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Abstract 
In new diagnostic device application, the new measurement method or diagnostic device 
is often compared to a predicate device or a comparator. We need to demonstrate that the 
diagnostic performance of the subject device is substantially equivalent to the predicate’s. 
In clinical trials, both methods are often applied to the same set of patients producing 
correlated dataset. In this article, we compare various parametric and non-parametric 
methods to address the issue and discuss the analysis results through simulation studies. 
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1. Introduction 
 

Based on a dichotomous  diagnostic test output and the true disease status, a subject in a 
clinical trial can be classified into one of the four categories: true positive, true negative, 
false positive and false negative.  
 

 Disease Status 
Positive(D=1) Negative(D=0) 

Test Result 
 

Positive(X=1) True Positive False Positive 
Negative(X=0) False Negative True Negative 

 
The diagnostic performances such as sensitivity and specificity can be defined as 
conditional probabilities. For example, Sensitivity = P(X = 1 | D = 1); Specificity = P(X = 
0 | D = 0). In addition to binary results that a diagnostic test may produce, ordinal results 
or continuous results are often seen in diagnostic device outputs. In the ordinal or 
quantitative outputs, often a cut-off value will be pre-specified and applied in determining 
disease status. The sensitivity and specificity in these cases can be defined as Sensitivity(c) 
= P(X > c | D = 1); Specificity(c) = P(X ≤ c |D = 0), where c is the chosen cut-off value 
and any subject with measurement above c is diagnosed as diseased according to the test. 
 
In a new diagnostic device application, the new measurement method or diagnostic device 
is often compared to a predicate device as comparator. We need to demonstrate that the 
diagnostic performance of the subject device is substantially equivalent to the predicate’s. 
In clinical trials, both methods are often applied to the same set of patients producing 
correlated dataset. In detail, from a diseased subject i, we have both test 1 and test 2 
measurements 𝑋𝑋1,𝑖𝑖 and 𝑋𝑋2,𝑖𝑖. Similarly, for a non-diseased subject j, we have measurements 
𝑌𝑌1,𝑖𝑖  and 𝑌𝑌2,𝑖𝑖  from test 1 and test 2, respectively. It is reasonable to assume that 
measurements from different subjects are independent. However, the measurements of test 
1 and test 2 from the same subject are probably correlated. In this article, we consider the 
case that both tests have quantitative measurement outputs, and that cut-off values c1 and 
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c2 will be applied for test1 and test2 measurements respectively in medical practice. The 
clinical study’s objective is to compare the sensitivities, specificities of the two diagnostic 
tests. Since the comparison is based on the underlying correlated test data. We want to find 
an appropriate statistical method to achieve optimal power while controlling the type I error 
rate at the nominal α level. We will investigate several statistical methods, such as Z-test 
for two proportions that ignores or accounts for the correlation, Bootstrap method, 
Bayesian method, and compare their characteristics.  
 

2. Methods for Correlated Data 
 
2.1 Simulation Study Setting 
Suppose we want to conduct hypothesis test on the sensitivities comparison, with H0: 
Sensitivity1 ≤ Sensitivity2 vs. Ha: Sensitivity1 > Sensitivity2. In this article, we address the 
sensitivities comparison only, the specificities comparison is similar.  
 
We use bivariate normal model to simulate two sets of diagnostic test data for test 1 and 
test 2. We generate data from (X1, X2)T ~ N{ (0, 0)T, Σ} under H0 condition, and (X1, 
X2)T ~ N{ (0.3, 0)T, Σ} under Ha condition such that test 1 has superior sensitivity. The 
covariance matrix Σ = �1𝜌𝜌

 
 
𝜌𝜌
1� with ρ = {0, 0.25, 0.5, 0.75, 0.9}. The cutoff values are 0 for 

both tests. We simulate data with sample sizes n = 200 for both tests, and with 10,000 
simulations. Type I error rates are to be controlled at α = 0.025 level for one-sided 
hypothesis tests.  
 
2.2 Z-test Ignoring the Correlation 
First, we apply the common Z-test method for comparing two independent 
proportions. The method ignores the possible correlation between tests by 
assuming independence. The Z test statistic is 𝑍𝑍 = 𝑝𝑝�1−𝑝𝑝�2

�𝑝𝑝�(1−𝑝𝑝�)� 1
𝑛𝑛1
+ 1
𝑛𝑛2

  under H0 

condition, where 𝑝𝑝1 and 𝑝𝑝2 are sensitivities for Test 1 and Test 2. Under the 
aforementioned simulation setting, we calculate the observed type I error rate under H0 
condition and the observed power under Ha condition, respectively, with various ρ 
values.  
 

Table 1: Z-test Ignoring the Correlation: Observed type I error rate under H0 and 
Observed Power under Ha condition. 

 
ρ Type I error rate under H0 Powers under the Ha condition 
0 2.54 % 66.83 % 

0.25 1.54 % 66.91 % 
0.5 0.78 % 69.15 % 

0.75 0.17 % 72.80 % 
0.9 0.01 % 76.61 % 

 
It appears that this method tends to overestimate the variance when ρ is greater than 0, 
hence under value the test statistic. It is too conservative in type I error rate control, with 
the observed type I error rates smaller than the nominal α (0.025) as ρ becomes larger. 
Probably it is conservative in type I error control at the cost of losing power. Next, we will 
apply Bootstrap method on the same dataset and compare the achieved powers. 
 
2.3 Bootstrap Method  
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We apply the nonparametric method on the same simulation dataset, and control the type I 
error rate at α=0.025. We apply resampling technique on the subject level such that the 
underlying within-subject correlation is preserved. As shown in the following table, 
Bootstrap method achieves more power than the Z test method that ignores the correlation 
under the alternative hypothesis condition, while the observed type I error rates are around 
the nominal α level under H0 condition. Bootstrap method is computation burdensome. 
Hence, we will look again at the Z-test method in the next section and derive a closed form 
formula for the variance estimation that accounts for the correlation. 
 

Table 2: Bootstrap Method: Observed type I error rate under H0 and Observed Power 
under Ha condition. 

 
ρ Type I error rate 

under H0 
Power under Ha 

condition 
Compared to Power of 
the Z-test that ignores 

correlation 
0 2.69  % 66.42 % 66.83 % 

0.25 2.34  % 73.62 % 66.91 % 
0.5 2.37  % 83.33 % 69.15 % 

0.75 2.26  % 93.70 % 72.80 % 
0.9 2.61 % 99.09 %  76.61 % 

 
2.4 Z-test Method that Accounts for the Correlation  
We know that the variance of (𝑝𝑝1� − 𝑝𝑝2�) is 𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑝1 − �̂�𝑝2) = 𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑝1) + 𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑝2) −
2Cov(�̂�𝑝1, �̂�𝑝2). Here the empirical estimator of  𝑝𝑝1 and 𝑝𝑝2 are:  
�̂�𝑝1 = 1

𝑛𝑛
 ∑ 𝐼𝐼(𝑋𝑋1,𝑖𝑖 >  𝑐𝑐1) 𝑛𝑛

𝑖𝑖=1  and 

 �̂�𝑝2 = 1
𝑛𝑛

 ∑ 𝐼𝐼(𝑋𝑋2,𝑖𝑖 >  𝑐𝑐2) 𝑛𝑛
𝑖𝑖=1 . 

Based on our assumptions, we can derive the formula for the covariance as following,  
Cov(�̂�𝑝1, �̂�𝑝2) =  1

𝑛𝑛
(𝑆𝑆(𝑐𝑐1, 𝑐𝑐2) − 𝑝𝑝1 ·  𝑝𝑝2) , 

where function S is the joint tail distribution (survival) function S(𝑥𝑥,𝑦𝑦) of test 1 and test 2 
data, which can be estimated empirically. 
 
Since we now have the closed form formula for variance of (�̂�𝑝1 − �̂�𝑝2) that accounts for 
the correlation and can be estimated empirically, we apply the Z-test method with more 
accurate variance estimation. This method is less computation burdensome compared to 
Bootstrap method. The simulation study results are displayed in the following table. We 
can see that the observed type I error rates are controlled around α=0.025, and that it 
achieves more power compared to the Z test method that ignores the correlation. 
 

Table 3:  Z-test Method that Accounts for the Correlation: Observed type I error rate 
under H0 and Observed Power under Ha condition. 

 
ρ Type I error rate under 

H0 
Power under Ha 

condition 
Compared to Power of 

the Z-test that ignores the 
correlation 

0 2.65   % 67.51  % 66.83 % 
0.25 2.45  % 73.52  % 66.91 % 
0.5 2.86   % 82.24  % 69.15 % 

0.75 2.58   % 93.62  % 72.80 % 
0.9 2.51   % 99.35  % 76.61 % 
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2.4 Bayesian Method 
We further investigate the Bayesian method for the correlated data issue. If we assume 
the correlated test data for test 1 and test 2 follow bivariate Gaussian distribution, we can 
apply conjugate Bayesian analysis on the multivariate Gaussian distribution. We utilize a 
Normal-Inverse-Wishart conjugate prior for the multivariate normal distribution with 
unknown means and unknown covariance matrix. The following are the assumptions on 
the covariance matrix and means: 
    𝛴𝛴 ~ 𝐼𝐼𝐼𝐼𝜈𝜈0(𝛬𝛬0−1) ,  
    𝜇𝜇|𝛴𝛴 ~ 𝑁𝑁(𝜇𝜇0 ,𝛴𝛴/𝜅𝜅0) , 
    p(𝜇𝜇,𝛴𝛴) ≝  𝑁𝑁𝐼𝐼𝐼𝐼(𝜇𝜇0 , 𝜅𝜅0,𝛬𝛬0 , 𝜈𝜈0 ).  
Then we have the following posterior distributions: 
    p�𝜇𝜇,𝛴𝛴|𝐷𝐷, 𝜇𝜇0 , 𝜅𝜅0,𝛬𝛬0 , 𝜈𝜈0 � = 𝑁𝑁𝐼𝐼𝐼𝐼(𝜇𝜇𝑛𝑛 , 𝜅𝜅𝑛𝑛,𝛬𝛬𝑛𝑛 , 𝜈𝜈𝑛𝑛 ) , 
and the posterior marginals are: 
     𝛴𝛴|𝐷𝐷 ~ 𝐼𝐼𝐼𝐼(𝛬𝛬𝑛𝑛−1, 𝜈𝜈𝑛𝑛 ),   
    𝜇𝜇|𝛴𝛴,𝐷𝐷 ~ 𝑁𝑁(𝜇𝜇𝑛𝑛,   𝛴𝛴/𝜅𝜅𝑛𝑛 ) .  
 
In addition, for the problem under investigation, we apply non-informative prior 
distribution (multivariate Jeffreys prior density), i.e.: 
       𝜅𝜅0 → 0, 𝜈𝜈0 → −1, |𝛬𝛬0| → 0 
then we have, 
       𝜇𝜇𝑛𝑛 = �̅�𝑥,  𝜅𝜅𝑛𝑛 = 𝑛𝑛, 𝜈𝜈𝑛𝑛 = 𝑛𝑛 − 1, 
       𝛬𝛬𝑛𝑛 = 𝑆𝑆 = ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑇𝑇𝑖𝑖  where S is the sum of squares matrix about the 
sample mean.  
Consequently, the corresponding posterior distribution is: 
       𝛴𝛴|𝑥𝑥 ~ 𝐼𝐼𝐼𝐼(𝑆𝑆,𝑛𝑛 − 1);    𝜇𝜇|𝛴𝛴, 𝑥𝑥 ~ 𝑁𝑁(�̅�𝑥,   𝛴𝛴/𝑛𝑛).  
 
With the above close-form formula, 𝛴𝛴 and 𝜇𝜇 samples can be drawn from the posterior 
distributions. We can then apply the cutoffs to estimate 𝑝𝑝1,  𝑝𝑝2. We will reject the null 
hypothesis if the posterior probability of 𝑝𝑝1 greater than  𝑝𝑝2 is more than 97.5%. 
 
We apply the method to the same simulation data set and have the following results 
(Table 4). We see that the observed type I error rate controlled at about the nominal α and 
it achieves even more power compared with the Bootstrap method. Furthermore, since 
the predicate device might have been in the market for a long time, we might have 
reliable information about the device such as its measurement variance. We can 
incorporate the information in the Bayesian model and utilize an informative prior. 
Consequently, we might have an even more efficient test method.  
 

Table 4:  Bayesian Method: Observed type I error rate under H0 and Observed Power 
under Ha condition. 

 
ρ Type I error rate under 

H0 
Power under Ha 

condition 
Compared to Power of 
the Bootstrap method 

0    2.50 % 84.27 %  66.42 % 
0.25   2.53 % 92.81 %   73.62 % 
0.5    2.48 %  98.58 %   83.33 % 

0.75    2.56 % 99.99 %   93.70 % 
0.9    2.55 % ̴99.99 %   99.09 % 
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3. Methods for Cluster-Correlated Data 

 
3.1 Cluster-Correlated Test Data 
In addition to the correlated test data mentioned above, we sometimes see cluster-correlated 
diagnostic tests data. From the same subject, we might have multiple measurements for 
each test. For example, we can have measurements from both left and right eyes for each 
of the diagnostic tests, or have multiple measurements from multiple tissues of the same 
subject. From a diseased subject i, we have both test 1 and test 2 measurements. For test 1, 
we have multiple measurements 𝑋𝑋𝑖𝑖,1

(1),𝑋𝑋𝑖𝑖,2
(1),𝑋𝑋𝑖𝑖,3

(1) , and for test 2, multiple measurements 
𝑋𝑋𝑖𝑖,1

(2),𝑋𝑋𝑖𝑖,2
(2),𝑋𝑋𝑖𝑖,3

(2) . It is similar for a non-diseased subject j. Again, we assume that 
measurements from different subjects are independent. Measurements of test 1 and test 2 
from the same subject are probably correlated, i.e. between-test correlation. And the 
multiple measurements from the same subject of the same test are also correlated, i.e. 
within-test correlation. Cut-off values c1 and c2 were set for the test1 and test2 
measurements respectively in medical practice. 
 
3.2 Simulation Study Setting 
Similar to the correlated data study setting, we conduct hypothesis tests of H0: Sensitivity1 
≤ Sensitivity2 vs. Ha: Sensitivity1 > Sensitivity2, with type I error rate controlled at α = 
0.025. Since we have within-test and between-test correlations, we use two parameters 𝜆𝜆 
and ρ to represent the between-test and within-test correlations, respectively. Two sets of 
diagnostic test data with underlying correlation are simulated using the following 
procedure. First we draw sample vectors 𝒀𝒀1 , 𝒀𝒀2 and 𝒀𝒀3, where 𝒀𝒀𝑖𝑖 = (𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖2,  … ,𝑌𝑌𝑖𝑖𝑖𝑖)𝑇𝑇, 
𝑖𝑖 = 1,2,3;  with cluster size m. 𝒀𝒀𝑖𝑖 ~ N{ (0, …, 0)T, Σ} and  

     Σ = �
1 ⋯ 𝜌𝜌
⋮ ⋱ ⋮
𝜌𝜌 ⋯ 1

�  with ρ = {0, 0.2, 0.4, 0.6, 0.8},  𝜆𝜆={0, 0.2, 0.4, 0.6, 0.8}. 

 
Then for test 1 data, we have 𝑿𝑿(1) = 𝒀𝒀1√𝜆𝜆 + 𝒀𝒀2√1 − 𝜆𝜆 . And for test 2 data, 𝑿𝑿(2) =
𝒀𝒀1√𝜆𝜆 + 𝒀𝒀3√1 − 𝜆𝜆 . We set both cutoff values c1 and c2 at 0. In addition, we let 𝑿𝑿(1) =
𝑿𝑿(1) + 𝛿𝛿 for the alternative Ha condition, where 𝛿𝛿 = {0.1, 0.2, 0.3, 0.4}, such that test 1 is 
superior to test 2. We simulated sample sizes n = 50, cluster size m=5 for both tests with 
10,000 simulation repetition.  
 
3.3 Simulation Results 
The following table shows the clustered data simulation results under H0 condition. The 
observed type I error rates (%) for various λ (between-test) and ρ (within-test) setting, with 
nominal α=0.025. 
 

Table 5:  Observed type I error rate under H0 (%) for various λ and ρ   
 

ρ ρ = 0.2 ρ = 0.6 ρ = 0.8 

𝝀𝝀 𝜆𝜆=0 0.2 0.6 0.8 𝜆𝜆=0 0.2 0.6 0.8 𝜆𝜆=0 0.2 0.6 0.8 

Z-test  
(ignore) 

5.64 3.90 1.24 0.36 11.12 9.04 4.00 1.26 14.00 12.06 5.96 2.32 

Bootstrap 
method 

2.85 2.79 2.70 2.74 2.87 2.82 2.80 2.81 2.94 2.96 2.87 3.04 

 
627



 
Clustered data simulation results under Ha condition are presented in the following table. 
We take ρ=0.2 and λ=0.6 as an example and investigate the achieved power though 
simulation. We let 𝑿𝑿(1) = 𝑿𝑿(1) + 𝛿𝛿 under the alternative hypothesis (Ha) condition, δ = 
{0.1, 0.2, 0.3, 0.4}.  
 

Table 5:  Observed Powers at Different δ (ρ=0.2, λ=0.6)   
 

δ Z-test (ignore correlations) 
Power (%) 

Bootstrap Method 
Power (%) 

0.1 11.6 % 17.6 % 
0.2 42.9 % 53.0 % 
0.3 79.2 % 85.3 % 
0.4 96.1 % 97.4 % 

 
 

4. Summary 
We compared various methods for correlated/clustered diagnostic performance 
comparison. It appears that ignoring the between-test correlation causes conservativeness 
in type I error rate control at the cost of losing power under Ha condition. And ignoring 
within-test correlation might cause type I error rate inflation. We can apply an appropriate 
statistical method, such as a non-parametric method based on re-sampling (Bootstrap), Z-
test that accounts for the correlation, or Bayesian method incorporating reliable 
information, for this kind of problem. We can then achieve powerful statistical method 
while still control type I error rate at the nominal α level. 
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