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Abstract 

High glucose variability (GV) is associated with risk of serious hypo- and hyperglycemic 

events in patients with insulin-dependent diabetes. Accurate measurement of GV can help 

guide the best treatment for a patient. Continuous glucose monitoring systems (CGMS) 

give clinicians and patients real-time access to glucose levels over extended time frames. 

However, many patients have glucose levels above or below the CGMS sensor 

thresholds, producing censored values and challenges for accurate estimates of GV. A 

statistical technique to impute the censored values to calculate accurate GV measures is 

proposed. 

A simple replacement strategy (replacement method) and a local non-linear least squares 

regression method (imputation method) were used to impute censored data in a 

simulation study. Clinically standard methods (standard deviation (SD), mean amplitude 

of glucose excursion, and coefficient of variation) were used to calculate GV. 

Under simulation, the imputation method resulted in a root mean square error (RMSE) of 

25.2 and mean bias of 14 when calculating SD. The replacement method had an RMSE 

77.3 and mean bias of 65.2. For clinical data, the mean difference in SD was 16.1. We 

conclude that the imputation method is more accurate than the replacement method. 

Key Words: glucose variability, diabetes, continuous glucose monitoring, imputation, 

censoring 

1. Introduction

Diabetes mellitus (DM) affects more than 23 million people in the United States and 

continues to grow with increases in obesity, aging, and urbanization.
1
 This presents a 

problem of patient safety and public health. DM is associated with a variety of health 

problems, including heart disease, stroke, blindness, peripheral nerve damage, kidney 

disease, amputations, and death.
2
 Patient outcomes and safety can be improved through 

treatment and close control of blood glucose.
3,4

 

 
2007



Glucose control quantifies the average level, timing, and amplitude of the patient’s 

glucose levels and provides patients and clinicians valuable information to guide 

treatment that reduces diabetes-related risk.
5,6

 A standard metric of glucose control is 

hemoglobin A1c (HbA1c), the patient’s 3-month average glucose.
7,8

 Prospective clinical 

trials have shown a strong correlation between high HbA1c and serious health problems.
3,7

  

Shortcomings of HbA1c as a measure of glucose control are well recognized and include 

factors that affect glycation of hemoglobin and those related to red cell physiology (such 

as anemia). Further, HbA1c does not account for duration and severity of hypo- and 

hyperglycemia, pointing to the need for additional indices of diabetes control.
9
  

 

Glucose monitoring technology including continuous glucose monitoring systems 

(CGMS) has underscored the value of blood glucose variability (GV) as a measure of 

glucose control in diabetes. GV has been used in clinical and research settings and its 

relation to diabetes complications is a topic of active study.
10,11

  

 

GV profiles depend on accurate measurement of amplitude and timing of glucose levels 

which can be obtained with CGMS,
4
 which have now become a routine tool for diabetes 

care. CGMS provide a glucose reading every 1-10 minutes,
12

 allowing detailed 

assessment of blood glucose variability over time. While traditional metrics such as 

standard deviation (SD), coefficient of variation (CV) and mean amplitude of glucose 

excursion (MAGE) are well established,
7
 the best approach for estimating GV requires 

clarification and further detail.  

 

The strategies for accurately estimating GV are theoretically and empirically guided by 

consideration of CGMS sensor-related limitations. Censoring, depending on the device, 

usually occurs above 400-500 mg/dL and below 40 mg/dL.
13-19

 Censored values are 

typically reported as “HIGH” or “LOW”, respectively.
13-19

 GV derived from CGMS data 

in the presence of censoring may be biased, with the degree of bias varying with the 

degree of censoring. For example, a simple replacement method to account for censored 

values, e.g., replacing “HIGH” with 401 mg/dL or treating censored values as missing, 

produces downward biased GV metrics.  

 

While there are multiple metrics that a clinician can use to estimate GV which can 

capture the amplitude and timing of the blood glucose measurements,
4,5,20

 there are no 

studies describing methods to account for censoring of CGMS data when calculating GV.  

 

2. Methods 

 
We developed a technique that more accurately (less biased) computes GV from CGMS 

that has censored data. Three traditionally used metrics were chosen to estimate GV: SD, 

CV, and MAGE measured over a 24-hour period.
5
 We chose SD and CV based on the 

American Association of Clinical Endocrinologists recommendations to report these 

metrics when publishing CGMS data.
21

 We selected MAGE due to its common use in the 

literature.
22

 

 

We tested the hypothesis that our method would have higher accuracy than a simple 

replacement strategy when calculating GV using SD, CV, and MAGE over a 24-hour 

period in patients with DM with censored CGMS data, as measured by root mean squared 

error (RMSE) and bias. We compared GV measures using a simple replacement and our 

proposed method using simulation and actual patient CGMS data. All analyses were 

performed using R
23

 v3.4.2 on a PC running Windows 10. 
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2.1 CGMS data 

The CGMS data came from a tertiary methods paper that grew out of a more extensive 

study.
24

 The IRB approved clinical data
24

 contains glucose profiles for 18 insulin-

dependent individuals with clinically confirmed T1DM, used insulin daily, and had self-

reported at-least biweekly episodes of hypoglycemia. Participants were 21-59 years of 

age and were excluded if major confounding medical conditions were reported during the 

first study visit.
24

 24-hour glucose profiles were excluded from this analysis if a particular 

24-hour period did not contain any censored values or there was a substantial amount of 

missing data. The CGMS data were collected using a Dexcom G4 professional version 

over a four week period by the Mind & Brain Health Labs, Department of Neurological 

Sciences, University of Nebraska Medical Center. Dexcom CGMS censors data over 400 

mg/dL and under 40 mg/dL as “HIGH” and “LOW”, respectively.
17

 Furthermore, the data 

were previously processed for quality. 

 

We computed SD, CV, and MAGE for each 24-hour glucose profile using our proposed 

method and simple replacement method. We report the mean difference and 

minimum/maximum difference between the two methods for each metric. The calculated 

standard deviation from the two methods was compared using the Brown-Forsythe
25

 test. 

Percentage of standard deviations that were significantly different at alpha level 0.05 are 

reported. 

 

2.2 Simulated data 
Blood-glucose concentration and blood-insulin concentration both vary as a function of 

time.
26

 Furthermore, blood-glucose concentration and blood-insulin concentration are 

interlocked in a feedback loop, making glucose profiles oscillate.
26

 The sine wave is a 

natural choice to model periodic systems. 

  

Using half-cycle sine waves, we simulated glucose variability data. We arbitrarily 

translated the first half-cycle of the sine wave such that its initial value was 110 mg/dL. 

The amplitude and period of the half-cycle were allowed to vary randomly. The 

amplitude and period random variables were constrained based on the classification of 

glucose level, which was itself random. Probabilities for the classification, i.e., severe 

hyperglycemia, hyperglycemia, normal, etc. were determined using empirical 

observations. Glucose profiles from 37 clinical observations
24

 (see Section 6) were used 

to determine the proportion of time spent in each category. The probabilities of the 

simulation algorithm were adjusted such that the simulated data resembled the empirical
24

 

results. Additionally, the length of a half-cycle, i.e., the period was established using 

empirical data.
24

 Specifically, the minimum and maximum length of a period for a 

specific classification was the 5% and 95% quantile of the empirical data
24

 for the 

respective classification. 

  

We alternately generated a relative maximum half-cycle and relative minimum half-cycle 

of the sine wave. The generation of a half-cycle of the sine wave proceeds as follows. 

 

1. A random uniform(0, 1) is generated and used to classify the glucose level as 

severe hyperglycemia (varies based on simulation), hyperglycemia (180 – 400 

mg/dL), or normal (70 – 180 mg/dL) for half-cycles that are local maximums. 

The probability of severe hyperglycemia is 0.3, the probability of hyperglycemia 

is 0.6, and the probability of normal is 0.1. Similarly, for half-cycles that are 

relative minimums, a random uniform(0, 1) is generated and used to classify the 
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glucose level as severe hypoglycemia (varies based on simulation – 56 mg/dL), 

hypoglycemia (56 – 70 mg/dL), or normal/hyperglycemia (70 – 5 less than max 

of last value mg/dL). The probabilities for each category are 0.1 for severe 

hypoglycemia and hypoglycemia and 0.8 for normal/hyperglycemia.  

 

2. Based on the classification of the half-cycle, a random uniform(a, b) and random 

uniform(c, d) were used to generate the amplitude and period, respectively. The 

amplitude represents the maximum/minimum glucose measured in mg/dL and 

the period represents the time in minutes for this particular half-cycle. Table 2 

lists parameters based on half-cycle classification. 

 

3. The first 70% to 100% of the half-cycle of the sine wave was randomly retained. 

A random uniform(0.7, 1) was generated and multiplied by the length of the half-

cycle of the sine wave to determine the simulated values of the half-cycle of the 

sine-wave to keep. This was done to mimic a damped sine wave and allows for 

the simulation function to differ from the function being fit. 

 

4. The average rate of change was calculated. If the magnitude of the average rate 

of change was greater than 3 mg/dL/min, the procedure restarts at step 2. 

 

5. The last value of the half-cycle of the sine wave is the initial value of the next 

half-cycle of the sine wave. 

 

6. The procedure was repeated until 24 hours of glucose data were simulated. Data 

points were simulated every 5 minutes to mimic the clinical data.
24

 

 

7. Random noise was added to 70% of the simulated data. The simulated data that 

includes noise was chosen randomly using a random uniform(0,1). Random noise 

is in the form of random normal with mean 0 and standard deviation of 5. 

 

8. If no censoring occurred during the simulated 24 hours or the last value was a 

censored value, the procedure restarts from the beginning. 

 

9. Glucose levels that were > 400 mg/dL or < 40 mg/dL were censored based on 

limitations of the CGMS. The data before censoring is referred to as the full data 

set and after censoring is referred to as the censored data set. 

 

We performed thirty-three simulations with N=500 replicates (see footnote Table 2). 

Each replicate contained 24-hours of glucose levels that we simulated at 5-minute 

intervals. The simulated data includes full data and censored data. Figure 1A and Figure 

1B are two replicates of the simulation that show the simulated data before censoring and 

the imputed data. Figure 1A is a simulation where the imputed method performs well. 

Figure 1B is a simulation where the imputed method would produce biased GV 

calculations. We calculated SD, CV, and MAGE for the full data for every 24 hours of 

simulated glucose levels at the individual level. Using the imputation method and simple 

replacement method, SD, CV, and MAGE was calculated for the censored data for each 

replicate. The RMSE and mean bias were then calculated for SD, CV, and MAGE over 

all N=500 simulations. We repeated these calculations for each of the 33 simulations. We 

calculated RMSE as follows: 
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 ���� = ��
� ∑ 
�� − ���������  

 

where � is estimated using the full data, and �� is estimated using data from either the 

imputation method or simple replacement method. Mean bias is the average difference 

between the metric using the full data and either statistical technique using the censored 

data. Additionally, we report minimum/maximum bias. Lastly, three pairwise 

comparisons of the SDs were made using the Brown-Forsythe
25

 test. Comparisons were 

made on individual 24-hour simulations. P-values were adjusted using a Bonferroni 

correction. Percentage of simulations that were significantly different at the alpha 0.05 

level are reported.  

 

3. GV metrics 
 

SD: The most commonly used measure of GV is SD.
27

 GV has a linear relationship to SD 

and HbA1c especially in T1DM patients who have high HbA1c.
4,27

  

 

CV: CV is the ratio between SD and the arithmetic mean glycemic level.
4,5

 CV aims to 

correct the error between the mean glucose level and SD.
4,5

 

 

MAGE: MAGE is the mean of the daily glucose excursions that exceed the SD as 

measured over a 24 hour period.
4,5,27

 MAGE is calculated from continuously monitored 

glucose. Recent literature has noted potential weaknesses in using MAGE. Specifically, 

the area under the curve as measured by the trapezoidal method is a more accurate 

approach; assessment of MAGE is dependent on the operator; MAGE is highly correlated 

with SD, and it is unclear whether smaller excursions would still have clinical 

importance.
4,27

  

 

Other measures of GV exist
4,5,27

 that we did not consider here. 

 

4. Statistical methods 
 

4.1 Simple replacement method 
With this method, we replaced glucose levels that were censored with a fixed value. We 

set glucose levels that were censored because the reading was > 400 mg/dL to 401. 

Similarly, we replaced glucose levels that were censored because they were < 40 mg/dL 

with 39 mg/dL. 

 

4.2 Imputation method 
The imputation method relies on imputing the censored values of the CGMS and 

measuring variability using the imputed data. Censored values were imputed locally by 

fitting a sine function proposed by Ackerman and colleagues
26

 that minimized the 

squared error of the values near the censored values. We considered Ackerman’s et al.
26

 

function since a complex set of parameters can be reduced to a few and easily estimated 

using glucose data and Ackerman’s et al.
26

 model was developed from a biological 

perspective. The sine function that was fit is as follows 

 

 ���� = ������������ +  ! 
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Using the data near the censored values, parameters �, #, and � were estimated using a 

perturbation search method similar to the method proposed by Shiang and colleagues.
28

 

 ! is set to ���!�. The perturbation search method requires each parameter to be given a 

set of constraints. We imposed the following constraints when performing the 

perturbation search method. We constrained Amplitude (A) between 60 and 800 with a 

perturbation of ± 10. The damping factor (#) was limited between -0.1 and 0.1 with a 

perturbation of ± 0.001. The constraint for the period (�� varied based on the local 

region of imputation. We first calculated the period of the values near the censored values 

(described below). The minimum and maximum value of the period was then set to be 

80% or 120%, respectively, of the calculated period near the censored values. The 

perturbation of the period was ± 0.0001. 

  

Using these constraints, the perturbation search method proceeds as follows: 

 

1. Calculate initial parameter values by randomly generating parameter values from 

within the parameter constraints. 

 

2. Calculate the residual sum of squares (RSS) using the initial parameter values. 

 

3. Randomly generate parameter values �, #,  and �  from within the parameter 

constraints. 

 

4. Select each parameters’ three trial values, e.g., � + ∆*, �, and � − ∆*. Where ∆ 

is a predetermined perturbation for the specified parameter. The trial values are 

set for each parameter. 

 

5. Estimate the function values using the trial values and calculate the RSS. If the 

RSS of a trial value is less than the current RSS, set the parameter value to the 

trial value and set the current RSS to the trial RSS. Repeat for each parameter. 

 

6. Repeat steps 3-5 n times.    

 

Using the parameter estimates from the perturbation search method, we estimated the 

damped sine function used to impute censored values within the local region. The 

procedure was repeated if there were multiple local regions of censoring. 

 

To determine values near the censored values, we located the relative minimum and 

maximum values for the censored data. Censored values > 400 are always a relative 

maximum. To the left and right of these censored values should be a relative minimum. 

The values between these relative minimums are the values near the censored values. If 

there were not at least five values (i.e., 25 minutes of data) to the left and five values to 

the right of the censored values, then imputation did not occur. We fit separate quadratic 

regressions on the left side and right side of the censored values. Using the fit quadratic 

regression, we examined the slope of each data point starting with the observations 

nearest the censored values and moving away. The mean of the first two slopes nearest 

the censored values was the reference slope. We excluded subsequent observations once 

a slope differed by at least 1 SD (calculated using the quadratic regression). Due to the 

small amount of time an individual glucose level is ≤ 40 mg/dL, these censored values 

were not imputed. 
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5. Simulation Results 
 

The range of the upper bound of the amplitude caused the most variation in the results. 

There appears to be a very minimal difference in the results with different lower bounds 

of the amplitude. Therefore, results discussed will be based on the eight simulations 

where the lower bound of the amplitude was set to 25 mg/dL. We will limit the 

discussion to the estimation of SD. Results for CV and MAGE are similar since the 

calculation of CV and MAGE depend on SD (see Table 1). For all results see Table 3, 

Table 4, and Table 5.  

 

As the upper bound of the amplitude increased, so did the Type I error rate, i.e., percent 

of the SDs different from the actual SDs as determined by the Brown-Forsythe test, 

regardless of the method (Figure 2A). The minimum Type I error rate was 0, and the 

maximum was 0.284 under the imputation method. Compared to a minimum Type I error 

rate of 0 and a maximum rate of 0.994 under the replacement method. When examining 

the RMSE of the two methods, a similar trend occurs. Higher amplitudes result in higher 

RMSE regardless of the method (Figure 2B). The minimum and maximum RMSE under 

the imputation method was 2.25 and 47.69, respectively. Compared to 3.89 and 109.03, 

respectively, under the replacement method. The actual mean SD for the respective 

RMSE were 101.64 and 215.21. The mean bias of the imputation method stayed close to 

zero with a slight trend towards over-estimation. As amplitude increased, the replacement 

method further under-estimated the SD (Figure 2C). The mean bias (min, max) at an 

amplitude of 800 was -1.1 (-137.3, 177.7) and -108.0 (-138.1, -0.04) when calculating SD 

using the imputation and replacement method, respectively. 

 

Under the simulation where the range of values was 25 to 800 mg/dL inclusive, the 

imputation method had a Type I error rate of 0.124, and the replacement method had a 

Type I error rate of 0.626 when calculating SD. The actual mean SD was 147.0. The 

imputation method had an RMSE of 26.4 and mean bias (min, max) of 0.67 (-102.1, 

166.7). While the replacement method had an RMSE of 55.1 and mean bias (min, max) 

of -45.0 (-129.3, 0). 

 

6. Application 

 
We excluded seven subjects for the following two reasons.  The first is if glucose data for 

a 24-hour period contained five or fewer censored values (i.e., glucose higher than 400 

mg/dL) or 24-hour periods where censoring occurred at the start or end of the 24-hour 

period were excluded. Additionally, we excluded 24-hour periods with substantial 

amounts of missing data. There were a total of 37 out of 542, 24-hour glucose 

measurements for the 11 individuals. The median number of 24-hour glucose 

measurements periods from a participant was 2 with one subject contributing 12 glucose 

measurements. Computing SD using the imputation and replacement method resulted in 

24.3% of the calculations being significantly different. The mean SD for the 37 profiles 

was 114.5 and 97.8 for the imputation method and replacement method, respectively. The 

average difference in standard deviation between the two methods was 16.8 with a 

maximum difference of 109.5. The mean CV and MAGE under the imputation method 

was 0.45 and 268.3, respectively. While the replacement method produced a mean CV of 

0.41 and mean MAGE of 207.1 for the 37 profiles. The mean difference when calculating 

CV and MAGE using the two methods was 0.04 and 61.5, respectively. The maximum 
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difference between the two methods when calculating CV was 0.2 and 397.0 when 

calculating MAGE. 

 

7. Validation 

 
The clinical data

24
 with alternative inclusion criteria were used to validate the imputation 

method. 24-hour observations were included if that observation did not contain censored 

values (i.e., glucose > 400 mg/dL) and the 24-hour observation contained glucose 

readings between 350 to 400 mg/dL. We artificially censored the data at 300 mg/dL, i.e., 

we set glucose readings greater than 300 mg/dL to 301 mg/dL. Furthermore, 24-hour 

observations were excluded if censoring occurred at the beginning or end of a 24-hour 

observation, there was substantial missing data, or there were too few observations on 

either side of the censored data (see Section 4.2). The imputation method and simple 

replacement method were compared using the methods described in Section 2.2. 

 

There were a total of 38, 24-hour glucose measurements for the 16 individuals. The 

median number of 24-hour glucose measurements periods from a participant was 2 with a 

maximum contribution of 5. The actual mean SD for all 38, 24-hour observations was 

75.6. The imputation method had an RMSE of 5.5 and mean bias (min, max) of 1.62 (-

7.8, 13.9) when calculating SD. 0.0% of SDs calculated using the imputation method 

were significantly different from the true SD. Whereas the replacement method had an 

RMSE 10.0 and mean bias (min, max) of -9.4 (-17.4, -3.1), and 21.1% of the sample SDs 

were significantly different than the actual SDs. Directly comparing the calculation of SD 

under the imputation and replacement method resulted in 26.3% of the estimates being 

significantly different. 

 

Similar results presented under simulation when calculating CV and MAGE under the 

two methods. The average actual CV under all observations was 0.38, and the average 

true MAGE was 153.2. Under the imputation method, the mean bias (min, max) was 0.01 

(-0.04, 0.05) and 43.7 (-74.5, 161.0) for CV and MAGE, respectively. The mean bias 

(min, max) using the replacement method was -0.04 (-0.07, -0.01) and -25.2 (-95.5, 21.8) 

for CV and MAGE, respectively. 

 

8. Discussion 

 
Through simulation and validation, we showed that the imputation method had a lower 

RMSE when calculating GV as estimated by SD, CV, and MAGE. Additionally, the 

mean bias of the imputation method was consistently smaller and nearer to zero than the 

replacement method. The replacement method under-estimated GV using the three 

metrics. The under-estimation became more pronounced as the amplitude increased and 

the replacement method never over-estimated GV using SD or CV as a metric. The 

imputation method also had better control over the Type I error rate compared to the 

replacement method. However, the imputation method is not without its limitations. The 

Type I error rate did not stay below 0.05 which tends to be the acceptable Type I error 

rate in the medical community; the imputation method would over-estimate GV on 

occasion. A possible explanation for the increased Type I error rate and over-estimation 

is the “behavior” of the glucose in the censored region. The imputation method expects a 

smooth hill (see Figure 1A). However, this does not always occur. The glucose could 

plateau or be bimodal, trimodal, etc. in the censored region which the imputation method 

is unable to detect (see Figure 1B). This would cause an over-estimation of the GV, 
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thereby increasing the RMSE and Type I error rate. This problem becomes exacerbated 

as the amplitude increases. 

 

Overall, the imputation method was shown to be a more accurate estimate of GV as 

measured using SD, CV, and MAGE. We recommend plotting the original censored data 

and imputed data as a visual check. Additionally, when reporting GV using SD, CV, or 

MAGE we recommend specifying both the replacement method and imputation method.     
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Table 1: Formulas for SD, MAGE, and CV 

 

Standard deviation �- = 1
� .�/� − 0��

1

���
 

where n is number of observations, /�  is an observed 

value, and 0 is the mean of the observed values 

CV 23 = �-/0 

where sd is the standard deviation and 0 is the mean 

Mage 567� = 1
5 . 8�

9:;� <=
 

where 8� = 8�6> − �6-�?  and m is the number of 8�′� 

that exceed 1 sd 
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Table 2: Parameter values of half-cycle sine waves 

 

 Amplitude Period 

Classification a
1
 b

1
 c d 

Severe 

Hyperglycemia 

varies
2,4

 varies
2,4

 83 674 

Hyperglycemia 180 400 25 323 

Normal 70 180 25 195 

Severe 

Hypoglycemia 

varies
3,4

 56 59 533 

Hypoglycemia 56 70 33 436 

Normal/ 

Hyperglycemia 

70 5 less than previous 

max 

20 259 

 

1. a represents the lower bound of the maximum/minimum of the half-cycle and b 

represents the upper bound of the maximum/minimum half-cycle. 

 

2. 8 simulations of N=500 replicates each were performed with 
�6, A� = �401, 450�, �451, 500�, … , �751, 800�. 

 

3. 6 = 40, 35, 30, 25 

 

4. 32 simulations of N=500 replicates each were performed using all possible 

combinations of (1) and (2). 1 simulation was performed were serve high was allowed to 

vary between 401 and 800 and serve low was allowed to vary between 25 and 56. 
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Table 3: Simulation results for SD 

Lower bound; 

upper bound 

(mg/dL) 

Actual 

mean 

SD 

Impute 

mean 

SD 

Replace-

ment 

mean SD 

RMSE 

Impute 

RMSE 

Replace-

ment 

Imputation bias             

(min, max) 

Replacement bias          

(min, max) 

Actual v. 

Imputate
1
 

Actual v. 

Replace-

ment
1
 

Impute v. 

Replace-

ment
1
 

40; 401-450 100.45 100.29 97.31 2.26 3.85 -0.16 (-8.41, 17.38) -3.15 (-11.51, 0) 0.002 0.004 0.004 

40; 451-500 114.97 115.31 101.62 6.85 14.11 0.34 (-20.89, 61.74) -13.35 (-25.98, 0) 0.034 0.246 0.242 

40; 501-550 128.66 129.62 102.76 17.8 27.02 0.96 (-33.71, 227.72) -25.91 (-46.33, 0) 0.086 0.574 0.548 

40; 551-600 142.79 145.13 102.57 26.33 41.38 2.34 (-59.96, 211.1) -40.22 (-73.29, -0.02) 0.164 0.880 0.780 

40; 601-650 160.61 164.05 104.14 30.22 57.81 3.43 (-73.75, 316.6) -56.47 (-83.37, -0.01) 0.170 0.980 0.912 

40; 651-700 177.18 181.24 104.48 39.79 73.95 4.06 (-96.1, 243.23) -72.71 (-100.78, -0.01) 0.246 0.992 0.92 

40; 701-750 194.05 192.44 105.53 42.5 89.75 -1.6 (-113.53, 223.13) -88.52 (-120.7, -0.01) 0.248 0.992 0.906 

40; 751-800 211.11 212.99 104.17 47.62 108.57 1.88 (-132.47, 211.99) -106.95 (-137.38, -0.01) 0.274 0.984 0.918 

35; 401-450 100.90 100.81 97.79 2.24 3.81 -0.09 (-7.23, 15.01) -3.12 (-9.62, 0) 0.000 0.000 0.004 

35; 451-500 115.16 116.43 101.67 7.65 14.35 1.26 (-27.83, 51.64) -13.49 (-28.13, -0.01) 0.030 0.248 0.246 

35; 501-550 128.29 128.37 102.09 15.47 27.4 0.09 (-42.32, 202.02) -26.19 (-42.65, 0) 0.104 0.596 0.548 

35; 551-600 144.46 147.79 103.26 27.31 42.52 3.34 (-54.96, 206.59) -41.19 (-64.16, -0.01) 0.176 0.888 0.798 

35; 601-650 160.14 164.99 104.40 32.57 57.21 4.84 (-74.33, 240.49) -55.74 (-82.97, -0.01) 0.210 0.982 0.910 

35; 651-700 176.98 179.91 104.39 35.51 74.02 2.94 (-94.8, 178.32) -72.59 (-101.18, -0.01) 0.234 0.988 0.926 

35; 701-750 191.87 192.92 103.30 40.97 90.05 1.04 (-117.69, 169.62) -88.58 (-117.69, 0) 0.248 0.986 0.908 

35; 751-800 210.36 211.44 104.65 47.01 107.2 1.09 (-128.13, 257.16) -105.71 (-138.23, 0) 0.276 0.986 0.918 

30; 401-450 99.98 99.89 96.57 2.74 4.11 -0.08 (-9.02, 21.91) -3.41 (-10.88, -0.01) 0.002 0.002 0.010 

30; 451-500 114.72 115.70 101.30 7.29 14.24 0.98 (-21.08, 74.81) -13.42 (-25.42, -0.01) 0.034 0.256 0.260 

30; 501-550 129.40 130.47 103.43 17.65 27.02 1.08 (-43.51, 227.04) -25.97 (-44.59, 0) 0.082 0.622 0.538 

30; 551-600 145.06 147.49 104.15 26.07 42.13 2.42 (-59.18, 267.29) -40.91 (-63.88, 0) 0.158 0.872 0.796 

30; 601-650 160.47 165.23 104.07 31.57 57.62 4.75 (-78.95, 293.05) -56.4 (-82.84, 0) 0.194 0.990 0.930 

30; 651-700 176.55 178.06 104.78 33.8 73.03 1.5 (-90.68, 199.13) -71.77 (-100.27, 0) 0.200 0.990 0.920 

30; 701-750 192.60 192.23 105.30 41.66 89.05 

-0.37 (-117.02, 

224.13) -87.3 (-120.42, -0.01) 0.256 0.980 0.894 

30; 751-800 210.59 207.83 105.49 45.84 106.97 

-2.76 (-140.02, 

220.75) -105.11 (-142.45, -0.01) 0.284 0.978 0.902 

25; 401-450 101.64 101.61 98.45 2.25 3.89 -0.03 (-7, 15.5) -3.19 (-8.96, 0) 0.000 0.000 0.002 

25; 451-500 114.27 115.46 100.76 10.11 14.38 1.19 (-19, 172.15) -13.51 (-24.76, 0) 0.022 0.250 0.264 

25; 501-550 128.82 130.69 102.24 16.66 27.43 1.87 (-37.97, 217.28) -26.58 (-44.63, 0) 0.084 0.634 0.594 

25; 551-600 144.16 145.52 103.68 20.99 41.89 1.36 (-61.74, 195.03) -40.48 (-61.74, 0) 0.160 0.894 0.804 

25; 601-650 161.61 163.93 105.77 31.54 57.24 2.31 (-77.73, 213.97) -55.85 (-80.59, 0) 0.216 0.976 0.886 

25; 651-700 177.75 181.13 105.13 36.5 73.85 3.39 (-95.81, 207.44) -72.61 (-101.59, -0.01) 0.228 0.992 0.914 

25; 701-750 194.98 195.83 106.38 43.44 89.92 0.85 (-106.97, 201.01) -88.6 (-119.56, -0.01) 0.266 0.990 0.896 
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25; 751-800 215.21 214.12 107.25 47.69 109.03 -1.1 (-137.3, 177.65) -107.96 (-138.06, -0.04) 0.284 0.994 0.914 

25; 401-800 147.01 147.69 102.07 26.43 55.14 0.67 (-102.09, 166.69) -44.95 (-129.31, 0) 0.124 0.682 0.626 

 

1. Percent different using Brown-Forsythe test and a Bonferroni correction. 
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Table 4: Simulation results for CV 

Lower bound; 

upper bound 

(mg/dL) 

Actual 

mean 

CV 

Impute 

mean 

CV 

Replacement 

mean CV 

RMSE 

Impute 

RMSE 

Replacement 

Impute bias             

(min, max) 

Replacement bias          

(min, max) 

40; 401-450 0.41 0.41 0.41 0.01 0.01 0 (-0.02, 0.04) -0.01 (-0.02, 0) 

40; 451-500 0.45 0.45 0.41 0.02 0.04 0 (-0.05, 0.12) -0.04 (-0.07, 0) 

40; 501-550 0.47 0.48 0.41 0.03 0.07 0 (-0.09, 0.33) -0.07 (-0.11, 0) 

40; 551-600 0.50 0.50 0.40 0.04 0.1 0 (-0.14, 0.26) -0.1 (-0.14, 0) 

40; 601-650 0.52 0.52 0.39 0.05 0.13 0 (-0.17, 0.22) -0.13 (-0.18, 0) 

40; 651-700 0.54 0.55 0.39 0.06 0.16 0 (-0.21, 0.23) -0.16 (-0.21, 0) 

40; 701-750 0.57 0.56 0.39 0.07 0.18 -0.01 (-0.23, 0.18) -0.18 (-0.25, 0) 

40; 751-800 0.58 0.58 0.38 0.07 0.21 0 (-0.25, 0.17) -0.21 (-0.28, 0) 

35; 401-450 0.42 0.42 0.41 0.01 0.01 0 (-0.02, 0.04) -0.01 (-0.03, 0) 

35; 451-500 0.45 0.45 0.41 0.02 0.04 0 (-0.06, 0.1) -0.04 (-0.07, 0) 

35; 501-550 0.47 0.47 0.40 0.03 0.07 0 (-0.08, 0.2) -0.07 (-0.1, 0) 

35; 551-600 0.49 0.50 0.39 0.04 0.1 0 (-0.13, 0.24) -0.1 (-0.14, 0) 

35; 601-650 0.52 0.53 0.39 0.05 0.13 0.01 (-0.16, 0.2) -0.13 (-0.19, 0) 

35; 651-700 0.54 0.54 0.38 0.05 0.16 0 (-0.18, 0.2) -0.15 (-0.21, 0) 

35; 701-750 0.56 0.56 0.38 0.06 0.19 0 (-0.22, 0.17) -0.18 (-0.24, 0) 

35; 751-800 0.58 0.58 0.38 0.07 0.21 0 (-0.24, 0.23) -0.21 (-0.28, 0) 

30; 401-450 0.41 0.41 0.40 0.01 0.01 0 (-0.02, 0.05) -0.01 (-0.03, 0) 

30; 451-500 0.45 0.45 0.41 0.02 0.04 0 (-0.05, 0.11) -0.04 (-0.07, 0) 

30; 501-550 0.47 0.48 0.41 0.03 0.07 0 (-0.08, 0.28) -0.07 (-0.11, 0) 

30; 551-600 0.50 0.50 0.40 0.04 0.1 0 (-0.12, 0.23) -0.1 (-0.15, 0) 

30; 601-650 0.52 0.53 0.39 0.05 0.13 0.01 (-0.16, 0.21) -0.13 (-0.18, 0) 

30; 651-700 0.55 0.54 0.39 0.06 0.16 0 (-0.19, 0.22) -0.16 (-0.22, 0) 

30; 701-750 0.57 0.56 0.39 0.07 0.19 -0.01 (-0.26, 0.17) -0.18 (-0.26, 0) 

30; 751-800 0.59 0.58 0.38 0.07 0.21 -0.01 (-0.26, 0.17) -0.2 (-0.28, 0) 

25; 401-450 0.43 0.43 0.42 0.01 0.01 0 (-0.02, 0.05) -0.01 (-0.03, 0) 

25; 451-500 0.45 0.45 0.41 0.02 0.04 0 (-0.06, 0.23) -0.04 (-0.07, 0) 

25; 501-550 0.47 0.47 0.40 0.03 0.07 0 (-0.11, 0.22) -0.07 (-0.11, 0) 

25; 551-600 0.49 0.50 0.40 0.04 0.1 0 (-0.11, 0.2) -0.1 (-0.15, 0) 

25; 601-650 0.53 0.53 0.40 0.05 0.13 0 (-0.18, 0.21) -0.13 (-0.18, 0) 

25; 651-700 0.55 0.55 0.39 0.06 0.16 0 (-0.18, 0.2) -0.16 (-0.22, 0) 

25; 701-750 0.57 0.57 0.39 0.07 0.18 -0.01 (-0.22, 0.21) -0.18 (-0.25, 0) 

25; 751-800 0.60 0.59 0.39 0.07 0.21 -0.01 (-0.25, 0.18) -0.21 (-0.28, 0) 
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25; 401-800 0.50 0.50 0.40 0.05 0.12 0 (-0.2, 0.19) -0.1 (-0.28, 0) 
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Table 5: Simulation results for MAGE 

Lower bound; 

upper bound 

(mg/dL) 

Actual 

mean 

MAGE 

Impute 

mean 

MAGE 

Replacement 

mean 

MAGE 

RMSE 

Impute 

RMSE 

Replacement 

Impute bias                         

(min, max) 

Replacement bias                       

(min, max) 

40; 401-450 243.03 241.19 229.35 11.74 20.94 -1.84 (-123.44, 89.38) -13.68 (-152.16, 56.53) 

40; 451-500 273.78 272.17 230.96 23.35 51.83 -1.61 (-151.65, 156.06) -42.82 (-201.22, 43.83) 

40; 501-550 307.12 309.57 230.17 57.95 92.48 2.45 (-218.95, 722.46) -76.95 (-304.36, 25.5) 

40; 551-600 351.08 358.78 231.59 83.89 138.22 7.7 (-272.9, 719.84) -119.49 (-355.93, 16.88) 

40; 601-650 392.24 405.08 234.37 101.55 177.76 12.84 (-315.63, 1011.31) -157.88 (-417.54, -0.11) 

40; 651-700 442.28 457.90 233.59 129.41 230.45 15.63 (-360.26, 901.67) -208.68 (-466.08, -0.18) 

40; 701-750 481.08 482.40 237.35 144.39 267.56 1.32 (-452.63, 773.52) -243.72 (-503.06, -0.28) 

40; 751-800 553.73 562.03 235.47 156.8 343.2 8.3 (-513.9, 688.01) -318.25 (-530.25, -0.17) 

35; 401-450 242.29 240.59 228.78 8.83 19.24 -1.7 (-49.39, 68.72) -13.51 (-146.09, 44.2) 

35; 451-500 276.18 278.16 231.92 24.23 54.27 1.98 (-195.26, 165.67) -44.26 (-223.93, 39.64) 

35; 501-550 311.64 310.80 234.50 46.43 91.56 -0.84 (-234.18, 529.98) -77.14 (-276.89, 1.52) 

35; 551-600 349.86 360.90 231.98 89.98 136.65 11.04 (-326.58, 709.72) -117.88 (-326.58, 0) 

35; 601-650 396.15 411.04 233.98 113.98 184 14.89 (-366.4, 714.91) -162.16 (-384.84, 11.05) 

35; 651-700 443.66 458.23 234.95 118.96 230.29 14.57 (-380.49, 637.59) -208.71 (-441.54, 0) 

35; 701-750 495.65 500.32 234.66 144.59 286.2 4.67 (-476.77, 710.36) -261 (-484.33, -0.15) 

35; 751-800 548.06 557.61 236.32 163.11 338.67 9.56 (-494.71, 889.68) -311.74 (-545.88, -0.03) 

30; 401-450 243.28 241.31 228.79 9.49 19.77 -1.97 (-50.34, 58.67) -14.49 (-99.96, 46.99) 

30; 451-500 272.49 274.84 229.87 27.97 51.93 2.36 (-219.05, 238.49) -42.61 (-219.05, 44.2) 

30; 501-550 311.85 312.71 233.59 60.37 92.91 0.86 (-279.97, 732.51) -78.26 (-279.97, 13.64) 

30; 551-600 351.94 361.29 232.59 85.62 137.12 9.35 (-305.17, 752.24) -119.35 (-348.55, 36.36) 

30; 601-650 389.79 409.86 232.97 115.13 176.08 20.07 (-370.47, 973.18) -156.82 (-399.9, -0.02) 

30; 651-700 441.31 451.33 233.36 115.8 230.1 10.02 (-418.32, 712.07) -207.95 (-426.12, 0) 

30; 701-750 494.58 496.98 235.25 145.9 284.57 2.4 (-497.72, 552.79) -259.33 (-497.72, -0.36) 

30; 751-800 549.56 539.00 237.90 153.16 337.35 -10.55 (-485.84, 771.39) -311.66 (-540.66, -0.17) 

25; 401-450 244.24 243.24 230.10 9.32 19.16 -1 (-26.52, 74.2) -14.14 (-113.07, 14.22) 

25; 451-500 270.74 273.97 229.20 34.35 50.21 3.23 (-133.09, 521.79) -41.54 (-201.82, 30.5) 

25; 501-550 308.56 312.65 228.92 52.94 92.43 4.09 (-199.69, 591.12) -79.63 (-263.01, 30.17) 

25; 551-600 349.92 355.20 236.00 69.84 130.89 5.28 (-247.23, 723.61) -113.92 (-336.37, -0.1) 

25; 601-650 389.11 399.29 237.40 103.41 171.27 10.19 (-309.13, 742.04) -151.7 (-392.54, -0.26) 

25; 651-700 446.38 460.20 235.14 125.59 233.58 13.83 (-370.02, 723.13) -211.23 (-450.11, -0.19) 

25; 701-750 497.28 501.70 240.21 153.4 280.92 4.42 (-490.07, 758.69) -257.07 (-490.07, 0) 

25; 751-800 560.87 556.25 240.35 165.54 343.4 -4.62 (-513.65, 679.79) -320.52 (-539.42, -1.12) 
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25; 401-800 358.86 360.90 233.17 90.31 165.79 2.04 (-399.14, 606.4) -125.7 (-507.25, 93.88) 
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Figure 1: Sample simulated data 

 

A. Simulation of “smooth” hill 
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B. Simulation of plateau  
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Figure 2: Type I error rate, RMSE, and mean bias of Imputation and Replacement method. 
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