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Abstract

Quantile regression estimates conditional quantiles and has wide applications in the real

world. Estimating high conditional quantiles is an important problem. The regular linear

quantile regression (QR) method often sets a linear or non-linear model, then estimates the

coefficients to obtain the estimated conditional quantile. This approach may be restricted by the

model setting. To overcome this problem, this paper proposes a direct nonparametric quantile

regression (QN) method. Monte Carlo simulations show good efficiency for the proposed QN

estimator relative to the regular QR estimator. The paper also investigates a real-world example

using the proposed QN method. Comparisons of the proposed QN method and existing QR

methods are given.

Keywords: Conditional quantile, extreme value distribution, Gumbel’s second kind of bivariate

exponential distribution, nonparametric regression, loss function.
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1. Introduction

Extreme value events occur in many fields such as financial markets, weather, industrial engi-

neering, actuarial science, survival analysis, queueing networks, and other stochastic models. A

random variable  in the extreme events is usually heavy-tailed distributed. It is important to

estimate high conditional quantiles of  given a variable vector x = (1 1 2  )
 ∈  and

 = +1. The linear quantile regression model entails the use of an 1-loss function and the op-

timal solution of linear programming for estimating regression coefficients. Quantile regression

obtains more comprehensive results than mean regression methods.

The mean linear regression is the estimation of the conditional expectation (|x). The
mean linear regression model assumes

|x =  (|1 2  ) = xβ = 0 + 11 + 22 + + 
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We estimate β = (0 1  )
 ∈  from a random sample {(x)  = 1  }, where

x = (1 1 2  )
 , is the -dimensional design vector and  is the univariate response

variable from a continuous distribution with cumulative distribution function (c.d.f.)  (). The

least squares (LS) estimator bβ is a solution to the following equation
bβ = arg min

∈

X
=1

( − x β)2 (1 )

that is, bβ is obtained by minimizing the 2-distance.
Example: Oral Glucose Tolerance Test Level (2013-2014)

As of 2015, diabetes is the seventh leading cause of disease and death in the United States.

It is reported that 30.3 million Americans have diabetes and 84.1 million Americans have pre-

diabetes. Often, untreated prediabetes leads to type 2 diabetes within five years (Centers for

Disease Control and Prevention, 2017).

The National Health and Nutrition Examination Survey (NHANES) is a program by the

Centers for Disease Control and Prevention (CDC). NHANES aims to assess the health and

nutritional status of adults and children in the United States. We will examine the 2013-

2014 NHANES data for two-hour oral glucose tolerance tests administered to  = 1635 adults

between the ages of 18 to 65 (Centers for Disease Control and Prevention, 2014). People with

high glucose level test results have impaired glucose tolerance, which indicate prediabetic or

diabetic conditions. Since a glucose level less than 140 mg/dL is considered a normal glucose

tolerance, then a threshold of 120 mg/dL is applied to distinguish subjects at an increased risk

of diabetes. In this paper, we are interested in this group of subjects. After omitting subjects

with less than or equal to 120 mg/dL glucose level, the data is reduced to  = 509 subjects.

In Figure 1, a column graph presents the glucose tolerance levels for the  = 1635 adults,

and a 120 mg/dL threshold is indicated. The -axis represents the subject order. The -axis

represents the glucose level (mg/dL) after a two-hour oral glucose tolerance test.

Figure 1. Oral glucose tolerance levels (mg/dL) of NHANES adults for 2013-2014 ( = 1635).
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We consider glucose level as the response variable, and age and body mass index (BMI)

as factors. We can employ a mean regression model to estimate the conditional mean on the

subject’s glucose tolerance level (mg/dL)  given their age 1 and BMI 2,

|(12) = (|1 2) = 0 + 11 + 22

Using the method of least squares estimator in (1), we have

b = b|(12) = 1177407 + 052341 + 082922 (2 )

Figure 2. Oral glucose tolerance level  (mg/dL) vs. age 1 and BMI 2 for subjects with glucose

levels higher than 120 mg/dL with the LS mean regression plane b− red in (2) ( = 509).
The least squares mean plane b|x only estimates the average glucose level given the subject’s

age and BMI. Our goal is to estimate the high conditional quantiles for extreme glucose levels

which may pose as an indicator for diabetes. Figure 2 shows that the extreme high glucose levels

are not captured well by the least squares mean plane.

In this paper, we use quantile regression methods to estimate extreme glucose levels. Quantile

regression estimates high conditional quantiles of a random variable  with c.d.f.  () given a

variable vector, x = (12 ) and x = (1 1 2  )
 ∈  where  = + 1. The th

conditional linear quantile is defined by

( |x) = ( |1 2  ) = −1( |x) (3 )

The traditional linear quantile regression is concerned with the estimation of the th conditional

linear quantile regression model of  for given x which is defined as

( |x) = x β() = 0() + 1()1 + · · ·+ () 0    1 (4 )

We estimate the coefficient β() = (0() 1() 2()  ())
 ∈  from a random

sample {(X)  = 1  }, where X = (1 1 2  )

is the -dimensional design

vector and  is the univariate response variable from a continuous distribution with a c.d.f.

 ()
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Koenker and Bassett (1978) proposed an 1-weighted loss function to obtain estimator bβ()
by solving bβ() = arg min

()∈

X
=1

 ( −X
β()) 0    1 (5 )

where  is a loss function, namely

 () = ( − (  0)) =

½
( − 1)   0;

  ≥ 0

The linear quantile regression problem can be formulated as a linear program

min
(()uv)∈×2

+

{1u+ (1− )1v|Xβ() + u− v = y}

where 1 is an -vector of 1s, X denotes the ×  design matrix, and uv are -vectors with

elements of   respectively (Koenker, 2005).

In recent years, many studies search for efficiency improvements of estimator (5) (Hall, et

al. 1999; Wang and Li, 2013; Huang et al. 2015; Huang and Nguyen, 2017). The regular linear

quantile regression model in (4) needs the estimator in (5) for the high conditional quantile

curves. The estimated very high or very low conditional quantile curves may be restricted under

the model setting.

In order to overcome the limitation of the model setting in (4), in this paper we propose

a direct nonparametric quantile regression (QN) method in Section 2 which uses the ideas

of nonparametric kernel density estimation and nonparametric kernel regression. The proposed

method is not only different from most other existing nonparametric quantile regression methods,

but it also overcomes the crossing problem of estimating quantile curves. We like to see if the

new QN method has an improvement relative to the existing regular linear quantile regression

(QR) in (4) and (5). We will do two studies in this paper:

1. Monte Carlo simulations will be performed to show the efficiency of the new QN estimator

relative to the regular QR estimator.

2. We will apply the newly proposed QN method to the oral glucose tolerance example and

compare its result to the result of the regular QR method.

In Section 2, we propose a new direct nonparametric quantile regression estimator by using

a nonparametric mean regression method. In Section 3, the results of Monte Carlo simulations

generated from Gumbel’s second kind of bivariate exponential distribution (Gumbel, 1960) show

that the proposed QN method produces high efficiencies relative to existing regular QR method

in (4) and (5). Finally, in Section 4, we show that the new proposed QN model fits the glucose

tolerance example data better than the regular QR model in (4).

2. Proposed Algorithm of Direct Nonparametric Quantile Regression

(QN)

We ignore the idea of the linear QR model (4) to obtain a direct estimator for the true conditional

quantile in (3): b( |x) = b( |1 2  ) = b−1( |x)
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by using local conditional quantile estimator ( |x) = ( |x) based the th point of a given
random sample, {(X)  = 1  }  for X = (1 2  )




We construct the following four-step algorithm of a direct nonparametric quantile regression

estimator (QN):

Step 1: Estimate the conditional c.d.f.  (|x) of  for given x = (12 ) using kernel

estimation method (Hall et al. 1999; Silverman, 1986; Scott, 2015)

b (|x) = 1


P
=1

 ( ≤ )
©
x−X



ª
b(x)  (6 )

where  ( ≤ ) is an indicator function and b(x) is an estimator of marginal density of x.
Note that a -dimensional multivariate kernel density estimator from a random sample X =

(12  )  = 1 2   from a population x = (12 ) with density (x) is given

by:

b(x) = 1



X
=1



½
x−X



¾


where   0 is the bandwidth and the kernel function (x) is a function defined for -

dimensional x = (x1x2 x) which satisfies

Z


(x)x = 1

An estimator for the optimal bandwidth   0 will be given by:

b = µ 4

+ 2

¶1(+2)
−1(+4)

Step 2: Estimate the local conditional quantile function ( |x) of  given x by inverting the
estimated conditional c.d.f. b (|x) in (6) from the Step 1:

b( |x) = c( |x) = inf{ : b (|x) ≥ } = b−1( |x)
Additionally, to avoid the computational difficulties of b( |x) we estimate the local conditional
quantile function ( |x) of  given x by inverting an estimated conditional c.d.f. b (|x) at
the th data point:b( |x) = c( |x) = inf{ : b (|x) ≥ } = b−1( |x)  = 1 2   (7 )

Step 3: Propose a direct nonparametric quantile regression estimator for the th conditional

quantile curve of x by using the Nadaraya-Watson (NW) nonparametric regression estimator on³
x b( |x)´   = 1 2   :

 ( |x) = b( |x) =
X
=1

h {x−X} b( |x)
X
=1

h {x−X}
=

X
=1

(xX)
b( |x) 0    1 (8 )
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where (xX) is called an equivalent kernel,

(xX) =
h {x−X}
X
=1

h {x−X}
  = 1 2  

where

h {x−X} = 1

1

Y
=1



µ
− 



¶
  = 1  

where  is the kernel function, and   0 is the bandwidth for the th dimension.

Step 4: Check all procedures, and make any necessary adjustments.

3. Simulations

To investigate the efficiency of the proposed direct nonparametric quantile regression estimator

QN in (8), Monte Carlo simulations are performed in this Section. We generate  random

samples with size  each from the second kind of Gumbel’s bivariate exponential distribution

(Gumbel, 1960) with a non-linear conditional quantile function of  given  in (10). It has c.d.f.:

 ( ) = (1− −)(1− −)(1 + −(+))  ≥ 0  ≥ 0   0 (9 )

The true th conditional quantile function of  given  of (9) is

( |) = ( |) = ln
Ã

2(2− − 1)
(2− − 1)− 1 +

p
((2− − 1) + 1)2 − 4(2− − 1)

!
 (10)

 ≥ 0   0 0    1

We use two quantile regression methods to estimate the true conditional quantile in (10):

1. The regular quantile regression ( |) estimation based on (4) and (5):

( |) = b0() + b1() 0    1 (11 )

2. The direct nonparametric quantile regression  ( |) estimation based on (8)

 ( |) =
X
=1

x(xX)b( |) 0    1  = 1 2   (12 )

where b( |) is obtained by (7).
For each method, we generate size  = 300  = 100 samples. ( |) and ( |)  =

1 2  are estimated in the th sample. Let  = 1 in (10). Then, the true th conditional

quantile is

( |) = ( |) = ln
Ã

2− − 1
− − 1 +

p
−2 − (2− − 1)

!
  ≥ 0 0    1 (13 )
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The simulation mean squared errors (SMSEs) of the estimators (11) and (12) are respect-

tively:

(( |)) =
1



X
=1

Z 

0

(( |)−( |))2; (14)

( ( |)) =
1



X
=1

Z 

0

(( |)−( |))2 (15)

where the true th conditional quantile ( |) is defined in (13).  is a finite  value such

that the c.d.f. in (9)  () ≈ 1 We take  = 6 and the simulation efficiencies (SEFFs) are

given by

 ( ( |)) = (( |))
( ( |)) 

where (( |)) and ( ( |)) are defined in (14) and (15), respectively.

Table 1. Simulation mean squared errors (SMSEs) and efficiencies (SEFFs)

of estimating ( |) = 100  = 300  = 6

 0.95 0.96 0.97 0.98 0.99

(( |)) 10.6577 11.9188 15.1286 20.2851 40.4940

( ( |)) 5.0554 5.4794 6.7928 8.9271 13.8425

 ( ( |)) 2.1062 2.1752 2.2271 2.2723 2.9253

Table 1 and Figure 3 show that all of the  ( ( |))  1 when  = 095..., 0.99. At

these high quantiles, we can conclude that using the proposed direct nonparametric estimator

 ( |) in (12) is more efficient relative to the regular quantile regression estimator ( |)
in (11).

(a) (b)

Figure 3. (a) ( ( |))− blue line, (( |))− green line. (b)  (( |))−
blue line,  (( |)) ≡ 1− green dash line.
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4. Oral Glucose Tolerance Test Example

In this Section, we apply two quantile regression models to the oral glucose tolerance test example

from Section 1:

1. The regular quantile regression ( |x) in model (4) using estimator bβ() in (5);
2. The direct nonparametric quantile regression  ( |x) in (8).

We also compare these two models with mean regression model.

At first, we use the following linear quantile regression model for this example:

( |) = 0() + 1()1 + 2()2 0    1

where  is the glucose level (mg/dL) given the subject’s age 1 and BMI 2.

(a) Age 1= 40 (b) BMI 2 = 30

Figure 4. For subjects,  = 509 with glucose level greater than 120 mg/dL, scatter plot with

the LS mean regression line b - red,  - green and  - blue. (a) Oral glucose tolerance

level (mg/dL) vs. BMI for age 40; (b) Oral glucose tolerance level (mg/dL) vs. age for BMI of

30.

We use the proposed four-step algorithm from Section 2 to obtain the new direct nonpara-

metric quantile estimator  ( |x) in (8). We compare the new estimator  ( |x) with the
regular quantile estimator ( |x) using (5). Tables 2, 3 and Figure 4 show the difference of
values of the two estimators. Figures 4(a), (b) show the scatter plot of the glucose level vs. age

and BMI respectively with the fitted  and  quantile curves at  = 0.90 and 0.95. It is

interesting to see that the  curves appear to follow the data patterns closer than the 

curves.

Table 2 lists the estimated glucose level quantile values at a given BMI for 40 year old

subjects for  = 0.90 and 0.95. Table 3 lists the estimated glucose level quantile values at a

given age for BMI of 30 for  = 0.90 and 0.95. It demonstrates that when quantiles are at high

 , the  gives greater variety of glucose level predictions than the  The relationship of

glucose level and age or BMI is not necessarily linear.

In order to compare the fit of the regular  estimator in (5) and the fit of the direct

nonparametric  estimator in (8), we extend the idea of measuring goodness-of-fit by Koenker

and Machado (1999) and suggest using a Relative () (Huang and Nguyen, 2017) 0    1
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Figure 5 shows the values of the Relative () for given  = 090  099We note that ()  0

which means that  is a better fit to the data than  at the high quantiles.

Table 2. Predicted high quantiles of oral glucose tolerance level (mg/dL) given BMI

for age 40 years old (Population with glucose levels greater than 120 mg/dL)

 = 090  = 095

BMI b    

20 149.27 172.39 162.73 220.99 170.35

25 153.41 185.86 186.72 233.73 237.05

30 157.56 199.32 304.01 246.46 424.63

35 161.70 212.79 314.95 259.19 440.83

40 165.85 226.26 232.51 271.92 297.71

45 170.00 239.72 181.71 281.65 220.96

50 174.14 253.19 196.48 297.39 233.11

55 178.29 266.65 227.16 310.12 232.42

Table 3. Predicted high quantiles of oral glucose tolerance level (mg/dL) given age

for BMI of 30 (Population with glucose levels greater than 120 mg/dL)

 = 090  = 095

Age b    

25 149.70 184.21 166.13 211.35 236.77

30 152.32 189.25 162.16 223.05 164.46

35 154.94 194.29 211.66 234.76 262.81

40 157.56 199.32 304.01 246.46 424.63

45 160.17 204.36 225.70 258.16 292.25

50 162.79 209.40 228.03 269.87 280.54

55 165.41 214.44 209.70 281.57 251.38

60 168.02 219.48 273.45 293.27 356.56

Figure 5. Relative () of  to  for glucose level example.

5. Conclusions and Suggestions

After the above studies, we can offer the following conclusions and suggestions:

1. This paper proposes a new direct nonparametric quantile regression method which is

model free. It uses nonparametric regression techniques to estimate high conditional quantiles.
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The paper provides a computational four-step algorithm which overcomes the limitations of the

estimation in the linear quantile regression model.

2. The Monte Carlo simulation works on the second kind of Gumbel’s bivariate exponential

distribution which has a nonlinear conditional quantile function. The simulation results confirm

that the proposed new direct nonparametric quantile regression estimator  is more efficient

relative to the regular linear quantile regression estimator .

3. The proposed new direct nonparametric quantile regression can be used to predict extreme

values of glucose level for given age and BMI. The proposed  estimator gives a variety of

predictions which fits data very well. The prediction of relationships are not simply just linear.

We expect that the  predictions may be more reasonable than the  predictions. The new

estimator may benefit the identification and prevention of diabetes.

4. The proposed direct nonparametric quantile regression provides an alternative way for

quantile regression. Further studies on the details of this method are suggested.
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