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Abstract

This paper presents a new algorithm using rational arithmetic and conversions to calculate exact

solutions to any linear system, including inconsistent systems (a null solution) and consistent yet

under- and over-specified systems. The algorithm is presented as a MAPLE literate program for

ease of implementation in an arbitrary analytical processing environment.
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1. Introduction

The accuracy and precision of statistical calculations is greatly enhanced by the strict use

of rational arithmetic and conversions, i.e., expressing all data as rational numbers and

expressing all calculations in terms of the addition, subtraction, multiplication, and division

of the data. These conventions eliminate all round-off, truncation, and estimation error

from statistical calculations, which is a significant improvement over the use of floating

point representations. In fact, while only a (relatively) few real numbers may be expressed

exactly in any floating point representation (those of the form
M
∑

k=−N

akb
k for finite positive

integers N and M , with ak ∈ {0, 1, 2, . . . , b− 1}, and b ∈ Z
+ ≥ 2), rational real numbers

may be exactly expressed as the ratio of two integers, and the sum, difference, product,

and quotient of any such rational number is again a rational number with no calculation

error whatsoever. Furthermore, rational numbers include those with finite and infinite yet

repeating decimal representations (see Appendix 2). The same cannot be said about floating

point numbers nor their arithmetic results, whose error dynamics generally become highly

complicated very quickly.

If statistical calculations were limited to arithmetic operations of rational data, the use

of rational arithmetic and conversions would be the end of the story – and many algo-

rithms may be expressed this way, including the calculation of a matrix inverse (consisting

of the repeated use of row/column reductions without the need for compensating for in-

conveniences such as ill-conditioned cases, pivoting, dimension exchanges, and the like

to compensate for rampant calculation error). However, statistical calculations also involve

non-arithmetic operations, such as the square root, e.g., when calculating a sample standard

deviation, and such as the exponential, e.g., when calculating a standard normal percentile,

and such as dealing with irrational numbers, e.g., when π is involved. Therefore, one might

ask: How might rational arithmetic and conversions be extended to the use of irrational

data, yet retain the benefits of exact results under common statistical operations, including

arithmetic, square root, and exponential operations?

This paper presents the data structures, operations, and analytical methods required to

make exact statistical calculations with any kind of numerical data through the foundation

of rational arithmetic and conversions. It is the responsibility of the implementing analyst

to express the data and the calculation algorithm steps in as rudimentary form as possible,

∗PQI Consulting, P. O. Box 425616, Cambridge, MA, USA 02142-0012 – info@pqic.com

 
855



i.e., using rational-only data and using only rational arithmetic and conversion operations,

to minimize the complexity of the statistical calculation scheme documented herein.

2. Trirational Numbers

For n ≥ 1, let a0
b0

be a rational number, In be the Index Set, a vector of n-many unequal

irrational numbers {ci}, and Vn be the Coefficient Set, a vector of n-many rational numbers
{

ai
bi

}

. Then

x =
a0

b0
+

a1

b1
c1 + · · ·+ an

bn
cn

is called a Trirational Number Of Order n in that it has three parts: (1) A Purely Rational

Part R (x) = a0
b0

, (2) a Purely Irrational Part I (x) = a1
b1
c1 + · · · + an

bn
cn, and (3) a

Marker Matrix M, which describe the multiplicative relationships between the elements of

the index set (see also Sections 2.2 and 3). Collectively these sets, parts, and markers are

called the Rational Calculation Framework (or simply “The Framework”) for a particular

statistical calculation.

Two trirational numbers x and y are said to have the same Order if the size of the index

set of x is the same as the size of the index set for y, except possibly for the ordering of the

elements.

2.1 Addition/Subtraction

Two trirational numbers of the same order are added/subtracted as follows. If x = a0
b0

+
a1
b1
c1 + · · ·+ an

bn
cn and y =

a′0
b′0

+
a′1
b′1
c1 + · · ·+ a′n

b′n
cn, then

x± y = r

(

a0

b0
± a′0

b′0

)

+

(

r

(

a1

b1
± a′1

b′1

)

c1 + · · ·+ r

(

an

bn
± a′n

b′n

)

cn

)

where r (· · · ) denotes the reduced form of the rational number, i.e., all common factors

have been divided out of the numerator and denominator.

Note the order of x+ y is always the common order of x and y.

Two trirational number of different orders are added/subtracted as follows. If x =
a0
b0

+ a1
b1
c1+ · · ·+ an

bn
cn and y =

a′0
b′0

+
a′1
b′1
c1+ · · ·+ a′n

b′n
cn+

a′n+1

b′n+1
cn+1+ · · ·+ a′m

b′m
cm, where

m > n and
a′i
b′i

= 0
1 when ci is not in the index set I of y, then

x±y = r

(

a0

b0
± a′0

b′0

)

+

(

r

(

a1

b1
± a′1

b′1

)

c1 + · · ·+ r

(

an

bn
± a′n

b′n

)

cn ± a′n+1

b′n+1

cn+1 ± · · · ± a′m
b′m

cm

)

Note the order of x± y is always less than or equal to the maximum of the orders of x

and y, depending on whether any of the ai
bi
± a′i

b′i
is zero.

2.2 Multiplication

Multiplication is the most complicated arithmetic operation for trirational numbers since

the product of two irrational numbers may or may not be irrational. The marker matrix

expresses these product results; if c1 is the raw entry (the element in the first column)

and c2 is the column entry (the element in the first row), then the matrix element at their

intersection signals the rationality/irrationality of the product.
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2.2.1 Order 1 With The Same Irrational Part

Two trirational numbers of order 1 with the same irrational part are multiplied as follows.

If x = a0
b0

+ a1
b1
c1 and y =

a′0
b′0

+
a′1
b′1
c1, and c21 is rational,1 then

xy = r

(

a0

b0

a′0
b′0

+
a1

b1

a′1
b′1

c21

)

+

(

r

(

a1

b1

a′0
b′0

+
a0

b0

a′1
b′1

)

c1

)

and if c21 is irrational, then for c2 = c21, we have

xy = r

(

a0

b0

a′0
b′0

)

+

(

r

(

a1

b1

a′0
b′0

+
a0

b0

a′1
b′1

)

c1 + r

(

a1

b1

a′1
b′1

)

c2

)

2.2.2 Order 1 With Different Irrational Parts

Two trirational numbers of order 1 with different irrational parts are multiplied as follows.

If x = a0
b0

+ a1
b1
c1 and y =

a′0
b′0

+
a′1
b′1
c2, and c1c2 is rational,2 then

xy = r

(

a0

b0

a′0
b′0

+ r

(

a1

b1

a′1
b′1

)

c1c2

)

+

(

r

(

a′0
b′0

a1

b1

)

c1 + r

(

a0

b0

a′1
b′1

)

c2

)

and if c1c2 is irrational, then we have

xy = r

(

a0

b0

a′0
b′0

)

+

(

r

(

a′0
b′0

a1

b1

)

c1 + r

(

a0

b0

a′1
b′1

)

c2 + r

(

a1

b1

a′1
b′1

)

c1c2

)

2.2.3 Higher Orders

Two trirational numbers of order nx ≥ 2 and ny ≥ 2 are multiplied as follows. If

x =
ax,0

bx,0
+

nx
∑

i=1

ax,i

bx,i
ci

and

y =
ay,0

by,0
+

ny
∑

j=1

ay,j

by,j
cj

where {ci} and {cj} come from the collection of all such irrational numbers {ck}, then for

each i from x let

Mx (i) = {j ≥ 1 : M (i, j) = 1}
for the marker matrix M, where i is the index for ci. Then Mx (i) is the set of {cj} from

y where cicj is rational. We have3

M′
x (i) = {j ≥ 1 : M (i, j) ≤ 0}

Then

xy =



R (x)R (y) +

nx
∑

i=1

ny
∑

j∈Mx(i)

ax,i

bx,i

ay,j

by,j
cicj



+





ay,0

by,0
I (x) +

ax,0

bx,0
I (y) +

nx
∑

i=1

ny
∑

j∈M′
x(i)

ax,i

bx,i

ay,j

by,j
cicj





1The rationality of c21 is signaled in the marker matrix entry at the intersection of where c1 is in the row first

element and in the column first element.
2See the marker matrix entry at the intersection where c1 and c2 are the row/column first elements, respec-

tively.
3An entry of −1 in the marker matrix to be assumed irrational until indicated otherwise in the marker

matrix, i.e., these terms may be continued in marker matrix manipulations until a particular marker matrix

shows it should be treated as rational.
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2.3 Reciprocal

The reciprocal is used to implement division as the multiplication of a trirational numerator

number by the reciprocal of the trirational denominator number.

2.3.1 Order 1

The reciprocal of a non-zero trirational number of order 1 is calculated as follows. If

x = a0
b0

+ a1
b1
c1, where a0 6= 0, then

1
a0
b0

+ a1
b1
c1

=
b0

a0
− b0

a0

a1

b1

c1
a0
b0

+ a1
b1
c1

since
(

b0

a0
− b0

a0

a1

b1

c1
a0
b0

+ a1
b1
c1

)

(

a0

b0
+

a1

b1
c1

)

=

(

a0

b0

b0

a0

)

+

(

b0

a0

a1

b1
− b0

a0

a1

b1

)

c1 = 1

where c1
a0
b0

+
a1
b1

c1
is irrational.4 Note that the reciprocal is still of order 1, however, the purely

irrational part is based on a different irrational number.

Note also that R
(

b0
a0

− b0
a0

a1
b1

c1
a0
b0

+
a1
b1

c1

)

= b0
a0

and I
(

b0
a0

− b0
a0

a1
b1

c1
a0
b0

+
a1
b1

c1

)

= − b0
a0

a1
b1

,

so that

1
b0
a0

− b0
a0

a1
b1

c1
a0
b0

+
a1
b1

c1

=
1
b0
a0

−
(

1
b0
a0

)

(

− b0

a0

a1

b1

)

c1
a0
b0

+
a1
b1

c1

b0
a0

− b0
a0

a1
b1

c1
a0
b0

+
a1
b1

c1

=
a0

b0
+

a1

b1
c1

This means the reciprocal of the reciprocal of a trirational number of order 1 is that

trirational number of order 1.

For the case where a0 = 0, so that x = a1
b1
c1, where a1 6= 0, then

1
a1
b1
c1

=
b1

a1

1

c1

where 1
c1

is irrational since c1 is irrational.

2.3.2 Higher Orders

The reciprocal of a non-zero trirational number of order ny ≥ 2 is given by

1

ay,0
by,0

+
ny
∑

i=1

ay,i
by,i

ci

=
by,0

ay,0
− by,0

ay,0

ny
∑

j=1

ay,j

by,j

cj

ay,0
by,0

+
ny
∑

i=1

ay,i
by,i

ci

where ay,0 6= 0.

4This value must be irrational when c1 is irrational, since otherwise

c1
a0
b0

+
a1
b1
c1

=
n

m

would mean

c1 =

n
m

a0
b0

1− n
m

a1
b1

which is rational.
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Note that each
cj

ay,0
by,0

+
ny
∑

i=1

ay,i

by,i
ci

is irrational5 and that

1

by,0
ay,0

−
by,0
ay,0

ny
∑

j=1

ay,j
by,j

cj

ay,0
by,0

+

ny
∑

i=1

ay,i
by,i

ci

=
1

by,0
ay,0

−
1

by,0
ay,0

ny
∑

j=1

(

−
by,0

ay,0

ay,j

by,j

)

cj

ay,0
by,0

+

ny
∑

i=1

ay,i
by,i

ci

by,0
ay,0

−
by,0
ay,0

ny
∑

j=1

ay,j
by,j

cj

ay,0
by,0

+

ny
∑

i=1

ay,i
by,i

ci

=
ay,0

by,0

+

ny
∑

j=1

ay,j

by,j

cj

This means the reciprocal of the reciprocal of a trirational number of order ny ≥ 2 is

that trirational number of order ny ≥ 2.

For the case where ay,0 = 0, so that x =
ny
∑

i=1

ay,i
by,i

ci 6= 0, where none of the ay,i are

zero, then 1
ny
∑

i=1

ay,i

by,i
ci

is the reciprocal of x, where 1
ny
∑

i=1

ay,i

by,i
ci

is (pure) irrational6 since each ci

is irrational and all
ay,i
by,i

are (non-zero) rational.

2.4 Division

Division is implemented as the multiplication of the trirational numerator number by the

reciprocal of the trirational denominator number.

2.4.1 Order 1 With The Same Irrational Part

Two trirational numbers of order 1 with the same irrational part are divided as follows. If

x = a0
b0

+ a1
b1
c1 and y =

a′0
b′0

+
a′1
b′1
c1 6= 0

1 , and c21 is rational,7 then

x

y
= r







a1
b1

a′1
b′1
c21 − a0

b0

a′0
b′0

(

a′1
b′1

)2
c21 −

(

a′0
b′0

)2






+ r







a0
b0

a′1
b′1

− a1
b1

a′0
b′0

(

a′1
b′1

)2
c21 −

(

a′0
b′0

)2






c1

since

R
(

x

y
y

)

=

a1
b1

a′1
b′1
c21 − a0

b0

a′0
b′0

(

a′1
b′1

)2
c21 −

(

a′0
b′0

)2

a′0
b′0

+

a0
b0

a′1
b′1

− a1
b1

a′0
b′0

(

a′1
b′1

)2
c21 −

(

a′0
b′0

)2

a′1
b′1

c21 =
a0

b0
= R (x)

and

I
(

x

y
y

)

=

a1
b1

a′1
b′1
c21 − a0

b0

a′0
b′0

(

a′1
b′1

)2
c21 −

(

a′0
b′0

)2

a′1
b′1

+

a0
b0

a′1
b′1

− a1
b1

a′0
b′0

(

a′1
b′1

)2
c21 −

(

a′0
b′0

)2

a′0
b′0

=
a1

b1
= I (x)

5If
cj

ay,0
by,0

+
ny
∑

i=1

ay,i
by,i

ci

were rational, say r, for any j, then

cj −
ny
∑

i=1

(

r
ay,i

by,i

)

ci = r
ay,0

by,0

which is a linear rational combination of reduced irrational numbers that equals a rational number; this is a

contradiction.

6If 1
ny
∑

i=1

ay,i
by,i

ci

were rational, then
ny
∑

i=1

ay,i

by,i
ci would be rational, and the rational linear combination of irra-

tionals is irrational – a contradiction.
7The same rules for determining the rationality of c21 found in Section 2.2.1 apply here as well.
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If c21 is irrational,8 then

x

y
= x

(

1

y

)

=

(

a0

b0
+

a1

b1
c1

)





b′0
a′0

− b′0
a′0

a′1
b′1

c1
a′0
b′0

+
a′1
b′1
c1





= r

(

b′0
a′0

a0

b0

)

+



r

(

b′0
a′0

a1

b1

)

c1 − r

(

a0

b0

b′0
a′0

a′1
b′1

)

c1
a′0
b′0

+
a′1
b′1
c1

− r

(

a1

b1

b′0
a′0

a′1
b′1

)

c21
a′0
b′0

+
a′1
b′1
c1





(1)

where the purely irrational part is based on two or three irrational numbers,9 namely






c1,
c1

a′0
b′0

+
a′1
b′1
c1







or







c1,
c1

a′0
b′0

+
a′1
b′1
c1
,

c21
a′0
b′0

+
a′1
b′1
c1







depending whether
c21

a′0
b′0

+
a′1
b′1

c1

is rational or irrational. This determination is found in the M

matrix (see Section 2.2). However, see also Appendix 1 for some simplifying conditions

for determining the rationality of
c21

a′0
b′0

+
a′1
b′1

c1

.

2.4.2 Order 1 With Different Irrational Parts

Two trirational numbers of order 1 with different irrational parts are divided as follows. If

x = a0
b0

+ a1
b1
c1 and y =

a′0
b′0

+
a′1
b′1
c2 6= 0

1 , and c1c2 is rational,10 then

x

y
= r







a1
b1

a′1
b′1
c1c2 − a0

b0

a′0
b′0

(

a′1
b′1

)2
c1c2 −

(

a′0
b′0

)2






+ r







a0
b0

a′1
b′1

− a1
b1

a′0
b′0

(

a′1
b′1

)2
c1c2 −

(

a′0
b′0

)2






c1

since

R
(

x

y
y

)

=

a1
b1

a′1
b′1
c1c2 − a0

b0

a′0
b′0

(

a′1
b′1

)2
c1c2 −

(

a′0
b′0

)2

a′0
b′0

+

a0
b0

a′1
b′1

− a1
b1

a′0
b′0

(

a′1
b′1

)2
c1c2 −

(

a′0
b′0

)2

a′1
b′1

c1c2 =
a0

b0
= R (x)

and

I
(

x

y
y

)

=

a1
b1

a′1
b′1
c1c2 − a0

b0

a′0
b′0

(

a′1
b′1

)2
c1c2 −

(

a′0
b′0

)2

a′1
b′1

+

a0
b0

a′1
b′1

− a1
b1

a′0
b′0

(

a′1
b′1

)2
c1c2 −

(

a′0
b′0

)2

a′0
b′0

=
a1

b1
= I (x)

If c1c2 is irrational, then

x

y
= x

(

1

y

)

8The same rules for determining the rationality of c21 found in Section 2.2.2 apply here as well.

9See Appendix 1 for the proof that
c21

a′
0

b′0
+

a′
1

b′1
c1

is rational if and only if c1 has the form ±
2
√

n′

m′

a′
0

b′0

1∓
√

n′

m′

a′
1

b′1

for

rational
a′
0

b′0
and

a′
1

b′1
, and non-perfect squares n′ and m′.

10The same rules for determining the rationality of c21 found in Section 2.2 apply here as well.
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=

(

a0

b0
+

a1

b1
c1

)





b′0
a′0

− b′0
a′0

a′1
b′1

c2
a′0
b′0

+
a′1
b′1
c2





= r

(

b′0
a′0

a0

b0

)

+



r

(

b′0
a′0

a1

b1

)

c1 − r

(

a0

b0

b′0
a′0

a′1
b′1

)

c2
a′0
b′0

+
a′1
b′1
c2

− r

(

a1

b1

b′0
a′0

a′1
b′1

)

c1c2
a′0
b′0

+
a′1
b′1
c2





(2)

where the purely irrational part is based on two or three irrational numbers, namely







c1,
c2

a′0
b′0

+
a′1
b′1
c2







or







c1,
c2

a′0
b′0

+
a′1
b′1
c2
,

c1c2
a′0
b′0

+
a′1
b′1
c2







depending whether c1c2
a′0
b′0

+
a′1
b′1

c2

is rational or irrational. This determination is found in the

Mmatrix (see Section 2.2).

2.4.3 Higher Orders

Two trirational numbers of order nx ≥ 2 and ny ≥ 2 are divided as follows. If

x =
ax,0

bx,0
+

nx
∑

i=1

ax,i

bx,i
ci

and

1

y
=

by,0

ay,0
− by,0

ay,0

ny
∑

j=1

ay,j

by,j

cj

ay,0
by,0

+
ny
∑

i=1

ay,i
by,i

ci

where {ci} and







cj

ay,0
by,0

+
ny
∑

i=1

ay,i

by,i
ci







come from the collection of all such irrational numbers

{ck}, then for each i from x let

Mx (i) = {j ≥ 1 : M (i, j) = 1}

that is the set of







cj

ay,0
by,0

+
ny
∑

i=1

ay,i

by,i
ci







from 1
y

where
cicj

ay,0
by,0

+
ny
∑

i=1

ay,i

by,i
ci

is rational. We have

M′
x (i) = Mx (i) = {j ≥ 1 : M (i, j) ≤ 0}

Then

x

y
= x

(

1

y

)

=

(

ax,0

bx,0

+

nx
∑

i=1

ax,i

bx,i

ci

)











by,0

ay,0

−
by,0

ay,0

ny
∑

j=1

ay,j

by,j

cj

ay,0
by,0

+
ny
∑

i=1

ay,i
by,i

ci











=

































ax,0
bx,0

by,0
ay,0

−
nx
∑

i=1

ny
∑

j∈Dx(i)

(

by,0
ay,0

ax,i
bx,i

ay,j
by,j

)

cicj

ay,0
by,0

+

ny
∑

i=1

ay,i
by,i

ci









+









nx
∑

i=1

(

ax,i
bx,i

by,0
ay,0

)

ci −
ny
∑

j=1

(

ax,0
bx,0

by,0
ay,0

ay,j
by,j

)

cj

ay,0
by,0

+

ny
∑

i=1

ay,i
by,i

ci

−
nx
∑

i=1

ny
∑

j∈D′
x(i)

(

by,0
ay,0

ax,i
bx,i

ay,j
by,j

)

cicj

ay,0
by,0

+

ny
∑

i=1

ay,i
by,i

ci
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2.5 Square Root

Definition 1 The square root of a trirational number a0
b0

+
N
∑

i=1

ai
bi
ci of order N ≥ 1 is a

pure irrational trirational number of order 1 given by

√

a0
b0

+
N
∑

i=1

ai
bi
ci.

The following sequence of claims shows that the defined form for the square root of a

trirational number, up to a constant factor, is the only one generally available.

Claim 2 (A) The square root of a trirational number a0
b0

+
N
∑

i=1

ai
bi
ci of order N ≥ 1, where

not all
{

ai
bi

}N

i=1
are zero, is irrational; (B) x =

√

a0
b0

+ a1
b1
c1 cannot be expressed as x =

a′0
b′0
+

a′1
b′1

√
c1 for any rational numbers

{

a′0
b′0
,
a′1
b′1

}

; (C) If a0
b0
+

N−1
∑

i=1

ai
bi
ci ≡ 1

4

(

m
n

aN
bN

− n
m

)2
cN

for some integers n and m, and for N ≥ 2, then

√

a0
b0

+
N
∑

i=1

ai
bi
ci cannot be expressed

as x =
a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci, for any rational numbers

{

a′i
b′i

}N

i=0
; (D) If a0

b0
+

N
∑

i=1

ai
bi
ci ≡

1
4

(

m
n

aN+1

bN+1
− n

m

)2
cN+1 for some integers n and m, and for some choice of

aN+1

bN+1
and

cN+1, then

√

a0
b0

+
N
∑

i=1

ai
bi
ci ≡ 1

2

∣

∣

∣

m
n

aN+1

bN+1
− n

m

∣

∣

∣

√
cN+1.

Proof. (A) If

√

a0
b0

+
N
∑

i=1

ai
bi
ci, where not all

{

ai
bi

}N

i=1
are zero, were rational, then

√

a0
b0

+
N
∑

i=1

ai
bi
ci =

n
m

for some integers n and m. Then a0
b0

+
N
∑

i=1

ai
bi
ci =

n2

m2 , which is a

contradiction.

(B) Suppose
√

a0

b0
+

a1

b1
c1 =

a′0
b′0

+
a′1
b′1

√
c1

for some rational numbers
a′0
b′0

and
a′1
b′1

. Then

a0

b0
+

a1

b1
c1 =

(

a′0
b′0

)2

+ 2
a′0
b′0

a′1
b′1

√
c1 +

(

a′1
b′1

)2

c1

and since c1 and
√
c1 are irrational, we have

a′0
b′0

=

√

a0

b0

Therefore, assuming
√

a0
b0

were rational, we have

(

a′1
b′1

)2

c1 + 2

√

a0

b0
c1

(

a′1
b′1

)

− a1

b1
c1 = 0
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This means

a′1
b′1

=
±
√

a0
b0

+ a1
b1
c1 −

√

a0
b0√

c1

must be rational, say, n
m

for some integers n and m. Hence, we have

a0

b0
+

a1

b1
c1 =

(√

a0

b0
+

n

m

√
c1

)2

or

c1 = 4
n2

m2
a0
b0

(

n2

m2 − a1
b1

)2

which is a contradiction.

(C) Part B establishes the basis for induction on N . Now suppose

√

a0
b0

+
N
∑

i=1

ai
bi
ci

cannot be expressed as
a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci for some value of N , yet

√

√

√

√

a0

b0
+

N+1
∑

i=1

ai

bi
ci =

a′0
b′0

+
N+1
∑

i=1

a′i
b′i

√
ci

for some rational numbers
{

a′i
b′i

}N+1

i=0
, which means

a0

b0
+

N
∑

i=1

ai

bi
ci =



















(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)2

+2

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)

(

a′N+1

b′
N+1

√
cN+1

)

+

(

(

a′N+1

b′
N+1

)2
− aN+1

bN+1

)

cN+1



















(3)

Since
(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)2

=
1

4

(

m

n

aN+1

bN+1
− n

m

)2

cN+1

for some integers n and m, we have

cN+1 = 4

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)2

(

aN+1

bN+1
− n2

m2

)2

n2

m2

so that

(

a′0
b′0

+

N
∑

i=1

a′i
b′i

√
ci

)2

+
aN+1

bN+1
cN+1 =

((

a′0
b′0

+

N
∑

i=1

a′i
b′i

√
ci

)

+
n

m

√
cN+1

)2

which means

±
√

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)2

+
aN+1

bN+1
cN+1 −

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)

√
cN+1

=
n

m
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is rational. Set

a′N+1

b′N+1

=

±
√

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)2

+
aN+1

bN+1
cN+1 −

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)

√
cN+1

so that

(

a′N+1

b′N+1

)2

cN+1 + 2

(

a′0
b′0

+

N
∑

i=1

a′i
b′i

√
ci

)

√
cN+1

a′N+1

b′N+1

− aN+1

bN+1
cN+1 = 0

and from (3) we have

a0

b0
+

N
∑

i=1

ai

bi
ci =

(

a′0
b′0

+
N
∑

i=1

a′i
b′i

√
ci

)2

which is a contradiction.

(D) If a0
b0

+
N−1
∑

i=1

ai
bi
ci =

1
4

(

m
n

aN
bN

− n
m

)2
cN for some integers n and m, and for some

choice of
aN+1

bN+1
and cN+1, then

√

√

√

√

a0

b0
+

N−1
∑

i=1

ai

bi
ci =

√

1

4

(

m

n

aN

bN
− n

m

)2

cN =
1

2

∣

∣

∣

∣

m

n

aN

bN
− n

m

∣

∣

∣

∣

√
cN

The following miscellaneous relationships between trirational numbers and their square

roots demonstrate one possible system for restricting the complexity of algorithm results

that use the square root.

Definition 3 The irrational part of a trirational number consisting of the square roots of

non-perfect square reduced rational numbers is said to be Closed if the reduced form of

any product or quotient of two distinct members is either rational or a rational multiple of

a member of the set.

For example, the set of the square roots of non-perfect square reduced rational numbers

A =

{

√
2,
√
3,
√
6,

√

1

2
,

√

1

3
,

√

2

3
,

√

3

2

}
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is closed, since

√
2 ∗

√
3 =

√
6,

√
2√
3
=
√

2
3

√
6 ∗
√

1
2 =

√
3

√
6

√

1
2

= 2
√
3

√
2 ∗

√
6 = 2

√
3,

√
2√
6
=
√

1
3

√
6 ∗
√

1
3 =

√
2

√
6

√

1
3

= 3
√
2

√
2 ∗
√

1
2 = 1,

√
2

√

1
2

= 2
√
6 ∗
√

2
3 = 2,

√
6

√

2
3

= 3

√
2 ∗
√

1
3 =

√

2
3 ,

√
2

√

1
3

=
√
6

√
6 ∗
√

3
2 = 3,

√
6

√

3
2

= 2

√
2 ∗
√

2
3 = 2

√

1
3 ,

√
2

√

2
3

=
√
3

√

1
2 ∗
√

1
3 = 3,

√

1
2

√

1
3

=
√

3
2

√
2 ∗
√

3
2 =

√
3,

√
2

√

3
2

= 2
√

1
3

√

1
2 ∗
√

2
3 =

√

1
3 ,

√

1
2

√

2
3

= 1
2

√
3

√
3 ∗

√
6 = 2

√
3,

√
3√
6
=
√

1
2

√

1
2 ∗
√

3
2 = 1

2

√
3,

√

1
2

√

3
2

=
√

1
3

√
3 ∗
√

1
2 =

√

3
2 ,

√
3

√

1
2

=
√
6

√

1
3 ∗
√

2
3 = 1

3

√
2,

√

1
3

√

2
3

=
√

1
2

√
3 ∗
√

1
3 = 1,

√
3

√

1
3

= 3
√

1
3 ∗
√

3
2 =

√

1
2 ,

√

1
3

√

3
2

= 1
3

√
2

√
3 ∗
√

2
3 =

√
2,

√
3

√

2
3

= 3
√

1
2

√

2
3 ∗
√

3
2 = 1,

√

2
3

√

3
2

= 2
3

√
3 ∗
√

3
2 = 3

√

1
2 ,

√
3

√

3
2

=
√
2

√
x ∗ √x = x, x ∈

{

2, 3, 6, 12 ,
1
3 ,

2
3 ,

3
2

}

Claim 4 If p and q are positive prime numbers, then A =
{√

p,
√
q,
√
pq,
√

1
p
,
√

1
q
,
√

p
q
,
√

q
p

}

is closed.

Proof. Every element of A is of the form

√

paqb

pcqd
for {0, 1} integers a, b, c, and d.

For example,
√

q
p

has (a, b, c, d) as (0, 1, 1, 0). Then the product of any such

√

paqb

pcqd
with

another distinct one is additive in the (a, b, c, d). Suppose (a′, b′, c′, d′) is the sum of such

a product. Then the values of a′, b′, c′, and d′ may be {0, 1, 2}; if any is 2, say, a′, then
√

pa
′ =

√

p2 = p, which is rational. All other terms in (a′, b′, c′, d′) are in {0, 1}, which

makes

√

pa
′
qb

′

pc
′
qd

′ part of A.

The quotient of any such

√

paqb

pcqd
with another distinct one is subtracting in the (a, b, c, d).

Suppose (a′′, b′′, c′′, d′′) is the difference of such a quotient. Then the values of a′′, b′′,
c′′, and d′′ may be {−1, 0, 1}; if a′′ = −1, then this is the same as (0, b′′, c′′ + 1, d′′),
and if b′′, c′′, d′′ = −1, then this is the same as (a′′, 0, c′′, d′′ + 1), (a′′ + 1, b′′, 0, d′′), and

(a′′, b′′ + 1, c′′, 0), respectively. This makes all terms (a′′, b′′, c′′, d′′) be in {0, 1, 2}, which,

as previously shown, makes all such combinations

√

pa
′′
qb

′′

pc
′′
qd

′′ part of A.

Corollary 5 If {pj}mj=1 is a set of positive prime numbers, then A =











√

√

√

√

√

m
∏

j=1
p
aj
j

m
∏

j=1
p
bj
j











for all

reduced combinations of {0, 1} integers {aj , bj} is closed.
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Claim 6 If a set of trirational numbers have a closed irrational set, then the sum, differ-

ence, and product of those numbers have the same irrational set.

Proof. Let a set of trirational numbers have a closed irrational set I = {ck}Nk=1. If

x = a0
b0

+
N
∑

i=1

ai
bi
ci and y =

a′0
b′0

+
N
∑

i=1

a′i
b′i
ci, then

(Sum/Difference)

x± y = r

(

a0

b0
± a′0

b′0

)

+
N
∑

i=1

r

(

a1

b1
± a′1

b′1

)

ci

which has irrational set I .
(Product)

xy =



R (x)R (y) +

nx
∑

i=1

ny
∑

j∈Mx(i)

ax,i

bx,i

ay,j

by,j
cicj



+





ay,0

by,0
I (x) +

ax,0

bx,0
I (y) +

nx
∑

i=1

ny
∑

j∈M′
x(i)

ax,i

bx,i

ay,j

by,j
cicj





where I (x), I (y), and {cicj} are all part of I , since it is closed.

Note that the quotient of such numbers involves irrational numbers not in the closed

set.

2.6 Exponential/Logarithm

The exponential and logarithmic functions act like the square root in that an entirely irra-

tional number is produced by the operation when the argument is rational. For irrational

arguments, it is reasonable to assume the exponential and logarithmic functions are irra-

tional until indicated otherwise in the marker matrix.

Claim 7 For a positive integer q, eq is irrational.

Proof. (Inspired by Fourier11) Suppose eq were rational. Then eq = n
m

for positive

integers n and m ≥ 2 (since eq is not an integer). From the Taylor Series expansion of

f (x) = ex at x = 0, with the standard Lagrange form of the remainder term, we have

ex −
v
∑

k=0

1

k!
xk <

eξ |x|v+1

(v + 1)!

for every integer v ≥ 0 for some value ξ ∈ (−q, q). Hence, we have

eq −
v
∑

k=0

1

k!
qk <

eqqv+1

(v + 1)!

Using Γ (x) as a continuous interpolation of the discrete factorial, we have

d

dx

qx

Γ (x)
=

qx

Γ (x)
(ln q −Ψ(x)) < 0

for large enough x, and qx

Γ(x) is bounded below by 0. Therefore lim
x→∞

qx

Γ(x) exists as a real

number.

11Jean-Baptiste Joseph Fourier (1768-1830)
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We also have

lim
x→∞

qx

Γ (x)
= lim

x→∞
qx ln q

Ψ(x) Γ (x)
=

(

lim
x→∞

qx

Γ (x)

)

(

ln q

lim
x→∞

Ψ(x)

)

= 0

for the Digamma Function Ψ, which means for v > qeq − 1 we have

eq −
v
∑

k=0

1

k!
qk <

qeq

v + 1

(

qv

v!

)

<
qv

v!
→ 0 as v → ∞

so that

{

eq −
v
∑

k=0

1
k!q

k

}

is a Cauchy sequence in v that uniformly converges given q.

For fixed q, choose v1 > v0 ≥ m large enough so that

qv1

v1!
<

1

2 (v0!)
and

v1
∑

k=v0+1

1

k!
qk <

1

2 (v0!)

where v0 is a multiple of m.

We have

eq −
v0
∑

k=0

1

k!
qk =

(

eq −
v1
∑

k=0

1

k!
qk

)

+

v1
∑

k=v0+1

1

k!
qk

<
qv1

v1!
+

1

2 (v0!)

<
1

2 (v0!)
+

1

2 (v0!)

=
1

v0!

which means

0 < v0!

(

eq −
v0
∑

k=0

1

k!
qk

)

< 1

However,

v0!

(

eq −
v0
∑

k=0

1

k!
qk

)

= v0!

(

n

m
−

v0
∑

k=0

1

k!
qk

)

= n
(v0

m

)

(v0 − 1)!−
v0
∑

k=0

v0!

k!
qk

is an integer, since v0, q, and k are integers, v0 is a multiple of m, and k ≤ v0. This is a

contradiction, since there are no positive integers less than 1.

Claim 8 For positive rational
q
p

, e
q

p is irrational.

Proof. We may take p, q > 0. If e
q

p were rational, then e
q

p = n
m

for non-zero integers

n and m, which would mean

eq =
np

mp

which is rational, since p is a positive integer; this is a contradiction of the previous claim,

since q is a positive integer.

Corollary 9 For rational
q
p

, e
q

p is irrational.

Proof. For positive rational q
p
, the previous claim shows that e

q

p is irrational. For

negative q
p

, suppose e
q

p is rational. Then e
− q

p is rational. However, − q
p
> 0, which is a

contradiction of the previous claim.
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3. Updating The Marker Matrices

After several arithmetic and conversion operation on trirational numbers a new (revised)

marker matrix is produced. The new marker matrix contains additional entries produced by

arithmetic and conversion operations that were not covered by the marker matrices used as

input to the operation.

However, the values required in the new marker matrix are (usually) unknown to the

algorithm code, so that −1 is used generically in those cases. It then becomes the respon-

sibility of the implementing analyst to update the new marker matrix (replacing the −1
values) with the required values (either 0 for “irrational” or 1 for “rational”) before using

the new marker matrix in subsequent calculation steps. This may be accomplished by in-

terrupting the algorithm processing so that the required values may be entered as needed,

after which the algorithm processing continues, or by setting an argument in the imple-

mentation code that assumes all zero entries in all marker positions, thereby eliminating

all rational part consolidation during algorithm processing. In this latter case, no marker

updating occurs and the final calculated value is used to produce a decimal floating point

value if desired.

For the purposes of this paper, a new marker matrix may be produced with unknown

values signaled as −1, whenever applicable, without further attempts to automatically up-

date the new marker matrix nor to provide user intervention opportunities between algo-

rithm processing steps. The particular method by which a user would intervene in updating

the marker matrix, when needed, between algorithm processing steps, is left to the imple-

menting analyst.

4. Example Use: The Matrix Inverse

Given a square matrix M = (mij) of dimension n, the following algorithm either produces

the matrix inverse M−1 of dimension n, or determines that no such inverse exists. The

matrix A = (aij) is In×n (the n × n identity matrix) at the beginning of the algorithm.

Every algebraic operation should be applied only to matrix A.

1. Set i = 1, j = 1, and u = 0.

2. If mii 6= 0, divide row i by mii and set u = 0; otherwise add 1 to u, and if i+u ≤ n,

then add row i + u to row i (by column), and repeat this step; otherwise return “M

does not have an inverse.”

3. Multiply row i by mi+j,i and subtract these values from row i+ j.

4. Add 1 to j; if (i+ j + 1)modn 6= imodn, then skip to Step 3; otherwise continue.

5. Add 1 to i; if i ≤ n, then set j = 1 and skip to Step 2; otherwise return A.

Note that the following MAPLE implementation uses Rational Arithmetic And Con-

version (RAC) routines in place of the regular set of arithmetic and conversion operations

that MAPLE normally provides.

MI:=proc(MT,MX)

local n,ii,jj,kk,uu,idx,tmp,A::Matrix,AX::Matrix,

MV::Matrix,MVX::Matrix,MW::Matrix,MWX::Matrix,val;

description "Algorithm For Calculating Matrix Inverse

Using Rational Arithmetic And Conversions";
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options ‘Copyright 2018 PQI Consulting All Rights Reserved‘;

n:=RowDimension(MT);

if(ColumnDimension(MT)<>n) then

return "Matrix Not Square";

end if;

A:=Matrix(n,n);

for kk from 1 to n do:

for uu from 1 to n do:

if(kk=uu) then A[kk,kk]:=[1,1];

else A[kk,uu]:=[0,1];

end if;

end do;

end do;

AX:=Matrix(1,1,[M]);

MV:=Matrix(n,n,MT); MVX:=copy(MX);

MW:=Matrix(n,n,MT); MWX:=copy(MW);

ii:=1; uu:=0;

while(ii<=n) do:

if(MW[ii,ii]<>[0,1]) then

uu:=0;

for kk from 1 to n do:

tmp:=RAC_Div(A[ii,kk],

RAC_MRGenerate(A[ii,kk],

Matrix(1,1,[M])),

MV[ii,ii],

RAC_MRGenerate(MV[ii,ii],

Matrix(1,1,[M])));

tmp:=RAC_Sweep(tmp);

A[ii,kk]:=tmp[1]; AX:=RAC_MRMeld(AX,tmp[2]);

tmp:=RAC_Div(MW[ii,kk],

RAC_MRGenerate(MW[ii,kk],

Matrix(1,1,[M])),

MV[ii,ii],

RAC_MRGenerate(MV[ii,ii],

Matrix(1,1,[M])));

tmp:=RAC_Sweep(tmp);

MW[ii,kk]:=tmp[1]; MWX:=RAC_MRMeld(MWX,tmp[2]);

end do;

jj:=0;

while((ii+jj+1) mod n <> ii mod n) do:

idx:=1+((ii+jj) mod n);

for kk from 1 to n do:

tmp:=RAC_Mul(A[ii,kk],

RAC_MRGenerate(A[ii,kk],

Matrix(1,1,[M])),

MV[idx,ii],

RAC_MRGenerate(MV[idx,ii],

Matrix(1,1,[M])));

tmp:=RAC_Sub(A[idx,kk],AX,tmp);

tmp:=RAC_Sweep(tmp);

A[idx,kk]:=tmp[1]; AX:=RAC_MRMeld(AX,tmp[2]);

tmp:=RAC_Mul(MW[ii,kk],

RAC_MRGenerate(MW[ii,kk],

Matrix(1,1,[M])),

MV[idx,ii],

RAC_MRGenerate(MV[idx,ii],

Matrix(1,1,[M])));
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tmp:=RAC_Sub(MV[idx,kk],MVX,tmp);

tmp:=RAC_Sweep(tmp);

MW[idx,kk]:=tmp[1]; MWX:=RAC_MRMeld(MWX,tmp[2]);

end do:

jj:=jj+1;

end do;

ii:=ii+1;

else

if(ii=n or (ii+uu)>n) then

return "Inverse Does Not Exist";

else

uu:=uu+1;

for kk from 1 to n do:

tmp:=RAC_Add(MW[ii,kk],

RAC_MRGenerate(MW[ii,kk],

Matrix(1,1,[M])),

MW[ii+uu,kk],

RAC_MRGenerate(MW[ii+uu,kk],

Matrix(1,1,[M])));

tmp:=RAC_Sweep(tmp);

MW[ii,kk]:=tmp[1]; MWX:=RAC_MRMeld(MWX,tmp[2]);

tmp:=RAC_Add(A[ii,kk],

RAC_MRGenerate(A[ii,kk],

Matrix(1,1,[M])),

A[ii+uu,kk],

RAC_MRGenerate(A[ii+uu,kk],

Matrix(1,1,[M])));

tmp:=RAC_Sweep(tmp);

A[ii,kk]:=tmp[1]; AX:=RAC_MRMeld(AX,tmp[2]);

end do;

end if;

end if;

MV:=copy(MW);

end do;

return A,AX;

end proc;

The following example of this implementation demonstrate the use of pure trirational

numbers as well as those with an error term E1.
> M1:=Matrix(5,5,[[[0,1],[3,1],[-7,1],[9,1],[-11,1]],
> [[0,1],[0,1],[5,1],[5,1],[-3,1]],
> [[1,1],[-3,1],[1,1],[7,1],[8,1]],
> [[0,1],[0,1],[1,1],[0,1],[1,1]],
> [[1,1],[2,1],[1,1],[2,1],[1,1]]]):
> M2a:=Matrix(5,5,[[[0,1],[3,1],[-7,1],[9,1],[-11,1]],
> [[0,1],[0,1],[5,1],[5,1],[-3,1]],
> [[1,1],[-3,1],[1,1],[7,1,1,1,E_1],[8,1]],
> [[0,1],[0,1],[1,1],[0,1],[1,1]],
> [[1,1],[2,1],[1,1],[2,1],[1,1]]]):
> MI(M1,Matrix(1,1,[M]))[1];
> MI(M2a,Matrix(2,2,[[M,E 1],[E 1,0]]))[1];
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[−46, 97] [164, 485] [56, 485] [−583, 97] [429, 485]

[15, 97] [−83, 485] [−52, 485] [188, 97] [52, 485]

[−5, 97] [12, 97] [−3, 97] [2, 97] [3, 97]

[8, 97] [1, 485] [24, 485] [55, 97] [−24, 485]

[5, 97] [−12, 97] [3, 97] [95, 97] [−3, 97]



















































[0, 1,−2, 1, 115+8 E 1

485+24 E 1
] [0, 1, 4, 1, 41+2 E 1

485+24 E 1
] [0, 1, 56, 1, (485 + 24E 1)−1] [0, 1,−11, 1, 265+16 E 1

485+24 E 1
] [0, 1, 3, 1, 143+8 E 1

485+24 E 1
]

[0, 1, 1, 1, 75+8 E 1

485+24 E 1
] [0, 1,−1, 1, 83+4 E 1

485+24 E 1
] [0, 1,−52, 1, (485 + 24E 1)−1] [0, 1, 4, 1, 235+19 E 1

485+24 E 1
] [0, 1, 52, 1, (485 + 24E 1)−1]

[0, 1,−25, 1, (485 + 24E 1)−1] [0, 1, 3, 1, 20+E 1

485+24 E 1
] [0, 1,−15, 1, (485 + 24E 1)−1] [0, 1, 1, 1, 10+9 E 1

485+24 E 1
] [0, 1, 15, 1, (485 + 24E 1)−1]

[0, 1, 40, 1, (485 + 24E 1)−1] [0, 1, 1, 1, (485 + 24E 1)−1] [0, 1, 24, 1, (485 + 24E 1)−1] [0, 1, 275, 1, (485 + 24E 1)−1] [0, 1,−24, 1, (485 + 24E 1)−1]

[0, 1, 25, 1, (485 + 24E 1)−1] [0, 1,−3, 1, 20+E 1

485+24 E 1
] [0, 1, 15, 1, (485 + 24E 1)−1] [0, 1, 5, 1, 95+3 E 1

485+24 E 1
] [0, 1,−15, 1, (485 + 24E 1)−1]































5. Miscellaneous Relationships Between The

Rationality Of A Function And Its Arguments

Claim 10 If ci and cj are irrational, then ci
a+bcj

rational for a 6= 0 and b rational means
ci
cj

is irrational.

Proof. Suppose
cj
ci

= r is rational. Then

a+ bcj

ci
=

a+ brci

ci
= br + a

1

ci

is irrational for a 6= 0 and b rational.

Corollary 11 If ci and cj are irrational, then ci
cj

rational means ci
a+bcj

is irrational for

a 6= 0 and b rational.

Claim 12 π is irrational.

Proof. (Due to Niven12) We first establish the following lemma.

Lemma 13 For n a positive integer and f a C∞ function on a superset of [0, π], we have

∫ π

0
f (x) sinx dx =

n−1
∑

k=0

(−1)k
(

f (2k) (π) + f (2k) (0)
)

+ (−1)n
∫ π

0
f (2n) (x) sinx dx

Proof. (By induction on n) For n = 1, set u = f (x) and dv = sinx dx. Then

du = f (1) (x) dx and v = − cosx, so that

∫ π

0
f (x) sinx dx = − f (x) cosx|x=π

x=0 +

∫ π

0
f (1) (x) cosx dx

= f (π) + f (0) +

(

f (1) (x) sinx
∣

∣

∣

x=π

x=0
−
∫ π

0
f (2) (x) sinx dx

)

= f (π) + f (0)−
∫ π

0
f (2) (x) sinx dx

=
1−1
∑

k=0

(−1)k
(

f (2k) (π) + f (2k) (0)
)

+ (−1)1
∫ π

0
f (2) (x) sinx dx

12Ivan Morton Niven (1915-1999)
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where the second integration by parts uses u = f ′ (x) and dv = cosx dx.

Now suppose we have

∫ π

0
f (x) sinx dx =

n−1
∑

k=0

(−1)k
(

f (2k) (π) + f (2k) (0)
)

+ (−1)n
∫ π

0
f (2n) (x) sinx dx

Then with two integration by parts we have

∫ π

0
f (2n) (x) sinx dx = f (2n) (π) + f (2n) (0)−

∫ π

0
f (2n+2) (x) sinx dx

so that

∫

π

0
f (x) sin x dx =

n−1
∑

k=0

(−1)
k
(

f
(2k)

(π) + f
(2k)

(0)
)

+ (−1)
n
(

f
(2n)

(π) + f
(2n)

(0) −
∫

π

0
f
(2n+2)

(x) sin x dx

)

=

(n+1)−1
∑

k=0

(−1)
k
(

f
(2k)

(π) + f
(2k)

(0)
)

+ (−1)
n+1

∫

π

0
f
(2(n+1))

(x) sin x dx

Suppose π is rational, say, π = n
m

where n and m are integers, and define

f (x;w) =
1

w!
xw (n−mx)w

for some positive integer w. This is a 2w-degree polynomial in x. Hence, f (r) (x;w) ≡ 0
for all r > 2w regardless of w. This means

∫ π

0
f (x;w) sinx dx =

w
∑

k=0

(−1)k
(

f (2k) (π;w) + f (2k) (0;w)
)

However, we also have

f (π − x;w) =
1

w!

( n

m
− x
)w (

n−m
( n

m
− x
))w

=
1

w!
xw (n−mx)w = f (x;w)

so that

(−1)2k f (2k) (π − x;w) ≡ f (2k) (x;w)

or

f (2k) (0;w) = f (2k) (π;w)

Therefore, we have

∫ π

0
f (x;w) sinx dx = 2

w
∑

k=0

(−1)k f (2k) (0;w)

for any positive integer w.

Furthermore, f (2k) (x;w) consists of a sum of terms of the form 1
w!

dr

dxr (xw)
ds

dxs ((n−mx)w),

which are non-zero only when r = w, and since 1
w!

dw

dxw (xw)
∣

∣

x=0
= 1 and ds

dxs ((n−mx)n)
∣

∣

x=0
>

0 is an integer, then f (2k) (0;w) is a positive integer for any k, which means
∫ π

0 f (x;w) sinx dx
is a positive integer.

Finally, we have

0 ≤ sinx ≤ 1 and 0 ≤ x (n−mx) ≤ xn

 
872



when 0 ≤ x ≤ π, so that
∫ π

0

f (x;w) sinx dx =

∫ π

0

1

w!
xw (n−mx)

w
sinx dx ≤

∫ π

0

1

w!
(xn)

w
dx =

1

n (w + 1)!
(πn)

w+1
< 1

for large enough w. This is a contradiction, since
∫ π

0 f (x;w) sinx dx is a positive integer

regardless of w.

Even though RAC operations need not distinguish rational and irrational numbers by

any other classification system, it is useful to know when trirational numbers involve al-

gebraic versus transcendental numbers, as the latter classification necessarily implies irra-

tionality.

Definition 14 A real number is said to be algebraic if it is the zero of a finite degree poly-

nomial with integer coefficients; otherwise it is said to be transcendental.

Corollary 15 Every transcendental number is irrational and every rational number is al-

gebraic. However, not every irrational number is transcendental, and not every algebraic

number is rational.

Proof. Suppose x were transcendental and rational. Since it is rational, say x = n
m

,

then for f (x) = mx−n we have f (x) = 0, and since n and m are integers, x is algebraic

– a contradiction. So if x must be transcendental, then it must also be irrational, or if x

must be rational, then it must also be algebraic.

In particular,
√
2 is irrational yet

(√
2
)2 − 2 = 0, so

√
2 is algebraic. Therefore, not

every irrational number is transcendental, and not every algebraic number is rational.

Lemma 16 π is transcendental.

Proof. Suppose π were algebraic, i.e., there is a finite degree polynomial

P (x) =
N
∑

n=0

anx
n

with integer coefficients an such that P (π) = 0. We have

P (ix) =

N
∑

n=0

an (ix)
n
=







N
∑

n=0
nmod 4=0

anx
n −

N
∑

n=0
nmod 4=2

anx
n






+i







N
∑

n=0
nmod 4=1

anx
n −

N
∑

n=0
nmod 4=3

anx
n







so that

0 = P (π) = P (i (−iπ)) =







N
∑

n=0
nmod 4=0

anπ
n −

N
∑

n=0
nmod 4=2

anπ
n






−i







N
∑

n=0
nmod 4=1

anπ
n −

N
∑

n=0
nmod 4=3

anπ
n







which means the complex conjugate is also zero, i.e., we have

P (iπ) = 0

which means iπ is algebraic.

However, eiπ = cosπ + i sinπ = −1 which is not transcendental; this is a contra-

diction of the Hermite-Lindemann-Weierstraß-Baker13 Theorem (which implies that eu is

transcendental when u is algebraic).

13Charles Hermite (1822-1901), Carl Louis Ferdinand von Lindemann (1852-1939), Karl Theodor Wilhelm

Weierstraß (1815-1897), and Alan Baker (1939-).
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Claim 17 For positive integer q ≥ 2, πq is irrational.

Proof. Suppose πq = n
m

for integers n and m. Then for f (x) = mxq − n we have

f (π) = 0. Since n, m, and q were integers, this means π is algebraic – a contradiction of

the previous lemma.

Claim 18 For positive rational
q
p

, π
q

p is irrational.

Proof. We may take p, q > 0. If π
q

p were rational, then π
q

p = n
m

for non-zero integers

n and m, which would mean

πq =
np

mp

which is rational, since p is a positive integer; this is a contradiction of the previous claim,

since q is a positive integer.

Algebraic numbers are also useful in determining whether a number is irrational or

not: If assuming a number is algebraic leads to a contradiction, then the number must be

transcendental and therefore irrational. In particular, algebraic numbers are closed under

arithmetic operations.

Claim 19 Algebraic numbers form a field under addition and multiplication.

Proof. We have 0 is the solution to x = 0, so that 0 is algebraic, and 0+ 0 = 0 = 0 ∗ 0.

Let x0 6= 0 and y0 6= 0 be algebraic numbers, where P (x) =
n
∑

k=0

akx
k and Q (y) =

m
∑

r=0
bry

r are polynomials with integer coefficients such that P (x0) = 0 = Q (y0), and let

{x0, x1, . . . xn−1} be the zeros of P , and let {y0, y1, . . . , ym−1} be the zeros of Q.

(a) Clearly 0 is the additive identity.

(b) We have

P (x) =
∑

k≤n even

akx
k +

∑

j≤n odd

ajx
j

so that

W1 (x) = P (−x) =
∑

k≤n even

akx
k −

∑

j≤n odd

ajx
j

is a polynomial in x with integer coefficients such that W1 (−x0) = 0, which means −x0
is algebraic (the additive inverse).

(c) Clearly 1 is the multiplicative identity.

(d) We have

W2 (x) = xnP

(

1

x

)

=
n
∑

k=0

xn−k =
n
∑

k=0

an−kx
k

is a polynomial in x with integer coefficients such that W2

(

1
x0

)

= 0, which means 1
x0

is

algebraic (the multiplicative inverse).

(e) Let

Q0 (x; z) = Q (z − x) =
m
∑

r=0

br (z − x)r =
m
∑

r=0

cr (z)x
r

where {cr (z)} are polynomials in z with integer coefficients (since the {br} are integers).

Note that for z = x0 + y0, we have

Q0 (x0;x0 + y0) = Q (y0) = 0
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which means Q0 (x;x0 + y0) and P (x) have a zero in common, namely x0.

Hence, the resultant W1 (z) of P (x) and Q0 (x;x0 + y0) is a polynomial in z with

integer coefficients (since the {ak} and {cr (z)} are integers) where

W1 (x0 + y0) = 0

Therefore, x0 + y0 is algebraic.

(f) Let

Q1 (x; z) = xmQ
( z

x

)

=
m
∑

r=0

brx
m
( z

x

)r

=
m
∑

r=0

cm−r (z)x
r

where {cm−r (z)} are polynomials in z with integer coefficients (since the {br} are inte-

gers). Note that for z = x0y0, we have

Q1 (x0;x0y0) = xm0 Q (y0) = 0

which means Q1 (x;x0y0) and P (x) have a zero in common, namely x0.

Hence, the resultant W2 (z) of P (x) and Q1 (x;x0y0) is a polynomial in z with integer

coefficients (since the {ak} and {cm−r (z)} are integers) where

W2 (x0y0) = 0

Therefore, x0y0 is algebraic.

In comparison, irrational numbers do not even have the most fundamental structure

under arithmetic operations.

Claim 20 Irrational numbers do not form a group under addition.

Proof. We have
√
2 and 1−

√
2 are irrational,14 yet

√
2+
(

1−
√
2
)

= 1 is not irrational.

Claim 21 Irrational numbers do not form a group under multiplication.

Proof. We have
√
2 is irrational, however

(√
2
) (√

2
)

= 2 is not irrational.

Claim 22 Irrational numbers do not form a group under exponentiation.

Proof. If x were the exponentiation identity, then yx = y for every irrational y. This

means yx−1 = 1 (since y 6= 0), for every irrational y, which means x = 1, which is not

irrational.

Claim 23 Irrational numbers do not form a group under non-zero rational exponentiation.

Proof. We have
√
2 is irrational and

(√
2
)2

= 2 is not irrational.

Claim 24 Irrational numbers do not form a group under irrational exponentiation.

Proof. Besides the fact that there is no irrational exponentiation identity, we have
√
e

and ln 4 are both irrational (by Claim X), so that
(

e
1
2

)ln 4
= e

1
2
(2 ln 2) = 2 is not irrational.

However, irrational numbers do have some properties that are useful in determining

marker matrix entries.

14If 1−
√
2 =

n
m

were rational, for integers n and m, then
√
2 =

m−n
m

would be rational; a contradiction.
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Claim 25 The reciprocal of an irrational number is irrational.

Proof. Suppose 1
x

is rational, i.e., 1
x
= n

m
for non-zero integers n and m. Then x = m

n

is rational.

Claim 26 The product of non-zero rational and irrational numbers is irrational.

Proof. Let x be a rational number, say n′

m′ , for non-zero integers n′ and m′, and let y be

an irrational number. Suppose xy = n
m

for non-zero integers n and m. Then y = nm′

mn′ ; this

is a contradiction.

Corollary 27 The quotient of non-zero rational and irrational numbers is irrational.

Proof. Let x be a non-zero rational number and let y be an irrational number. Then 1
y

is irrational, so that x
y
= x

(

1
y

)

is the product of a rational number (x) with an irrational

number
(

1
y

)

, which is irrational. Therefore y
x
= 1

x
y

is also irrational.

Claim 28 The natural logarithm of a positive rational number is irrational.

Proof. Suppose ln r = n
m

, where r is a positive rational number, and n and m are

non-zero integers. Then e
n
m = r is rational, which contradicts the previous corollary.

Claim 29 For a positive number a and non-zero rational number r, if ln a is rational, then

ar is irrational.

Proof. Suppose ar is rational. Since ar = er ln a, then r ln a must be irrational, which

means ln a must be irrational.

Note that the reverse of this claim is not true: 2
1
2 is irrational, yet ln 2 is not rational.

However, e2 is irrational, and ln e = 1 is rational.

Claim 30 For a positive number a, if ln a is rational, then the logarithm base a of a positive

rational number is irrational.

Proof. Suppose ln a is rational, say, ln a = n
m

for non-zero integers n and m. Then

loga r =
ln r

ln a
=

m

n
ln r

for rational r. However, since r is rational, then ln r is irrational, which means m
n
ln r is

irrational.

Note that the reverse of this claim is not true: log2 3 is irrational, yet ln 2 is not rational.

However, loge2 3 is irrational, yet ln e2 = 2 is rational.

Claim 31 For condition G on parameter α ∈ W , if f : U × W ⊂ R × R → V ⊂ R

is a function such that f (r;α) ∈ V is irrational when r ∈ U is rational and condition G

applies, then every element of ∅ 6= f−1 (s) ∈ U×{α} is irrational when s ∈ V is rational

and condition G applies.

Proof. Given condition G on parameter α ∈ W , let s ∈ R be rational. Suppose

r×{α} ∈ f−1 (s) ⊂ U ×{α} is rational. Then s = f (r;α) ∈ V is irrational since r ∈ U

is rational and condition G applies; this is a contradiction.

In particular, for U = R − {0}, V = W = (0,∞) − {1}, the function f (r;α) = αr,

and where “lnα is rational” is the condition G on α, then Claim (29) is the statement that

f is irrational when r is rational, and Claim (30) is the statement that f−1 (s) = logα s is

irrational when s is rational.
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6. Coding Notes

A trirational number may be represented in programming code (regardless of language

or context) starting as a set of consecutive signed/unsigned unitbytes15 (representing the

numerator and denominator, respectively, of a reduced rational number), in the following

order: First for the rational part, then one each for each element of the index set (repre-

senting the coefficients for the irrational part), ending with single unsigned unitbytes for

each member of the index set. Since the index set potentially changes as the result of any

particular operation for any given framework, a potentially new storage requirement may

be needed as the result of any rational arithmetic or conversion operation.

A rational arithmetic or conversion operation may be thought of as a transformation

from one (for unitary operations and conversions) or two (for binary operations) trirational

number(s) to another trirational number, along with a transformation of one/two marker

matrices into a resulting marker matrix. These transformations define how each range

signed/unsigned unitbytes in the rational part, the index set coefficients part, and the index

set itself are functions of the corresponding elements in the domain value(s) based on the

chosen arithmetic/conversion function and the markers in the rational calculation frame-

work. A statistical calculation using rational arithmetic and conversions is therefore simply

an ordered list of these transformations with conditional logic for determining when a final

exact or precisely error-bounded approximation is available.

7. Appendix 1: Rationality of
c21

a′0
b′0

+
a′1
b′1

c1

Claim 32 If
a′0
b′0

and
a′1
b′1

are rational, then
c21

a′0
b′0

+
a′1
b′1

c1

is irrational if and only if





c1

2
a′0
b′0

+
a′1
b′1

c1





2

is irrational.

Proof. Suppose
c21

a′0
b′0

+
a′1
b′1

c1

is rational, which means

c21
a′0
b′0

+
a′1
b′1
c1

=
n

m

for some integers n and m.

We have

(

a′1
b′1

)2

+ 4
m

n

a′0
b′0

=

(

a′1
b′1

)2

+ 4





a′0
b′0

+
a′1
b′1
c1

c21





a′0
b′0

=

(

a′1
b′1
c1

)2
+ 2

(

2
a′0
b′0

)(

a′1
b′1
c1

)

+
(

2
a′0
b′0

)2

c21

=





2
a′0
b′0

+
a′1
b′1
c1

c1





2

15A “unitbyte” is any memory or register space that is considered the smallest collection of bytes for any

particular numerical value. For the purposes of this paper, a unitbyte shall be an octabyte (64 bits) to facilitate

the use of MAPLE code in assembly-level implementations.
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is rational.

Furthermore, if





c1

2
a′0
b′0

+
a′1
b′1

c1





2

is rational, then

1

4
a′0
b′0











2
a′0
b′0

+
a′1
b′1
c1

c1





2

−
(

a′1
b′1

)2






=

1

4
a′0
b′0







4
(

a′0
b′0

)2
+ 4

a′0
b′0

a′1
b′1
c1

c21






=

a′0
b′0

+
a′1
b′1
c1

c21

is rational.

Then
c21

a′0
b′0

+
a′1
b′1

c1

is rational if and only if





c1

2
a′0
b′0

+
a′1
b′1

c1





2

is rational, which means there

are non-perfect square16 integers n′ and m′ such that

c1

2
a′0
b′0

+
a′1
b′1
c1

= ±
√

n′

m′

which means

c1 = ±
2
√

n′

m′
a′0
b′0

1∓
√

n′

m′
a′1
b′1

(4)

Therefore, if c1 is of the form in (4) for some non-perfect square integers n′ and m′,

then
c21

a′0
b′0

+
a′1
b′1

c1

is rational; otherwise, it is irrational.

For example, c1 = ± 2
√
2

1∓
√
2

is of the form in (4), with n′

m′ = 2 and
a′0
b′0

= 1 =
a′1
b′1

, so that

c21
1+c1

=

(

± 2
√
2

1∓
√
2

)2

1± 2
√
2

1∓
√
2

= −8 is rational. Likewise, c1 = 2
√
3

1−
√
2

is not of the form in (4), so we

have
c21

1+c1
=

(

2
√
3

1−
√
2

)2

1+ 2
√
3

1−
√
2

= 24
73

√
2− 120

73

√
3− 168

73

√
6− 108

73 is irrational.

Note that if c1 is of the form in (4), then

c21
a′0
b′0

+
a′1
b′1
c1

=



±
2
√

n′

m′
a′0
b′0

1∓
√

n′

m′
a′1
b′1





2

a′0
b′0

+
a′1
b′1



±
2
√

n′

m′
a′0
b′0

1∓
√

n′

m′
a′1
b′1





= 4
a′0
b′0

1

m′

n′ − (
a′1
b′1
)2

is the rational value of
c21

a′0
b′0

+
a′1
b′1

c1

, where m′

n′ =





2
a′0
b′0

+
a′1
b′1

c1

c1





2

.

16The integers n′ and m′ must not be perfect squares, for then c1

2
a′
0

b′0
+

a′
1

b′1
c1

would be rational, which is a

contradiction, since c1 is irrational.
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8. Appendix 2: Decimal Representations Of Trirational Numbers

Claim 33 The decimal representation of a number is either finite or periodic if and only if

the number is a reduced rational.

Proof. (=⇒) Suppose the decimal representation of a number x is finite. Then

x =
N
∑

k=−∞
ak10

k

for integers 0 ≤ ak ≤ 9, where ak = 0 for all k < L for some integer L > −∞. Hence,

we have

x =

N
∑

k=−L

ak10
k

which means

x =

N+L
∑

k=0

ak−L10
k

10L

which is rational, since
N+L
∑

k=0

ak10
k and 10L are integers, and 10L 6= 0, and every rational

has a unique reduced form.

Now suppose the decimal representation of a number x is periodic. Then

x =
N
∑

k=−∞
ak10

k

for integers 0 ≤ ak ≤ 9, and

10L
−M
∑

k=−∞
ak10

k −
⌊

10L
−M
∑

k=−∞
ak10

k

⌋

=
−M
∑

k=−∞
ak10

k

for some integers M ≥ 1 and L ≥ 1. This is the same as

10L
−1
∑

k=−∞
ak−M+110

k −
⌊

10L
−1
∑

k=−∞
ak−M+110

k

⌋

=
−1
∑

k=−∞
ak−M+110

k

Hence, we have

10
L+M−1

x +
N
∑

k=0

ak−M+110
k

=





N
∑

k=−M+1

ak10
k+L+M−1

+



10
L

−1
∑

k=−∞

ak−M+110
k







 +
N
∑

k=0

ak−M+110
k

=





N
∑

k=−M+1

ak10
k+L+M−1

+











10
L

−1
∑

k=−∞

ak−M+110
k







 +

−1
∑

k=−∞

ak−M+110
k







 +
N
∑

k=0

ak−M+110
k

=

N
∑

k=−M+1

ak10
k+L+M−1

+







10
L

−1
∑

k=−∞

ak−M+110
k







 + x

so that

x =

N
∑

k=−M+1

ak10
k+L+M−1 +

⌊

10L
−1
∑

k=−∞
ak−M+110

k

⌋

−
N
∑

k=0

ak−M+110
k

10L+M−1 − 1
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which is rational, since
N
∑

k=−M+1

ak10
k+L+M−1+

⌊

10L
−1
∑

k=−∞
ak−M+110

k

⌋

−
N
∑

k=0

ak−M+110
k

and 10L+M−1−1 are integers, and 10L+M−1−1 6= 0 since L+M ≥ 2, and every rational

has a unique reduced form.

(⇐=) Let n
m

be a reduced rational number, i.e., n and m are relatively prime integers

where m 6= 0, and let

n

m
=

N
∑

k=−∞
ak10

k

for integers 0 ≤ ak ≤ 9. If all ak≤−N0≤−1 ≡ 0, then we have

n

m
=

N
∑

k=−N0+1

ak10
k

which means the fractional part of n
m

has a finite decimal representation.

Therefore, suppose not all ak≤−N0 are zero for any N0. This means n
m

is the sum

of a part with a finite decimal representation and a part with an infinite non-zero decimal

representation. Without loss of generality, the latter part of n
m

is taken to be the entire

fractional value of n
m

, with no leading zeros in the decimal representation.

Since n and m are relatively prime, there exists an integer d ≥ 0 such that

(

10d − 1
)

nmodm = 0

which means

10dn−m
⌊

10d
n

m

⌋

= n−m
⌊ n

m

⌋

or

10d
n

m
−
⌊

10d
n

m

⌋

=
n

m
−
⌊ n

m

⌋

Furthermore, for integer q ≥ 1, if

10qd
n

m
−
⌊

10qd
n

m

⌋

=
n

m
−
⌊ n

m

⌋

then
⌊

10(q+1)d n

m

⌋

= 10d
⌊

10qd
n

m

⌋

+
⌊

10d
n

m

⌋

− 10d
⌊ n

m

⌋

and

10(q+1)d n

m
−
⌊

10(q+1)d n

m

⌋

= 10(q+1)d n

m
−
(

10d
⌊

10qd
n

m

⌋

+
⌊

10d
n

m

⌋

− 10d
⌊ n

m

⌋)

= 10d
(

10qd
n

m
−
⌊

10qd
n

m

⌋)

+
(

10d
⌊ n

m

⌋

−
⌊

10d
n

m

⌋)

= 10d
( n

m
−
⌊ n

m

⌋)

+ 10d
⌊ n

m

⌋

−
⌊

10d
n

m

⌋

= 10d
n

m
−
⌊

10d
n

m

⌋

=
n

m
−
⌊ n

m

⌋

so that n
m

has a periodic decimal representation.
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