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Abstract  

Recent studies compare sufficient bootstrapping with conventional bootstrapping using 
point estimates of parameters, along their biases, relative efficiencies, etc. With 
numerical illustration and simulation, it claims that sufficient bootstrapping performs 
better than the conventional bootstrapping in certain situations. In real life, confidence 
interval estimates are preferable to point estimates. Confidence interval estimates take 
into account the variability of the point estimates for making better inference. In this 
paper, we provide algorithm to implement sufficient bootstrapping for constructing 
confidence interval estimates for several parameters such as mean, variance, standard 
deviation and coefficient of variation for better evaluating the performance of sufficient 
bootstrapping as compared to the conventional bootstrapping. A simulation study has 
been undertaken for evaluating confidence interval estimates using the estimated 
coverage probability and confidence length. This evaluation makes the recommendation 
for the sufficient bootstrapping stronger.  

Keywords: Bootstrapping, Sufficient bootstrapping, Confidence interval, Coverage 
probability, Confidence length. 

1. Introduction 

Introduced by Efron (1979), bootstrapping is a computationally intensive and iterative 
method that has become increasingly popular in recent years due to the availability of the 
modern computational facilities. It has made a significant impact in the field of statistics 
and statistical applications. The users of bootstrapping rely on data-based simulation 
instead of the traditional algebraic derivations. Because bootstrapping resample from the 
original sample, it is popularly known as the resampling procedure. For details about 
bootstrapping, one can consult with Efron and Tibshirani (1993), Chernick (1999), 
Johnson (2001), Davison et al. (2003), Casella (2003), etc. Efron (2003) discusses a 
second thought on bootstrapping. Beran (2003), Lele (2003), Shao (2003), Lahiri (2003) 
and Politis (2003) explain the impact of bootstrap on statistical algorithms and theory, 
estimating functions, sample surveys, small area estimation and time series, respectively. 
Ernst and Hutson (2003) and Rueda et al. (1998, 2005, 2006) discussed the application of 
bootstrapping for quantile estimation. Holmes (2003) and Soltis and Soltis (2003) discuss 
applications of bootstrapping in phylogenetic trees and phylogeny reconstruction 
respectively. Holmes et al. (2003) provide an overview of a conversation on bootstrap 
between Bradley Efron and other good friends. Horowitz (2003) discussed the use of 
bootstrap in econometrics and Hall (2003) discussed a short prehistory of bootstrap. 
Bootstrap methods and permutation tests by Hesterberg (2008), and Bootstrap for 
complex survey data by Kolenikov (2009) are among some significant source for learning 
and updating about bootstrapping. 
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Singh and Sedory (2011) proposed a sufficient bootstrapping, where duplication of a 
sampling unit in the conventional bootstrapping has been ignored. They also develop a 
theoretical framework for the technique. While the sufficient bootstrapping reduces the 
computational burden to a greater extent, the gain in relative efficiency of sufficient 
bootstrapping is significant as compared to the traditional bootstrapping in certain 
situations. Sufficient bootstrapping is mostly studied and compared for point estimates of 
parameters, along with biases and relative efficiencies. In real life, however, the 
confidence interval estimates of parameters are preferable to their point estimates due to 
the fact that confidence interval estimates take into account the variability of the point 
estimates, and thereby provide better inference about the parameter of interest. For better 
recommendation, the performance of confidence interval estimates needs to justified in 
terms of estimated coverage probability and confidence length.  
 

The main objective of this paper is to consider confidence interval estimates for several 
parameters such as mean, variance, standard deviation and coefficient of variation using 
sufficient bootstrapping and traditional bootstrapping. This study leads to an evaluation 
of the sufficient bootstrapping technique over the traditional bootstrapping technique 
using a Monte Carlo simulation, and thus leads to a stronger recommendation as to using 
sufficient bootstrapping.  

2. Bootstrapping versus sufficient bootstrapping 

Let 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) be an original sample with mean �̅� =
1

𝑛
∑ 𝑥𝑘𝑘∈𝒙  and the sample 

variance  

𝑠2 =
1

𝑛 − 1
∑ (𝑥𝑘 − �̅�)2

𝑘∈𝒙
 

The 𝑖th bootstrap sample of 𝒙 with replacement is given by 

𝒙𝑖 = (𝑥𝑘
𝑖 : 𝑘 = 1,2, ⋯ , 𝑛); 𝑖 = 1,2, ⋯ , 𝑛𝑛 

The bootstrap sample mean 

�̅�𝑖 =
1

𝑛
∑ 𝑥𝑘

𝑖

𝑘∈𝒙𝑖

 

is unbiased for �̅�, the mean of the original sample and the sample variance of the 
bootstrapping sample mean is given by  

𝑉(�̅�𝑖) =
1

𝑛
𝑠2 

Introduced by Singh and Sedory (2011), the 𝑖th sufficient bootstrap sample of 𝒙 is 
defined by 

𝒙𝑖(𝜈) = (𝑥𝑘
𝑖(𝜈)

: 𝑘 = 1,2, ⋯ , 𝜈) ; 𝑖 = 1,2, ⋯ , 𝑛𝑛 
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which consists of 𝜈 distinct units of 𝒙𝑖. Singh and Sedory (2011) showed that sufficient 
bootstrap sample mean  

�̅�𝑖(𝜈) =
1

𝜈
∑ 𝑥𝑘

𝑖(𝜈)

𝑘∈𝒙𝑖(𝜈)

 

is unbiased for �̅�, the mean of the original sample and the sample variance of the 
sufficient bootstrapping sample mean is given by  

𝑉(�̅�𝑖(𝜈)) = [𝐸𝑑 (
1

𝜈
) −

1

𝑛
] 𝑠2 

where 𝐸𝑑 denotes the expected value over all possible distinct units. They showed that 
the percent relative efficiency of the sufficient bootstrapping estimator over the 
conventional bootstrapping is 

(
𝑛𝑛−1

∑ 𝑙𝑛−1𝑛
𝑙=1

) × 100% 

3. Parameters of interest 

Following Singh and Sedory (2011), we consider the beta distribution, 𝐵(𝛼, 𝛽), for 
simulating original sample. The population parameters of interest are as follows: 

Population mean: 𝜇 =
𝛼

𝛼+𝛽
= 𝜃1 

Population variance: 𝜎2 =
𝛼

(𝛼+𝛽)2(𝛼+𝛽+1)
= 𝜃2 

Population standard deviation: 𝜎 = √𝜎2 = 𝜃3 

Population coefficient of variation: 𝐶𝑉 =
𝜎

𝜇
× 100% = 𝜃4 

Singh and Sedory (2011) compared performance of sufficient bootstrapping and 
conventional bootstrapping using point estimates of these parameters along with their 
biases and relative efficiencies of sufficient bootstrapping as compared to conventional 
bootstrapping.  

We consider confidence interval estimates of these parameters in comparing performance 
of sufficient bootstrapping over the conventional bootstrapping. Confidence interval 
estimates of parameters are preferable to their point estimates because confidence interval 
estimates take the variability of point estimates into account in making inference. While 
comparing, we consider the estimated coverage probability and length of confidence 
interval estimates of mean, variance, standard deviation and coefficient of variation. The 
proportion of bootstrap and sufficient bootstrap confidence interval estimates containing 
the true parameters of interest refer to the coverage probability. We consider the average 
length of these confidence interval estimates for comparisons. 
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4. Confidence interval estimates 

We consider two confidence interval estimates of 𝜃𝑟, 𝑟 = 1, 2, 3, 4, under sufficient and 
conventional bootstrapping methods. They are (1) percentile confidence interval estimate 
and (2) 𝑡-confidence interval estimate. Introduced and motivated by Efron, below we 
provide definitions and algorithms to compute percentile and 𝑡-confidence interval 
estimates for conventional and sufficient bootstrap methods: 

4.1 The Percentile Method 

Given an original sample 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and 𝑖th bootstrap sample 𝒙𝑖 =

(𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ), let 𝜃𝑟

𝑖(𝒙𝑖) be the estimate of parameter 𝜃𝑟: 𝑟 = 1, 2, 3, 4 on the basis of 
the 𝑖th bootstrap sample. Then, the 100(1 − 𝛼)%  percentile confidence interval estimate 
of 𝜃𝑟  using bootstrapping is given by  

𝑝𝑐𝑖𝑏 = [𝑙(𝜃𝑟
𝑖), 𝑢 (𝜃𝑟

𝑖))] 

where 𝑙(𝜃𝑟
𝑖) and 𝑢(𝜃𝑟

𝑖) are the (
𝛼

2
) 𝑡ℎ  and (1 −

𝛼

2
)𝑡ℎ percentiles of 𝜃𝑟

𝑖(𝒙𝑖) over all 

bootstrap samples 𝒙𝑖: 𝑖 = 1, 2, ⋯ 𝑛𝑛.  

A 100(1 − 𝛼)%  percentile confidence interval estimate of 𝜃𝑟 using sufficient 
bootstrapping is given by  

𝑝𝑐𝑖𝑠 = [𝑙(𝜃𝑟
𝑖(𝜈)

), 𝑢 (𝜃𝑟
𝑖(𝜈)

))] 

where 𝑙(𝜃𝑟
𝑖(𝜈)

) and 𝑢(𝜃𝑟
𝑖(𝜈)

) are the (𝛼

2
) 𝑡ℎ  and (1 −

𝛼

2
)𝑡ℎ percentiles of 𝜃𝑟

𝑖(𝜈)
(𝒙𝑖(𝜈)) over 

all sufficient bootstrap samples 𝒙𝑖(𝜈): 𝑖 = 1, 2, ⋯ 𝑛𝑛(≅ 𝐵, say). 

In real life, it is not always possible to consider all 𝑛𝑛 bootstrap samples, and in general, 
the number of bootstrap replications 𝑛𝑛 is approximated by a reasonable value of 𝐵 
between 50 and 1000, and 𝐵 is popularly known as the number of bootstrap replications. 
If, for example, 𝐵 = 1000, then for a 95% confidence  interval estimate of 𝜃𝑟, 𝑙(𝜃𝑟

𝑖) 
=25th largest value of 𝜃𝑟

𝑖(𝒙𝒊)’s and 𝑢 (𝜃𝑟
𝑖) =975th largest value of the 𝜃𝑟

𝑖(𝒙𝑖)’s.  

4.2 𝒕-confidence interval 

Given an original sample 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), let 𝜃𝑟(𝒙) be a point estimate of 𝜃𝑟. Given 

𝑖th bootstrap sample 𝒙𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ) of 𝒙, let 𝒙𝑗|𝑖 = (𝑥1

𝑗|𝑖
, 𝑥2

𝑗|𝑖
, … , 𝑥𝑛

𝑗|𝑖
) be the 𝑗th 

bootstrap from 𝒙𝑖, 𝑗 = 1, 2, … , 𝐵; 𝑖 = 1, 2, … , 𝐵. Let 𝜃𝑟
𝑖(𝒙𝑖) and 𝜃𝑟

𝑗|𝑖
(𝒙𝑗|𝑖) be the point 

estimates of estimate of 𝜃𝑟 on the basis of 𝒙𝑖 and 𝒙𝑗|𝑖.  

Let  

𝑠𝑟
|𝑖

= 𝑠𝑑{𝜃𝑟
𝑗|𝑖

}𝑗=1:𝐵 
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𝑇𝑟
|𝑖

=
𝜃𝑟

𝑖 − 𝜃𝑟

𝑠𝑟
|𝑖

; 𝑟 = 1, 2, 3, 4; 𝑖 = 1, 2, ⋯ , 𝐵 

and  

𝑠𝑟 = 𝑠𝑑{𝜃𝑟
𝑖}𝑖=1:𝐵 

The 100(1 − 𝛼)%  𝑡-confidence interval estimate of 𝜃𝑟  using conventional 
bootstrapping is given by  

𝑡𝑐𝑖𝑏 = [𝜃𝑟 − (𝑠𝑟)𝑡𝑟

(1−
𝛼
2

)
, 𝜃𝑟 − (𝑠𝑟)𝑡𝑟

(
𝛼
2

)
] 

where 𝑡𝑟

(
𝛼

2
)
 and 𝑡𝑟

(1−
𝛼

2
)
 are (𝛼

2
) 𝑡ℎ  and (1 −

𝛼

2
)𝑡ℎ percentiles of 𝑇𝑟

|𝑖’s. 

In order to compute 𝑡-confidence interval estimates for sufficient bootstrapping, we 
compute 𝜃𝑟

𝑖(𝜈)
(𝒙𝑖(𝜈)) and 𝜃𝑟

𝑗(𝜈)|𝑖)
(𝒙𝑗(𝜈)|𝑖)) using sufficient bootstrap samples 𝒙𝑖(𝜈) and 

𝒙𝑗(𝜈)|𝑖, respectively. Then, compute  

𝑠𝑟
(𝜈)|𝑖

= 𝑠𝑑{𝜃𝑟
𝑗(𝜈)|𝑖

}𝑗=1:𝐵 

𝑇𝑟
(𝜈)|𝑖

=
𝜃𝑟

𝑖(𝜈)
− 𝜃𝑟

𝑠𝑟
(𝜈)|𝑖

; 𝑟 = 1, 2, 3, 4; 𝑖 = 1, 2, ⋯ , 𝐵 

𝑠𝑟
(𝜈)

= 𝑠𝑑{𝜃𝑟
𝑖(𝜈)

}𝑖=1:𝐵 

using sufficient bootstrapping samples. Then, a 100(1 − 𝛼)%  𝑡-confidence interval 
estimate of 𝜃𝑟  using sufficient bootstrapping is given by  

𝑡𝑐𝑖𝑠 = [𝜃𝑟 − (𝑠𝑟
(𝜈)

) 𝑡(𝜈)𝑟

(1−
𝛼
2

)
, 𝜃𝑟 − (𝑠𝑟

(𝜈)
) 𝑡(𝜈)𝑟

(
𝛼
2

)
] 

where 𝑡(𝜈)𝑟

(
𝛼

2
)
 and 𝑡(𝜈)𝑟

(1−
𝛼

2
)
 are (𝛼

2
) 𝑡ℎ  and (1 −

𝛼

2
)𝑡ℎ percentiles of 𝑇𝑟

(𝜈)|𝑖’s. 

In Table 1, we provide a schematic algorithm for computational details using 𝒙𝑖, 𝒙𝑗|𝑖, 
𝒙𝑖(𝑣) and 𝒙𝑗(𝑣)|𝑖.  
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Table 1: Algorithm of computational details using bootstrap samples (𝒙𝑖 and 𝒙𝑗|𝑖) and 
the corresponding sufficient bootstrap samples (𝒙𝑖(𝜈) and 𝒙𝑗(𝜈)|𝑖) 

𝒙𝑖 
𝑖 = 1,2, … , 𝐵 

𝒙𝑖(𝜈) 
𝑖 = 1,2, … , 𝐵 

Given 𝒙𝑖, 𝒙𝑗|𝑖 
𝑖, 𝑗 = 1,2, … , 𝐵 

Given 𝒙𝑖, 𝒙𝑗(𝜈)|𝑖 
𝑖, 𝑗 = 1,2, … , 𝐵 

 
 
 
 
 

𝒙1 

𝜃𝑟
1(𝒙1) 

 

 
 
 
 
 

𝒙1(𝜈) 

𝜃𝑟
1(𝜈)

(𝒙1(𝜈)) 

 

𝒙1|1 ; 𝜃𝑟
1|1

(𝒙1|1) 

𝒙2|1 ; 𝜃𝑟
2|1

(𝒙2|1) 

⋮ 

𝒙𝑗|1 ; 𝜃𝑟
𝑗|1

(𝒙𝑗|1) 

⋮ 

𝒙𝐵|1 ; 𝜃𝑟
𝐵|1

(𝒙𝐵|1) 

𝑠𝑟
|1

= 𝑠𝑑{𝜃𝑟
𝑗|1

}𝑗=1:𝐵 

𝑇𝑟
|1

=
𝜃𝑟

1 − 𝜃𝑟

𝑠𝑟
|1

 

𝒙1(𝜈)|1 ; 𝜃𝑟
1(𝜈)|1

(𝒙1(𝜈)|1) 

𝒙2(𝜈)|1 ; 𝜃𝑟
2(𝜈)|1

(𝒙2(𝜈)|1) 

⋮ 

𝒙𝑗(𝜈)|1 ; 𝜃𝑟
𝑗(𝜈)|1

(𝒙𝑗(𝜈)|1) 

⋮ 

𝒙𝐵(𝜈)|1 ; 𝜃𝑟
𝐵(𝜈)|1

(𝒙𝐵(𝜈)|1) 

𝑠𝑟
(𝜈)|1

= 𝑠𝑑{𝜃𝑟
𝑗(𝜈)|1

}𝑗=1:𝐵 

𝑇𝑟
(𝜈)|1

=
𝜃𝑟

1(𝜈)
− 𝜃𝑟

𝑠𝑟
(𝜈)|1

 

 
 
 
 
 
 

𝒙2 

𝜃𝑟
2(𝒙2) 

 

 

 
 
 
 
 
 

𝒙2(𝜈) 

𝜃𝑟
2(𝜈)

(𝒙2(𝜈)) 

 

 

𝒙1|2 ; 𝜃𝑟
1|2

(𝒙1|2) 

𝒙2|2 ; 𝜃𝑟
2|2

(𝒙2|2) 

⋮ 

𝒙𝑗|2 ; 𝜃𝑟
𝑗|2

(𝒙𝑗|2) 

⋮ 

𝒙𝐵|2 ; 𝜃𝑟
𝐵|2

(𝒙𝐵|2) 

𝑠𝑟
|2

= 𝑠𝑑{𝜃𝑟
𝑗|2

}𝑗=1:𝐵 

𝑇𝑟
|2

=
𝜃𝑟

2 − 𝜃𝑟

𝑠𝑟
|2

 

𝒙1(𝜈)|2 ; 𝜃𝑟
1(𝜈)|2

(𝒙1(𝜈)|2) 

𝒙2(𝜈)|2 ; 𝜃𝑟
2(𝜈)|2

(𝒙2(𝜈)|2) 

⋮ 

𝒙𝑗(𝜈)|2 ; 𝜃𝑟
𝑗(𝜈)|2

(𝒙𝑗(𝜈)|2) 

⋮ 

𝒙𝐵(𝜈)|2 ; 𝜃𝑟
𝐵(𝜈)|2

(𝒙𝐵(𝜈)|2) 

𝑠𝑟
(𝜈)|2

= 𝑠𝑑{𝜃𝑟
𝑗(𝜈)|2

}𝑗=1:𝐵 

𝑇𝑟
(𝜈)|2

=
𝜃𝑟

2(𝜈)
− 𝜃𝑟

𝑠𝑟
(𝜈)|2

 

⋮ ⋮ ⋮ ⋮ 
 
 
 
 
 

 

𝒙𝑖 

𝜃𝑟
𝑖(𝒙𝑖) 

 

 
 
 
 
 

 

𝒙𝑖(𝜈) 

𝜃𝑟
𝑖(𝜈)

(𝒙𝑖(𝜈)) 

 

 

𝒙1|𝑖 ; 𝜃𝑟
1|𝑖

(𝒙1|𝑖) 
 
𝒙2|𝑖 ; 𝜃𝑟

2|𝑖
(𝒙2|𝑖) 

⋮ 
𝒙𝑗|𝑖 ; 𝜃𝑟

𝑗|𝑖
(𝒙𝑗|𝑖) 

⋮ 
𝒙𝐵|𝑖 ; 𝜃𝑟

𝐵|𝑖
(𝒙𝐵|𝑖) 

𝑠𝑟
|𝑖

= 𝑠𝑑{𝜃𝑟
𝑗|𝑖

}𝑗=1:𝐵 

𝑇𝑟
|𝑖

=
𝜃𝑟

𝑖 − 𝜃𝑟

𝑠𝑟
|𝑖

 

𝒙1(𝜈)|𝑖 ; 𝜃𝑟
1(𝜈)|𝑖

(𝒙1(𝜈)|𝑖) 
 
𝒙2(𝜈)|𝑖 ; 𝜃𝑟

2(𝜈)|𝑖
(𝒙2(𝜈)|𝑖) 

⋮ 
𝒙𝑗(𝜈)|𝑖 ; 𝜃𝑟

𝑗(𝜈)|𝑖
(𝒙𝑗(𝜈)|𝑖) 

⋮ 
𝒙𝐵(𝜈)|𝑖 ; 𝜃𝑟

𝐵(𝜈)|𝑖
(𝒙𝐵(𝜈)|𝑖) 

𝑠𝑟
(𝜈)|𝑖

= 𝑠𝑑{𝜃𝑟
𝑗(𝜈)|𝑖

}𝑗=1:𝐵 

𝑇𝑟
(𝜈)|𝑖

=
𝜃𝑟

𝑖(𝜈)
− 𝜃𝑟

𝑠𝑟
(𝜈)|𝑖
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⋮ ⋮ ⋮ ⋮ 
 
 
 
 

𝒙𝐵 

𝜃𝑟
𝐵(𝒙𝐵) 

 

 

 
 
 
 

𝒙𝐵(𝜈) 

𝜃𝑟
𝐵(𝜈)

(𝒙𝐵(𝜈)) 

 

 

𝒙1|𝐵 ; 𝜃𝑟
1|𝐵

(𝒙1|𝐵) 

𝒙2|𝐵 ; 𝜃𝑟
2|𝐵

(𝒙2|𝐵) 

⋮ 

𝒙𝑗|𝐵 ; 𝜃𝑟
𝑗|𝐵

(𝒙𝑗|𝐵) 

⋮ 

𝒙𝐵|𝐵 ; 𝜃𝑟
𝐵|𝐵

(𝒙𝐵|𝐵) 

𝑠𝑟
|𝐵

= 𝑠𝑑{𝜃𝑟
𝑗|𝐵

}𝑗=1:𝐵 

𝑇𝑟
|𝐵

=
𝜃𝑟

𝐵 − 𝜃𝑟

𝑠𝑟
|𝐵

 

𝒙1(𝜈)|𝐵 ; 𝜃𝑟
1(𝜈)|𝐵

(𝒙1(𝜈)|𝐵) 

𝒙2(𝜈)|𝐵 ; 𝜃𝑟
2(𝜈)|𝐵

(𝒙2(𝜈)|𝐵) 

⋮ 

𝒙𝑗(𝜈)|𝐵 ; 𝜃𝑟
𝑗(𝜈)|𝐵

(𝒙𝑗(𝜈)|𝐵) 

⋮ 

𝒙𝐵(𝜈)|𝐵 ; 𝜃𝑟
𝐵(𝜈)|𝐵

(𝒙𝐵(𝜈)|𝐵) 

𝑠𝑟
(𝜈)|𝐵

= 𝑠𝑑{𝜃𝑟
𝑗(𝜈)|𝐵

}𝑗=1:𝐵 

𝑇𝑟
(𝜈)|𝐵

=
𝜃𝑟

𝐵(𝜈)
− 𝜃𝑟

𝑠𝑟
(𝜈)|𝐵

 

 

5. Simulation Study 

In this section, we carry out a simulation study to compare the performance of confidence 
interval estimates for sufficient and conventional bootstrapping for varying values of the 
sample size.  All simulations are performed by using the statistical software R. The 
original sample 𝒙 is simulated from 𝐵(1.2,1.6) population, following Singh and Sedory 
(2011).  

In all simulations, the Monte Carlo size (𝑀) is considered 1,000. The bootstrap 
replication of 𝐵 = 200 is considered for all simulation. The estimate of coverage 
probability is obtained from the proportion of confidence intervals containing the true 
parameters under bootstrap and sufficient bootstrap samples over a Monte Carlo 
simulation of size 1,000 using 95% confidence coefficient. We consider the average 
length of CI estimates for which confidence interval estimates contain the true 
parameters.  

The estimated coverage probability for 95% confidence interval of underlying parameters 
using bootstrapping and sufficient bootstrapping methods are reported in Table 2 and the 
average length of the corresponding confidence interval estimates over 1000 simulations 
are reported in Table 3. 
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Table 2: Estimated coverage probability from the simulation study for varying sample 
size n. 

Sample size 𝒏 = 𝟏𝟎 
 Coverage Probability of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.88 0.80 

Variance 0.81 0.79 

Standard deviation 0.81 0.79 

CV 0.87 0.80 

 Coverage Probability of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.95 0.93 
Variance 0.90 0.91 

Standard deviation 0.88 0.89 
CV 0.90 0.88 

Sample size 𝒏 = 𝟐𝟎 
 Coverage Probability of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.91 0.83 

Variance 0.88 0.81 

Standard deviation 0.88 0.81 

CV 0.91 0.82 

 Coverage Probability of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.95 0.89 

Variance 0.92 0.89 

Standard deviation 0.91 0.87 

CV 0.94 0.89 

Sample size 𝒏 = 𝟑𝟎 
 Coverage Probability of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.93 0.85 

Variance 0.90 0.84 

Standard deviation 0.90 0.84 

CV 0.92 0.85 

 Coverage Probability of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.95 0.89 

Variance 0.94 0.90 

Standard deviation 0.94 0.90 

CV 0.94 0.90 
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Sample size 𝒏 = 𝟏𝟎𝟎 
 Coverage Probability of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.93 0.86 

Variance 0.93 0.85 

Standard deviation 0.93 0.85 

CV 0.94 0.86 

 Coverage Probability of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.93 0.86 

Variance 0.93 0.87 

Standard deviation 0.93 0.86 

CV 0.94 0.87 

 

Table 3: Average confidence length from the simulation study for varying sample size n. 

Sample size 𝒏 = 𝟏𝟎 
 Length of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.29 0.23 

Variance 0.08 0.08 

Standard deviation 0.17 0.16 

CV 52.71 43.86 

 Length of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.38 0.33 

Variance 0.20 0.19 

Standard deviation 0.29 0.27 

CV 74.40 64.94 

Sample size 𝒏 = 𝟐𝟎 
 Length of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.21 0.16 

Variance 0.06 0.05 

Standard deviation 0.12 0.10 

CV 35.73 28.36 

 Length of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.23 0.19 

Variance 0.08 0.07 

Standard deviation 0.14 0.12 

CV 40.21 33.05 
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Sample size 𝒏 = 𝟑𝟎 
 Length of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.17 0.13 

Variance 0.05 0.04 

Standard deviation 0.09 0.08 

CV 28.57 22.43 

 Length of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.19 0.15 

Variance 0.06 0.05 

Standard deviation 0.11 0.09 

CV 31.10 25.06 

Sample size 𝒏 = 𝟏𝟎𝟎 
 Length of Percentile  CI Estimates 

Parameters Bootstrap method Sufficient bootstrap 

Mean 0.10 0.07 

Variance 0.03 0.02 

Standard deviation 0.05 0.04 

CV 15.46 11.94 

 Length of 𝑡-CI Estimates 
 Bootstrap method Sufficient bootstrap 

Mean 0.10 0.08 

Variance 0.03 0.02 

Standard deviation 0.05 0.04 

CV 16.09 12.46 

 

6. Result discussion and conclusion 

The results of Table 2 suggest that coverage probability of conventional bootstrap CI 
estimates are relatively higher than that of the sufficient bootstrap CI estimates for both 
percentile and 𝑡-confidence intervals. It is also evident that the 𝑡-confidence interval has 
higher coverage probability than the percentile method in all simulation cases. On the 
other hand, from the results of Table 3 it is evident that the confidence length of the 
sufficient bootstrap CI estimates are relatively smaller than those of conventional 
bootstrap CI estimates for both percentile and 𝑡-confidence interval methods. The 
conclusion of results in Table 2 and 3 follows from the fact that there is a substantial 
reduction in the standard error of the sufficient bootstrap estimates as compared to the 
conventional bootstrap estimates due to the removal of the duplication of units. This fact 
conforms to the conclusion of Singh and Sedory (2011), where they note that the relative 
efficiency of bootstrap estimates improves as compared to the conventional bootstrap 
estimates. Indeed, the reduction of standard error in sufficient bootstrap estimates leads to 
the higher relative efficiency of sufficient bootstrap estimates compared to conventional 
bootstrap estimates, which costs the coverage probability of sufficient bootstrap 
confidence interval estimates. 
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This study leads to the conclusion that if higher coverage probability of CI estimates is of 
concerned, then conventional bootstrapping is preferable to sufficient bootstrap CI 
estimates. On the other hand, if confidence length is of concern, the sufficient bootstrap 
CI estimates should be preferred to conventional bootstrap CI estimates. 

Appendix. R code for CIs using bootstrap and sufficient bootstrap methods 

 

M=1000   # Monte Carlo size  
B=200;    # number of bootstrap replications from a given sample 
n=100;    # sample size 
index=1:n;   # index of numbers 1 through n 
alpha=1.2;   # shape parameter of beta distribution (bd) 
beta=1.6;   # scale parameter of bd 
 
# population parameters of interest 
mu=alpha/(alpha+beta);  # mean of bd 
sigma2=alpha*beta/((alpha+beta)^2*(alpha+beta+1)); # var of bd 
sigma=sqrt(sigma2);  # sd of bd 
cvp=sigma*100/mu;  # cv of bd 
par<-c(mu,sigma2,sigma,cvp)    # vector of interested parameters 
 
#define the function est; 
est<-function(x){ 
m<-mean(x);v<-var(x);s<-sqrt(v);cv<-s/m*100; 
ests<-c(m,v,s,cv) 
return(ests)} 
 
#storage for coverage prob and length over M simulations; 
pcb<-array(0,c(M,4)) 
plb<-array(0,c(M,4)) 
pcs<-array(0,c(M,4)) 
pls<-array(0,c(M,4)) 
 
tcb<-array(0,c(M,4)) 
tlb<-array(0,c(M,4)) 
tcs<-array(0,c(M,4)) 
tls<-array(0,c(M,4)) 
 
for (k in 1:M){ 
x=rbeta(n,alpha,beta);  
e0<-est(x);  #func est defined on x for point estimate of parameters     
                                                       from x; 
#initialized storage for estimates; 
eb=array(0,c(B,4)); 
es=array(0,c(B,4)); 
tb=array(0,c(B,4)); 
ts=array(0,c(B,4)); 
 
for (i in 1:B){ 
indx=sample(index,rep=T); 
indxu=unique(indx); 
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yb=x[indx];    #bootstrap sample from x 
ys=x[indxu];    #sufficient bootstrap sample from x 
 eb[i,] <- est(yb)  #function est defined on yb; 
 es[i,] <- est(ys)   #function est defined on ys; 
 
# initialize storage for second level (i.e., nested) samples 
eb2=array(0,c(B,4)); 
es2=array(0,c(B,4)); 
 
for (j in 1:B){ 
indx=sample(index,rep=T);indxu=unique(indx); 
yb2<-yb[indx]; 
ys2<-yb[indxu] 
eb2[j,]<-est(yb2) 
es2[j,]<-est(ys2) 
} 
 
#sds from innner or 2nd (j) level bootstrap for t-CI estimates; 
sdbi=apply(eb2,2,sd) 
sdsbi=apply(es2,2,sd) 
tb[i,]<-(eb[i,]-e0)/sdbi; 
ts[i,]<-(es[i,]-e0)/sdsbi; 
} 
#sds from 1st (i) level bootstrap; 
sr<-apply(eb,2,sd); 
srs<-apply(es,2,sd); 
 
#quantile for t-CI; 
tr<-apply(tb,2,quantile,c(0.025,0.975)) 
trs<-apply(ts,2,quantile,c(0.025,0.975)) 
 
#percentile CIs; 
cib<-apply(eb,2,quantile,c(.025,.975)) 
cis<-apply(es,2,quantile,c(.025,.975)) 
 
cib 
cis 
#coverage and length for percentile CIs; 
pcb[k,]<-cib[1,]<=par&par<=cib[2,]; 
plb[k,]<-ifelse(pcb[k,],cib[2,]-cib[1,],NA) 
pcs[k,]<-cis[1,]<=par&par<=cis[2,]; 
pls[k,]<-ifelse(pcs[k,],cis[2,]-cis[1,],NA) 
 
#t CIs; 
lob<-e0-sr*tr[2,] 
upb<-e0-sr*tr[1,] 
tcb[k,]<-lob<=par&par<=upb; 
tlb[k,]<-ifelse(tcb[k,],upb-lob,NA) 
 
los<-e0-srs*trs[2,] 
ups<-e0-srs*trs[1,] 
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tcs[k,]<-los<=par&par<=ups; 
tls[k,]<-ifelse(tcs[k,],ups-los,NA) 
 
} 
 
apply(pcb,2,mean) 
apply(pcs,2,mean) 
apply(tcb,2,mean) 
apply(tcs,2,mean) 
 
round(apply(plb,2,mean,na.rm = TRUE),digits=3) 
round(apply(pls,2,mean,na.rm = TRUE),digits=3) 
round(apply(tlb,2,mean,na.rm = TRUE),digits=3) 
round(apply(tls,2,mean,na.rm = TRUE),digits=3) 
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