
proc univariate data=XYhSet noprint;
var X Z Z1 Y2 h; output out=FINAL MEAN= M4 M3 Rhat MY2 h; run;
Data Last; set Final; set H; set Boss;
Sigmamuhat=S1/abs(M4); muhat=M3/M4; SIGMARhat= (MY2/(&n*h*(2)**.5))**.5;
run;
%MEND;
%FRECHET(.3,500); run;

6.3 SAS code for Table 8 and Table 9

%MACRO Clayton(alpha, nu, n);
** Delete possible present sets; proc datasets lib= work memtype=data nolist; delete
BOSS; delete Begin; quit;
/**Creating The random from Markov chain with Clayton transition copula**/
Data Begin;
do i=1 to &n; Y1=0; output; end; run;
proc iml; Use Begin; read all varY1; Y1[1]= rand('uniform');
do i=2 to &n; U=rand('uniform'); j=i-1; v1=Y1[j];
Y1[i]=(v1**(-&alpha)*(u**(-&alpha/(&alpha+1))-1)+1)**(-1/&alpha);end;
create Clayton var{Y 1}; /** create data set **/
append; /** write vectors into the data set**/
close Clayton; /** close the data set **/
Data SampleY; Set Clayton; Y=TINV(Y1, &nu)+500; YY=Y*Y; run;
proc univariate data=SampleY noprint;
var Y YY; output out=BOSS MEAN=M1 M2 stddev= S1 S2; run;
DATA H; Set Boss; pi=constant('pi');
%do i=1 %to &n; h=(M2/(&n*(M1**2)*(2**.5)))**.2;
h1=(15*((2*pi)**.5)*M2/(&n*(M1**2)))**.2; h2=(&n**(-.19)); h3=(&n**(-.21));
output; %end; run; DATA XSet; /**Creating The random sample of X **/
%do t=1 %to &n; X=rand('Normal', 0,1); output; %end; run;
/**Creating data set of X and Y**/
proc iml; use XSet; read all var{X}; use SampleY; read all var{Y }; use H; read all
var{h h1 h2 h3 S1 M1 pi};
create XYSet var{X Y h h1 h2 h3 S1 M1 pi}; /** create data set **/
append; /** write vectors into the data set**/
close XYSet; /** close the data set **/
DATA XYhSet; Set XYSet;
Z1=Y*exp(-(X/h)**2/2)/h; Z=X*Y; Y2=Y**2;
Z2=Y*exp(-(X/h2)**2/2)/h2; Z3=3*((2*pi)**.5)*Y*(1-(X/h1)**2)*(-h1<X<h1)/(5*h1);
Z4=3*((2*pi)**.5)*Y*(1-(X/h2)**2)*(-h2<X<h2)/(5*h2); Z5=Y*exp(-(X/h3)**2/2)/h3;
Z6=3*((2*pi)**.5)*Y*(1-(X/h3)**2)*(-h3<X<h3)/(5*h3); run;
proc univariate data=XYhSet noprint;
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var X Z Z1 Z2 Z3 Z4 Y2 h h1 h2 Z5 Z6;
output out=FINAL MEAN= MX MZ Rhat1 Rhat2 Rhat3 Rhat4 MY2 h h1 h2
RHAT5 RHAT6; run;
Data Last(Drop=MY2 M2 S2 h h1 h2 MX MZ pi ); set Final; set H; set Boss;
pi=constant('pi'); Sigmamuhat=S1/abs(MX); muhat=MZ/MX;
SIGMARhat1= (MY2/(&n*h*(2**.5)))**.5; SIGMARhat2= (MY2/(&n*h2*(2**.5)))**.5;
SIGMARhat3= (3*((2*pi)**.5)*MY2/(&n*5*h1*(2**.5)))**.5;
SIGMARhat4= (3*((2*pi)**.5)*MY2/(&n*5*h2*2**.5))**.5;
SIGMARhat5= (MY2/(&n*h3*(2**.5)))**.5;
SIGMARhat6= (3*((2*pi)**.5)*MY2/(&n*5*h3*(2**.5)))**.5; run;
%MEND;
%Clayton(3, 2, 1000); run;
proc print data=Last;run;
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