

Time-Constrained Predictive Modeling on Large and Continuously
Updating Financial Datasets

Bernard Lee1, Nicos Christofides 2

Abstract

Using artificial neural networks to perform predictive modeling in finance has attracted
significant media attention, and pundits are quick to speculate on their potential
impacts on jobs and society. With the recent advancement in algorithms and readily
accessible, highly specialized hardware, do these algorithms actually live up to such
promises? Some unique features of applying artificial neural networks to finance
include: 1) Financial datasets change almost constantly; 2) Calculation universe is
usually quite large (e.g. a typical sub-universe of over a hundred companies, each of
them having several hundred fundamental factors, with many different combinations of
time lags); 3) Non-linear statistics that require multiple neurons, layers, and/or
calibration with even more specialized techniques; 4) Risk of overfitting models that
yield low predictive power; 5) If the computation cannot finish by a specific time
constraint (say within 1~2 minutes, but the threshold will be dependent on the specific
markets traded) the market may have moved by so much that any modeling results
obtained can no longer be helpful to decision making in real-life markets.

The goal of this paper is to provide a formal study on the feasible ranges where
predictive power and computational speed-up for different techniques in predictive
modeling in finance can be helpful to solving time-constrained algorithms in finance,
based on the most up-to-date technology available. The first author presented a
similar formal study at the Russian Academy of Sciences in Moscow in 2011, while
similar published studies were performed almost a decade ago.3 We achieve this
objective by benchmarking computational performance on a state-of-the-art platform
with real-life financial datasets using a 30,000-core supercomputer hosted by the
National Supercomputing Centre (NSCC) Singapore.

1 Founder and Chief Executive, HedgeSPA Limited, 77 Ayer Rajah Crescent #03-36,
Singapore 139954. The authors acknowledge generous research support by the
National Supercomputing Centre (NSCC) Singapore.
2 Professor Emeritus, Imperial College London, Exhibition Road, London, UK SW7 2AZ.
3 See, for instance, A. Bahrammirzaee, “A Comparative Survey of Artificial Intelligence
Applications in Finance: Artificial Neural Networks, Expert System and Hybrid Intelligent
Systems”, Neural Computing and Applications, Springer-Verlag, November 2010,
Volume 19, Issue 8, pp 1165-1195.

2831

Brief Overview of HedgeSPA Core Investment Platform

The HedgeSPA platform is a core investment platform that allows institutional investors
to perform automated tasks such as asset selection, portfolio rebalancing,
decision/execution and reporting. It was cited by Diligence Vault 4 as a leading player in
the global InvestTech ecosystem in 2018. The platform serves four industry verticals:
Asset Management, Insurance, Wealth Management and Energy. For instance, the
platform can mathematically perform a vigorous calculation for insurance clients by
estimating insurance pool surplus from liability profiles and actuarial tables, such as the
following:

Problem Definition

One key step in client calculations is asset selection driven by machine learning. The
HedgeSPA Platform crawls the internet and any other available data sources to find all
relevant factors related to an asset universe (e.g. stocks in the US healthcare sector).
Typical factors may include company financials, regulatory filings, macroeconomic data,
sentiment scores from news and social media, and more specialized information such
as production and shipment data related to specific sectors, as shown in the following:

4 See https://www.linkedin.com/pulse/rise-integrated-investtech-monel-amin/.

$0

$200,000,000

$400,000,000

$600,000,000

$800,000,000

$1,000,000,000

$1,200,000,000

$1,400,000,000

$1,600,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Projected Asset Pool vs. Estimated Annual Payout

Estimated Annual Payout PV(Projected Asset Pool)

2832

Users are given the additional option to filter out irrelevant factors as they see fit. One
classic example is how inventory data is not relevant to the internet software sector.
Once the choice of factors is confirmed, the computer will try all possible combinations
of factors, all possible combination of time frames, as well as all available
methodologies in order to find the most predictive model based on the amount of
historical data specified for the training. This is analogous to how the leaps()
function in R performs an exhaustive search for the best subsets of variables in x for
predicting y in linear regression, except for the modification that instead of linear
regression, the neural network is used as a form of higher order regression, as shown in
the following:

2833

In the case of leaps(), an exhaustive search can evolve into step-wise regression.
Training and testing neural networks is a time-consuming operation as compared to
linear regression, so it is natural to find smart ways to cut down computational time.
We will discuss such time saving methods in the final section of this paper.

Proposed Solution

The neural network training and testing algorithm on the HedgeSPA platform has been
isolated and parallelized at the National Supercomputing Center in Singapore with the
following parameters:

Start of Training Period = 2
Testing Period = 4
Lag Period = 1
Number of Factors = 9
Number of Stocks = 60
Min Number of Factors = 2
Max Number of Factors = 5

2834

The Start of Training Period refers to the quarter when the neural network
starts training and the Testing Period refers to the quarter for testing. The Lag
Period represents the number of quarter(s) looking forward in order to predict the
future returns of the assets. In this test case, quarters 2 and 3 are used for training,
quarter 4 for testing, in order to predict asset returns in quarter 5. Most other input
parameters are self-explanatory.

The total number of subproblems to be solved will be:

Num_Combo =
C(Num_Factors, Min_Factors) + … + C(Num_Factors, Max_Factors)

The parallelization is done by OpenMP. 5 Since it will be too difficult to migrate the
HedgeSPA Platform to any specialized architecture such as a supercomputer, a
separate I/O Manager is written in C++ to drive the computational code. The heavy
computation is written in C and linked to the Fast Artificial Neural Network Library
(FANN) libfann.6 We did not link it to the vectorized libcudann library7 because
libcudann requires CUDA8 3.2, which is much older than the current version 9.x
supported by the supercomputer. Rebuilding libudann with a more modern version
of CUDA will be one of our future research goals.

The specific loop around the parallelized call is implemented as a for loop for each
training/testing subproblem:

#pragma omp parallel private(i_num_model)
{
#pragma omp for

for(i_num_model = num_model_start; i_num_model <
num_model_end; i_num_model++)

{
nn_factor_model_model_selection(i_num_model, r);

//fann computation
}

}

Computational Results

A total of three series of runs were performed based on 1, 2, 4, 5, 8, 12, 18 and 24
CPUs. We cut off the computation at 24 CPUs after no significant speed-up is
observed. No parallelization was done for the first set of runs. The curly brackets (in

5 See https://www.openmp.org/.
6 See https://github.com/libfann.
7 See https://sourceforge.net/projects/libcudann/.
8 See https://developer.nvidia.com/cuda-toolkit.

2835

RED) in the code above are accidentally omitted, which means that supercomputer can
still parallelizes the code. However, each processor is running the same set of code as if
each of them is running the full computation on a single CPU. This turns out to be a
good control set in that the I/O time for consolidating the results with no computation
speed-up will be correctly captured. The second set of runs is based on Static Block
Scheduling in which the tasks are handed out based on a static allocation algorithm.
The final set of runs is based on dynamic ordered scheduling in which the tasks are
handed out on a round-robin basis, but the start and completion must be ordered.
Sometimes doing so may reduce I/O contention among processors. The completion
times of these computational runs are shown in the following:

Static Block Scheduling is the best performing algorithm, but it still shows a rather
limited speedup beyond the first few processors. Dynamic Ordered Scheduling is
worse than No Parallelization given the amount of I/O overhead involved.

Lessons Learned

This problem appears to be a classic embarrassingly parallel problem since we are
feeding relatively small (by industry standards) sub-problems in a universe of US
healthcare stocks to the neural network. However, the nature of financial data on an
industrial scale is proven to create too much I/O contention and overhead to achieve
reasonable speed up under a multi-CPU architecture. While it may be possible to find

2836

a smart workaround with classic, low-level, master-to-slave message passing set up,
such a technique is usually done on a one-off basis for scientific applications. Such an
architecture is unlikely to be fail-safe if it is called a hundred times just to compare one
hundred different asset universes for a typical single-iteration institutional run. In
addition, our parallel code is written by parallel programmers with decades of related
research experience. Without using a common parallel protocol such as OpenMP, it
will be nearly impossible to keep up with the day-to-day maintenance of such parallel
code for any practical industry application.

CUDA/GPU and/or other forms of hardware acceleration reportedly give speed-ups of
50 to 100 times to train and test neural networks, without incurring the cost of very
large CPU-based clusters. Clearly, these results show that the best value added per
research dollar spent is to focus on using a few powerful GPUs on a grid architecture,
and which is in fact sold today by a number of vendors.

Future Research

This neural network training/testing problem is essentially a form of combinatoric
optimization. The goal is to either minimize time to solution or maximize the
probability of finding the best available approximation within a limited timeframe.

Due to hardware technology limitation, our future research goal is to minimize the
number of subproblems used and therefore I/O contention. This is algorithm design
driven by the need to optimize available hardware technology.

Traditional conjugate gradient style methodologies are unlikely to be effective since
there is no reasonable basis to think that any gain function from one neural network to
the next (despite a small change in factor configuration) will be continuous. Instead,
our goal is to apply graph-theoretic techniques since they are proven in successfully
solving practical combinatoric optimization problems. 9

The authors do wish to caution that this line of research does require significant
research funding to pay for access to financial data, supercomputer time, and
technologists with financial industry experience. The mathematics and detailed
empirical results from the complex financial analytics problems discussed by this paper
can be found in a forthcoming title. 10

9 N. Christofides, Graph Theory: An Algorithm Approach, Academic Press, 1975.
10 B. Lee, Investment Analytics: Theory and Practice, World Scientific, 2018.

2837

