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Abstract

Estimating high conditional quantiles is an important problem. Many studies on this problem

use a quantile regression (QR) method. The regular quantile regression method often sets a

linear or non-linear model which estimates the coefficients in the model to obtain the estimated

conditional quantile. The real-world applications may be restricted by this approach’s model

setting. This paper proposes a direct nonparametric quantile regression method to overcome

this restriction. Monte Carlo simulations show good efficiency for the proposed nonparametric

QR estimator relative to the regular QR estimator. The paper also investigates a real-world

example of applications by using the proposed method, and gives comparisons of the proposed

method and existing methods.

Keywords: Conditional quantile, goodness of fit, extreme value distribution, Gumbel’s second

kind of bivariate exponential distribution, nonparametric regression.
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1. Introduction

It is important to study quantile regression (Koenker, 2005) to estimate high conditional quan-

tiles in real-world extreme events. Some extreme events can cause damages to society: stock

market crashes, heavy rain falls, forest fires, pollution, earth quakes and hurricanes. We are

interested in random variables with extreme events which usually are heavy tailed distributed.

Such that estimation of high conditional quantiles of a heavy tailed distributed random variable

 is an important problem.

The traditional mean linear regression estimates the conditional expectation (|x), where
x = (1 1 2  )

  x ∈   =  + 1 The linear mean regression model assumes

|x =  (|1 2  ) = xβ = 0 + 11 + 22 + +  (1 )
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We estimate β = (0 1  )
  where β ∈  from a random sample {(x)  = 1  },

where x is the -dimensional design vector and  is the univariate response variable from a

continuous distribution with a cumulative distribution function (c.d.f.)  (). The least square

(LS) estimator bβ is a solution to the following equation
bβ = arg min

∈

X
=1

( − x β)2 (2 )

where bβ is obtained by minimizing the 2-distance.
Traditional mean regression is limited on its abilities to predict extreme events. When dealing

with heavy tailed distributions, the traditional method simply cannot reach extreme events in

a dataset. We now investigate a real-world example in extreme events to show the limitations

of traditional mean regression, and later in Section 4 we will express why quantile regression is

needed for these heavy tailed data sets.

Example: Amazon Stock Market Example

Amazon’s (AMZN) stock had a great year in 2017. The stock surpassed a closing price of

$1,000 on June 2, 2017. Two variables of interest for stock traders are closing price and volume.

For this example we focus on the latter. Daily volume for a stock is the total amount of trading

occurrences for the stock each day, therefore whether a stock is purchased or sold the volume

increases. Volume is a great indicator for how liquid the stock is, i.e. how fast it can be sold if

bought. Predicting the volume of a stock can be just as important as predicting the price of the

stock for certain traders. We will investigate the effect of the opening price of AMZN on total

daily volume. Therefore our response variable is the total daily volume of Amazon’s stock and

the regressor will be the opening price for that day. The data was collected (Yahoo Canadian

Finance, 2018) for the last 10 years.

Table 1 lists the top 10 volumes. Investing websites (Investopedia, 2010) have mentioned

that a volume is high if it is above 2 times the average. For 2008-2017 Amazon stock, 2,518 data

points, the average volume is 5,427,194. In this paper, we are only interested in high volumes,

so we set a threshold of 10,854,389, which is double the average volume. There are 182 trading

days with volumes above the threshold.

Table 1. Top 10 Data of Amazon Total Daily Volume

Opening Price of AMZN (Canadian $) Total Daily Volume

111.05 58,305,800

68.91 42,885,900

105.93 42,421,100

57.36 39,783,100

123.18 37,774,400

43.37 32,601,900

119.21 32,271,200

76.30 30,996,600

129.77 29,471,300

124.43 27,293,100
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We apply a quadratic mean regression model to the data,

| = (|) = 0 + 1+ 2
2 (3 )

where  is the square root of the daily volume of AMZN and  is the square root of the opening

price that day. Note that we do data transformation for fitting a heavy tailed distribution.

Figure 1 shows the scatter plot and the LS mean regression line b| of the square root of
the daily volume of AMZN related to the square root of the opening price that day ( = 182),

by using formula (2). Whereb = b| = 380681 + 48810− 15442
There seems to be a small decrease in the LS mean square root volume when the square

root opening price is increased, however the relationship looks likely not strong, and the mean

regression estimate was not able to reach the higher quantile volumes.

Figure 1. The scatter plot and LS mean regression line, b , of the square root of the daily
volume of AMZN related to the square root of the opening price that day ( = 182).

In this paper, we use quantile regression method, we wish to estimate high conditional

quantiles of a random variable  with a c.d.f.  () given a variable vector, x = (12 )

and x = (1 1 2  )
 ∈  where  = +1. The th conditional linear quantile is defined

by

( |x) = ( |1 2  ) = −1( |x) 0    1 (4 )

The traditional quantile regression is concerned with the estimation of the th conditional quan-

tile regression (QR) of  for given x which often sets a linear model as

( |x) = x β() = 0() + 1()1 + · · ·+ () 0    1 (5 )

For linear model (5), we estimate the coefficient β() = (0() 1() 2()  ())
 ∈

 from a random sample {(x)  = 1  }, where x = (1 1 2  )

is the -

dimensional design vector and  is the univariate response variable from a continuous distrib-

ution with a c.d.f.  () Koenker and Bassett (1978) proposed an 1-weighted loss function to

obtain estimator bβ() by solving
bβ() = arg min

()∈

X
=1

 ( − xβ()) 0    1 (6 )
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where  is a loss function, namely

 () = ( − (  0)) =

½
( − 1)   0;

  ≥ 0
The linear quantile regression problem can be formulated as a linear program

min
(()uv)∈×2

+

{1u+ (1− )1v|Xβ() + u− v = y}

where 1 is an -vector of 1s, X denotes the  ×  design matrix, and uv are  × 1 vectors

with elements of   respectively (Koenker, 2005).

In recent years, studies are looking for efficiency improvements of estimator (6) (Wang and

Li, 2013; Huang et al. 2015, Huang and Nguyen, 2017). The regular linear quantile regression

(5) needs the estimator bβ() in (6) for the estimated conditional quantile curves. But this
estimated conditional quantile curve may be restricted under the model setting.

To overcome the limitation of the model setting in (5), this paper proposes a direct nonpara-

metric quantile regression method which uses the ideas of nonparametric kernel density estima-

tion and nonparametric kernel regression to obtain a direct estimator of conditional quantile

curves. In order to test if the new method is an improvement relative to the regular linear

quantile regression, we will do two studies in this paper:

1. Monte Carlo simulations will be performed to confirm the efficiency of the new direct QR

estimator relative to the regular QR estimator.

2. The new proposed method will be applied to the Amazon Stock Market example and

compared with the regular QR method.

In Section 2, we propose a direct nonparametric quantile regression estimator. In Section

3, the results of Monte Carlo simulations generated from Gumbel’s second kind of bivariate

exponential distribution (Gumbel, 1960) show that the proposed direct method produces high

efficiencies relative to existing linear QR methods. In Section 4, the regular linear quantile

regression and the proposed direct quantile regression are applied to the Amazon Stock Market

example from this Section. The study of this example illustrates that the proposed direct quantile

regression model fits the data better than the existing linear quantile regression method.

2. Proposed Direct Nonparametric Quantile Regression

In this paper, for generality, we ignore the idea of the linear model (5). We obtain a direct

estimator for the true conditional quantile in (4):b( |x) = b( |1 2  ) = b−1( |x)
by using local conditional quantile estimator ( |x) = ( |x) based on the th point of given
random sample, {(x)  = 1  }  for x = (1 2  ) 

We construct the following five-step algorithm of a direct nonparametric quantile regression:

Step 1: Estimate the conditional density of  for given x = (12 ) using a kernel density

estimation method (Silverman, 1986; Scott, 2015):

b(|x) = b(x)b(x)  (7 )
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where b(x) is an estimator of the joint density of  and x and b(x) is an estimator of the
marginal density of x.

A -dimensional kernel density estimator from a random sample X = (12 )  =

1 2   from a population x = (12 ) for joint density (x) is given by

b(x) = 1



X
=1



½
x−X



¾


where   0 is the bandwidth and the kernel function (x) is a function defined for -

dimensional x = (x1x2 x) which satisfies

Z


(x)x = 1

If a multivariate normal kernel is used for smoothing the normal distribution data with unit

variance,

 =

½
4

+ 2

¾1(+4)
−1(+4)

Step 2: Estimate the conditional c.d.f. of  given x :

b (|x) = Z 

−∞
b(|x)

Step 3: Estimate the local conditional quantile function ( |x) of  given x by inverting an
estimated conditional c.d.f. b (|x).

b( |x) = c( |x) = inf{ : b (|x) ≥ } = b−1( |x)
To avoid the computational difficulties of b( |x) we estimate the local conditional quantile
function ( |x) of  given x by inverting b (|x) in Step 2 at the th data point (x):b( |x) = c( |x) = inf{ : b (|x) ≥ } = b−1( |x)  = 1 2   (8 )

Step 4: We propose a direct nonparametric quantile regression estimator for the th conditional

quantile curve of x by using Nadaraya-Watson (NW) nonparametric regression estimator on³
x b( |x)´   = 1 2   :

( |x) = b( |x) =
X
=1


©
x−X

h

ª b( |x)
X
=1


n
x−X

h

o =

X
=1

x(xX)b( |x) 0    1 (9 )

where (xX) is called an equivalent kernel, and h = (1  )

x(xX) =

©
x−X

h

ª
X
=1


n
x−X

h

o   = 1 2  
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where



½
x−X

h

¾
=

1

1

Y
=1



µ
− 



¶
  = 1  

where  is the kernel function, and   0 is the bandwidth for the th dimension.

Step 5: Check all procedures, and make any necessary adjustments.

3. Simulations

For investigating the proposed direct nonparametric quantile regression estimator in (9), in this

Section, Monte Carlo simulations are performed. We generate  random samples with size 

each from the second kind of Gumbel’s bivariate exponential distribution (Gumbel, 1960) with

a non-linear conditional quantile function of  given  in (11). It has c.d.f.  ( ) :

 ( ) = (1− −)(1− −)(1 + −(+))  ≥ 0  ≥ 0   0 (10 )

The true th conditional quantile function of  given  of (10) is

( |) = ( |) = ln
Ã

2(2− − 1)
(2− − 1)− 1 +

p
((2− − 1) + 1)2 − 4(2− − 1)

!
 (11)

 ≥ 0   0 0    1

We use two quantile regression methods:

1. The regular quantile regression ( |) estimation based on (5):
( |) = b0() + b1() (12 )

2. The direct nonparametric quantile regression ( |) estimation based on (9)

( |) =
X
=1

x(xX)b( |) 0    1  = 1 2   (13 )

where b( |) is obtained by (8).
For each method, we generate sample size  = 100 for  = 100 samples. ( |) and

( |)  = 1 2  are estimated in the th sample. Let  = 1 in (11). Then the true

th conditional quantile is

( |) = ( |) = ln
Ã

2− − 1
− − 1 +

p
−2 − (2− − 1)

!
  ≥ 0 0    1 (14 )

The simulation mean squared errors (SMSEs) of the estimators (12) and (13) are:

(( |)) =
1



X
=1

Z 

0

(( |)−( |))2; (15)

(( |)) =
1



X
=1

Z 

0

(( |)−( |))2 (16)
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where the true th conditional quantile ( |) is defined in (14).  is a finite  value such

that the c.d.f. in (10)  () ≈ 1 We take  = 6 and the simulation efficiencies (SEFFs) are

given by

 (( |)) = (( |))
(( |)) 

where (( |)) and (( |)) are defined in (15) and (16), respectively.
Table 2. Simulation Mean Square Errors (SMSEs) and Efficiencies (SEFFs)

of Estimating ( |) = 100  = 100  = 6

 0.95 0.96 0.97 0.98 0.99

(( |)) 18.97 29.63 32.37 58.36 86.84

(( |)) 5.13 6.02 7.39 9.90 16.09

 (( |)) 3.70 4.93 4.38 5.89 5.39

Table 2 and Figure 2 shows that all of the  (( |)) are larger than 1 when  =

095..., 0.99. Overall, we can conclude that for  = 095  099 the proposed direct estimator

( |) in (13) is more efficient relative to the regular quantile regression ( |) in (12).

(a) (b)

Figure 2. (a) (( |)) is the red solid line, (( |)) is the blue dash line. (b)
 (( |)) is the red solid line,  (( |)) ≡ 1 is blue dash line.
Figure 3 shows the average curves of 100 estimated  = 095th quantile curves of the ( |)

and ( |) The average ( |) is much closer than ( |) to the true quantile curve (14).

Figure 3. In  = 100 = 100  = 095 simulations, the true Quantile-green dash, the average

regular -blue dash and the average direct -red solid.
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4. Amazon Stock Market Example

We apply two quantile regression models to the Amazon Stock Market example in Section 1:

1. The regular quantile regression ( |x) in model (5) using estimator b() in (6);
2. The direct nonparametric quantile regression ( |x) in (9).
The estimated quantiles in this Section are for the population of the AMZN daily volumes

greater than the threshold 10,854,389. We also compare these models with the LS mean regres-

sion applied in Section 1.

At first, we use the following linear polynomial quantile regression model for this example:

( |) = 0() + 1()+ 2()
2

where  is the square root of the daily volume of AMZN and  is the square root of the opening

price that day.

(a) (b)

(c)

Figure 4. For Amazon Stock Market example, data − black,  = 182 the LS mean regression
line b is blue solid. (a) Regular − dash; (b) Direct − solid; (c) Both of the Regular
 and Direct  in a plot at  = 095 in black,  = 097 in green and  = 099 in red.
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In this paper we use the proposed five-step algorithm in Section 2 to obtain the new direct

nonparametric quantile estimator ( |x) in (9), then compare it with the regular quantile
estimator ( |x) by using (6). Figures 4(a), (b) and (c) show the scatter plot of the AMZN
daily volumes vs. opening price with mean LS curve b  the fitted  and  quantile curves

at  = 0,95, 0.97 and 0.99. It is interesting to see that the  curves appear to follow the data

patterns closer than the  curves.

Table 3 lists the estimated AMZN daily volume quantile values at a given opening price for

 = 0.97 and 0.99. It demonstrates that when quantiles are at high  , the  gives greater

variety of AMZN daily volumes predictions than the  The relationship of AMZN daily

volumes and opening price is not necessarily linear.

Table 3. Predicted High Quantiles of AMZN Daily Volumes Using  and 

(Population of the AMZN daily volumes greater than the threshold 10,854,389)

 = 097  = 099

Opening Price (Canadian $)    

$25 37,843,205 33,185,929 42,789,842 41,843,321

$100 33,097,066 37,258,031 42,513,740 44,863,380

$225 28,766,778 27,880,550 39,806,775 34,989,182

$400 24,830,980 25,752,650 34,909,299 27,805,877

$625 21,268,810 25,329,384 28,277,940 27,007,946

$900 18,059,907 19,885,667 20,585,579 22,018,153

In order to compare the regular QR estimator based on (6) and the direct nonparametric

QR estimator in (9), we extend the idea of measuring goodness-of-fit by Koenker and Machado

(1999) and suggest using a Relative () (Huang and Nguyen, 2017) 0    1 Figure 5 and

Table 4 show the values of the Relative () for given  = 095  099 We note that ()  0

which means that  is a better fit to the data than .

Figure 5. Relative () by using the direct quantile regression  for Amazon volumes.

Table 4. Relative () Values for the Amazon Volumes.

 = 095  = 096  = 097  = 098  = 099

Relative () 0.0283 0.0238 0.0428 0.0386 0.0339
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5. Conclusions and Suggestions

After the above studies, we can conclude:

1. This paper proposes a new direct nonparametric quantile regression method which is

model free. It uses nonparametric density estimation and nonparametric regression techniques

to estimate high conditional quantiles. The paper provides a computational five-step algorithm

which overcomes the limitations of the estimation in the linear quantile regression model.

2. The Monte Carlo simulation works on the second kind of Gumbel’s bivariate exponential

distribution which has a non-linear conditional quantile function. The simulation results confirm

that the proposed new method is more efficient relative to the regular quantile regression.

3. The proposed new direct nonparametric quantile regression can be used to predict extreme

values of AMZN daily volumes for a given opening price. The proposed direct quantile regression

estimator,  gives a variety of predictions which fits the data very well. The prediction of

relationships are not simply just linear. We expect that the predictions from  may be more

reasonable than  predictions. The new estimator may benefit investors understanding the

stock market.

4. The proposed direct nonparametric quantile regression provides an alternative way for

quantile regression. Further studies on the details of this method are suggested.
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