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Abstract 
 
Using artificial neural networks to perform predictive modeling in finance has attracted  
significant media attention, and pundits are quick to speculate on their potential  
impacts on jobs and society.  With the recent advancement in algorithms and readily  
accessible, highly specialized hardware, do these algorithms actually live up to such  
promises?  Some unique features of applying artificial neural networks to finance  
include:  1) Financial datasets change almost constantly; 2) Calculation universe is  
usually quite large (e.g. a typical sub-universe of over a hundred companies, each of  
them having several hundred fundamental factors, with many different combinations of  
time lags); 3) Non-linear statistics that require multiple neurons, layers, and/or  
calibration with even more specialized techniques; 4) Risk of overfitting models that  
yield low predictive power; 5) If the computation cannot finish by a specific time  
constraint (say within 1~2 minutes, but the threshold will be dependent on the specific  
markets traded) the market may have moved by so much that any modeling results  
obtained can no longer be helpful to decision making in real-life markets.   
 
The goal of this paper is to provide a formal study on the feasible ranges where  
predictive power and computational speed-up for different techniques in predictive  
modeling in finance can be helpful to solving time-constrained algorithms in finance,  
based on the most up-to-date technology available.  The first author presented a  
similar formal study at the Russian Academy of Sciences in Moscow in 2011, while  
similar published studies were performed almost a decade ago.3  We achieve this  
objective by benchmarking computational performance on a state-of-the-art platform  
with real-life financial datasets using a 30,000-core supercomputer hosted by the  
National Supercomputing Centre (NSCC) Singapore. 

1 Founder and Chief Executive, HedgeSPA Limited, 77 Ayer Rajah Crescent #03-36, 
Singapore 139954.  The authors acknowledge generous research support by the 
National Supercomputing Centre (NSCC) Singapore. 
2 Professor Emeritus, Imperial College London, Exhibition Road, London, UK SW7 2AZ. 
3 See, for instance, A. Bahrammirzaee, “A Comparative Survey of Artificial Intelligence 
Applications in Finance: Artificial Neural Networks, Expert System and Hybrid Intelligent 
Systems”, Neural Computing and Applications, Springer-Verlag, November 2010, 
Volume 19, Issue 8, pp 1165-1195. 
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Brief Overview of HedgeSPA Core Investment Platform 
 
The HedgeSPA platform is a core investment platform that allows institutional investors 
to perform automated tasks such as asset selection, portfolio rebalancing, 
decision/execution and reporting. It was cited by Diligence Vault 4 as a leading player in 
the global InvestTech ecosystem in 2018.  The platform serves four industry verticals:  
Asset Management, Insurance, Wealth Management and Energy.  For instance, the 
platform can mathematically perform a vigorous calculation for insurance clients by 
estimating insurance pool surplus from liability profiles and actuarial tables, such as the 
following: 
 

 

Problem Definition 
 
One key step in client calculations is asset selection driven by machine learning.  The 
HedgeSPA Platform crawls the internet and any other available data sources to find all 
relevant factors related to an asset universe (e.g. stocks in the US healthcare sector).  
Typical factors may include company financials, regulatory filings, macroeconomic data, 
sentiment scores from news and social media, and more specialized information such 
as production and shipment data related to specific sectors, as shown in the following: 
 

4 See https://www.linkedin.com/pulse/rise-integrated-investtech-monel-amin/. 
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Users are given the additional option to filter out irrelevant factors as they see fit.  One 
classic example is how inventory data is not relevant to the internet software sector.  
Once the choice of factors is confirmed, the computer will try all possible combinations 
of factors, all possible combination of time frames, as well as all available 
methodologies in order to find the most predictive model based on the amount of 
historical data specified for the training.  This is analogous to how the leaps() 
function in R performs an exhaustive search for the best subsets of variables in x for 
predicting y in linear regression, except for the modification that instead of linear 
regression, the neural network is used as a form of higher order regression, as shown in 
the following: 
 

 
2833



 
 
In the case of leaps(), an exhaustive search can evolve into step-wise regression.  
Training and testing neural networks is a time-consuming operation as compared to 
linear regression, so it is natural to find smart ways to cut down computational time. 
We will discuss such time saving methods in the final section of this paper. 

Proposed Solution 
 
The neural network training and testing algorithm on the HedgeSPA platform has been 
isolated and parallelized at the National Supercomputing Center in Singapore with the 
following parameters: 
 
Start of Training Period = 2 
Testing Period = 4 
Lag Period = 1 
Number of Factors = 9  
Number of Stocks = 60 
Min Number of Factors = 2 
Max Number of Factors = 5 
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The Start of Training Period refers to the quarter when the neural network 
starts training and the Testing Period refers to the quarter for testing.  The Lag 
Period represents the number of quarter(s) looking forward in order to predict the 
future returns of the assets.  In this test case, quarters 2 and 3 are used for training, 
quarter 4 for testing, in order to predict asset returns in quarter 5.  Most other input 
parameters are self-explanatory.   
 
The total number of subproblems to be solved will be: 
 
Num_Combo =  
C(Num_Factors, Min_Factors) + … + C(Num_Factors, Max_Factors) 
 
The parallelization is done by OpenMP. 5  Since it will be too difficult to migrate the 
HedgeSPA Platform to any specialized architecture such as a supercomputer, a 
separate I/O Manager is written in C++ to drive the computational code.  The heavy 
computation is written in C and linked to the Fast Artificial Neural Network Library 
(FANN) libfann.6  We did not link it to the vectorized libcudann library7 because 
libcudann requires CUDA8 3.2, which is much older than the current version 9.x 
supported by the supercomputer.  Rebuilding libudann with a more modern version 
of CUDA will be one of our future research goals. 
 
The specific loop around the parallelized call is implemented as a for loop for each 
training/testing subproblem: 

#pragma omp parallel private(i_num_model) 
{ 
#pragma omp for  

for(i_num_model = num_model_start; i_num_model < 
num_model_end; i_num_model++) 

{ 
nn_factor_model_model_selection(i_num_model, r); 

//fann computation 
} 

}
 
Computational Results 
 
A total of three series of runs were performed based on 1, 2, 4, 5, 8, 12, 18 and 24 
CPUs.  We cut off the computation at 24 CPUs after no significant speed-up is 
observed.  No parallelization was done for the first set of runs.  The curly brackets (in 

5 See https://www.openmp.org/. 
6 See https://github.com/libfann. 
7 See https://sourceforge.net/projects/libcudann/. 
8 See https://developer.nvidia.com/cuda-toolkit. 
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RED) in the code above are accidentally omitted, which means that supercomputer can 
still parallelizes the code. However, each processor is running the same set of code as if 
each of them is running the full computation on a single CPU.  This turns out to be a 
good control set in that the I/O time for consolidating the results with no computation 
speed-up will be correctly captured.  The second set of runs is based on Static Block 
Scheduling in which the tasks are handed out based on a static allocation algorithm.  
The final set of runs is based on dynamic ordered scheduling in which the tasks are 
handed out on a round-robin basis, but the start and completion must be ordered.  
Sometimes doing so may reduce I/O contention among processors.  The completion 
times of these computational runs are shown in the following: 
 

 
 
Static Block Scheduling is the best performing algorithm, but it still shows a rather 
limited speedup beyond the first few processors.  Dynamic Ordered Scheduling is 
worse than No Parallelization given the amount of I/O overhead involved. 
 
Lessons Learned 
 
This problem appears to be a classic embarrassingly parallel problem since we are 
feeding relatively small (by industry standards) sub-problems in a universe of US 
healthcare stocks to the neural network.  However, the nature of financial data on an 
industrial scale is proven to create too much I/O contention and overhead to achieve 
reasonable speed up under a multi-CPU architecture.  While it may be possible to find 
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a smart workaround with classic, low-level, master-to-slave message passing set up, 
such a technique is usually done on a one-off basis for scientific applications.  Such an 
architecture is unlikely to be fail-safe if it is called a hundred times just to compare one 
hundred different asset universes for a typical single-iteration institutional run.  In 
addition, our parallel code is written by parallel programmers with decades of related 
research experience.  Without using a common parallel protocol such as OpenMP, it 
will be nearly impossible to keep up with the day-to-day maintenance of such parallel 
code for any practical industry application. 
 
CUDA/GPU and/or other forms of hardware acceleration reportedly give speed-ups of 
50 to 100 times to train and test neural networks, without incurring the cost of very 
large CPU-based clusters.  Clearly, these results show that the best value added per 
research dollar spent is to focus on using a few powerful GPUs on a grid architecture, 
and which is in fact sold today by a number of vendors. 
 
Future Research 
 
This neural network training/testing problem is essentially a form of combinatoric 
optimization.  The goal is to either minimize time to solution or maximize the 
probability of finding the best available approximation within a limited timeframe. 
 
Due to hardware technology limitation, our future research goal is to minimize the 
number of subproblems used and therefore I/O contention.  This is algorithm design 
driven by the need to optimize available hardware technology. 
 
Traditional conjugate gradient style methodologies are unlikely to be effective since 
there is no reasonable basis to think that any gain function from one neural network to 
the next (despite a small change in factor configuration) will be continuous.  Instead, 
our goal is to apply graph-theoretic techniques since they are proven in successfully 
solving practical combinatoric optimization problems. 9 
 
The authors do wish to caution that this line of research does require significant 
research funding to pay for access to financial data, supercomputer time, and 
technologists with financial industry experience.  The mathematics and detailed 
empirical results from the complex financial analytics problems discussed by this paper 
can be found in a forthcoming title. 10 

9 N. Christofides, Graph Theory: An Algorithm Approach, Academic Press, 1975. 
10 B. Lee, Investment Analytics: Theory and Practice, World Scientific, 2018. 
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