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Abstract 
The issue of population stratification refers to that, individual’s ancestry groups, if not 
corrected, would confound GWAS results. To control for this issue, researchers include 
ancestry information into the association analysis. Yet the existence of outliers could 
threaten the correct identification of subgroups.  In this study, we propose Benford’s Law 
based outlier detection method for genotype data and examine its performance in 
identifying population structures.  
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1. Introduction

Population-based association studies of unrelated individuals are powerful for gene 
mapping of complex traits (Amos, 2007). However, these studies are susceptible to 
potential confounding by population. Population stratification stems from the fact that 
populations are typically heterogeneous in terms of genetic ancestry. In genome-wide 
association studies  (GWAS), the purpose is to identify the alleles that could most 
differentiate the case group from the control group.  Since the GWAS sample is usually 
composed of people from different nationalities, the structure of population can be a 
confounder that would impact the results of association test if disregarded. The 
population stratification either causes spurious association between disease and marker or 
masks the true association. Therefore, it is important to infer the population structure.  

There are a number of methods that have been proposed to overcome confounding issues 
due to population stratification. Many have proven useful in certain situations, such as 
genomic control approach (Devlin and Roeder, 1999) and the structured association 
approach (Pritchard et al., 2000; Rosenberg et al., 2002). These methods have been found 
to either over-adjust or under-adjust certain SNPs, depending on the ancestral information 
of individual SNPs. The Principal Components Analysis (PCA) by Price et al. (2016) 
(EIGENSTRAT) has been proven very useful for correction of population stratification 
since the first few principal components (PCs) contain the geographical information of 
the subjects and has low false positive error.  Li and Yu (2008) have also proposed 
combining the multidimensional scaling (MDS) and clustering to deal with population 
stratification, which performs better than EIGENSTRAT.  All of these methods are based 
on PCA and clustering, assuming that the genotype data are homogeneous—that is, free 
of outliers. However, genotype data may contain outliers, which would result in 
misclassification of subpopulations. If classical PCA were applied on the data, in return it 
would yield identification of spurious associations in GWAS. Therefore, Liu et al. (2013) 
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proposed combining clustering with robust PCA as an improved approach for correcting 
for artifacts arising from population stratification.  This proposed method consists of three 
steps: 1, use robust principal component analysis (PCA) (Hubert et al., 2005) method for 
outlier detection in genotype data and remove them; 2, apply PCA to the clean data to get 
the top10 PC components and use clustering to deal with population stratification; 3, test 
each SNP’s association with the outcome of interest by building a logistic regression 
model that includes the specific SNP as one factor, the selected PCs as covariates, and the 
cluster membership indicators as additional factors. 

In order to identify population structure correctly in GWAS, detection of existing outliers 
and their removal from the dataset are essential steps. In this study, we propose to use an 
outlier detection method based on the Benford’s law (Benford, 1938) via PCA to improve 
the correct identification of population structure in GWAS studies. Although the 
Benford’s law is known for many years, its application in biological systems was barely 
investigated until recently (Costas et al. 2008; Karthik et al. 2016). To our best 
knowledge, this is the first paper that utilizes Benford’s Law for outlier detection in 
GWAS. 

A description of the Benford’s law and how this method can be utilized for detecting 
outliers will be given in Section 2. Since our proposed method is implemented through 
PCA, we then introduce PCA based outlier-detection method for genotype data in Section 
3. In order to assess the performance of the proposed method, a simulation study and real
data application are given in Section 4. Finally, Section 5 consists of conclusion and
discussion.

2. Benford’s Law Based Outlier Detection Method

The Benford’s law (BF), also known as the first-digit law, states that the larger digits 
have a lower likelihood to occur in the first digit position in naturally occurring datasets 
(Newcomb, 1881; Benford, 1938). The idea of using BF to screen data is based on the 
observation that regular, “naturally generated” data usually follow a logarithmic 
distribution, while contaminated data show abnormalities in the distribution (Hill, 1995).  
The leading digits (i.e., first nonzero digit) d of a random variable x of many real-life sets 
of numerical distribution had a cumulative probability distribution of  

𝑃ሺ𝑑ሻ ൌ 𝑙𝑜𝑔ଵሺ𝑑  1ሻ െ 𝑙𝑜𝑔ଵሺ𝑑ሻ ൌ 𝑙𝑜𝑔ଵ ൬1 
1
𝑑

൰ 

in which x ൌ y ൈ 10, 𝑦 range from [1,10], and d is the integer part of y. This distribution 
of d is referred to as the Benford distribution (Newcomb, 1881; Benford, 1938).  If a 
dataset is free from error or fabrication, it would follow the Benford’s law; and violation 
of the Benford’s law indicates abnormality. The conformation of a dataset to the 
Benford’s law could be measured with goodness of fit tests (e.g. Chi-square test and 
Kolmogorov-Smirnov) called Benford’s Tests (BF Tests) in general.  

The Benford’s law has been applied to test error, fraud, and fabrication in real-life 
datasets. Although the Benford’s law is known for many years, its application in 
biological systems was barely investigated until recently (Costas et al., 2008; Karthik et 
al., 2016).  To the best of our knowledge, this is the first study utilizing Benford’s law in 
GWAS for population stratification. 
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3. Principal Component Based Outlier Detection Methods for Genotype Data

We want to make sure that we identify population structure correctly in GWAS. 
Therefore we will make sure that we identify all outliers that may affect the identification 
of population structure and remove them to improve the correct identification of 
population structure in GWAS. There are many outlier detection methods in the 
literature. We will focus on one of the most widely used outlier detection methods, which 
is based on PCA. 

PCA provides insight for detecting multivariate outliers in the presence of collinearity.  
The detection of outliers via PCA is achieved through the confidence ellipse, which can 
be determined using the Mahalanobis distance (Mahalanobis, 1936) of the PC scores.   
This method consists of two steps: 1. Apply PCA to a dataset and retain the first-k 
dimensions; 2. Compute Mahalanobis distance for each individual using the first-k PC 
scores, and compare which against a cutoff chi-square score at 97.5 percentile with df=k.  
The individuals whose Mahalanobis distances are greater than the cutoff value are 
identified as PCA outliers.   

3.1. Robust PCA Based Outlier Detection 
Since the classical PCA is not resistant to outliers since it uses the correlation matrix, it 
yields misleading results in detecting outliers correctly. Therefore, robust version of PCA 
(Hubert et al., 2005) is suggested. We use the robust score and the orthogonal distances 
obtained from Robust PCA to identify different type of outliers. For instance, the 
individuals whose score distances are greater than the chi-square at 97.5% with df=10 are 
identified as outliers (see the details in Hubert et al., 2005). In current study, the Robust 
PCA was implemented via R package “ROSPCA” (Reynkens, 2018). 

3.2. PCA based Benford’s Law Outlier Detection 
When working with a numerical dataset, the Benford’s Test can be directly applied to the 
first digit distribution of either a whole dataset, or each row of the dataset.  However, 
applying BF Test to a genotype (SNP) dataset whose leading digits are 0, 1, or 2 is trivial. 
To avoid this issue, we apply the Benford’s Test to the genotype (SNP) dataset using a 
PCA based procedure.   

The purpose of the current study is to apply the Benford’s Test to identify subject outliers 
on the top 10 PC scores. To achieve this goal, we extract the first digit of individual’s PC 
scores, and compare it against the Benford’s distribution via goodness-of-fit test, such as 
Chi-square or Kolmogorov-Smirnov tests. We use R package “BenfordTests” (Joenssen, 
2015) for the extraction of the first digits and the goodness of fit tests. The individuals 
whose the goodness of fit test are significant are identified as Benford’s outliers. The 
algorithm for the outlier detection procedure described above can be summarized in the 
following steps:  

1. Obtain PC scores of the SNP dataset using classical PCA.
2. Retain first k dimensions of PC scores (i.e. We choose k=10 in the current study).
3. Detect outliers based on Chi-square test (i.e. We choose Chi-square test as the
goodness of fit test for Benford’s law).  The individuals whose Chi-square test results are
significant are identified as outliers.
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We use R package “BenfordTests” (Joenssen, 2015) for the extraction of the first digits 
and the goodness of fit tests.  We choose a 0.05 alpha level to determine the significance 
of the Chi-square test.  

4. Numerical Examples

4.1. Simulation Study 
We conducted a simulation study to assess whether Benford’s law-based outlier detection 
method could improve the correct identification of population structure in GWAS studies. 
The simulation study is composed of 6 scenarios (i.e., 2 contamination rates for each of 
the three types of outliers), each scenario include 100 simulation runs.  For each 
simulation run, we simulate a SNP dataset, contaminate it with different types of outliers, 
identify outliers using four different outlier detection methods, and test the 10-fold cross-
validation classification accuracy before and after the removal of outliers.  For each 
scenario, the simulation steps are as follows: 

1. Simulate a 500 by 8000 SNP dataset with two separate groups based on Price et al.
(2006) and Xu et al. (2013)’s simulation setup.
2. Contaminate the data with three types of outliers (Extreme, Gaussian, or Arbitrary
outliers) with a varying contamination proportions, 5% or 10%.
3. Apply PCA, PCA based Benford’s law (i.e., BF), and ROBPCA to detect outliers.
4. Determine classification accuracy by using 10-fold cross validation via Support Vector
Machine (SVM) before and after removing outliers detected in the third step.
5. Compare their performances based on the following criteria:

AP = Accuracy_after – Accuracy_before 
If AP>0 outlier removal improves the classification accuracy. If AP<0 outlier removal 
does not improve the classification accuracy.  

For a better understanding of the simulation steps, a flowchart for the simulation steps is 
provided in Figure 1. 
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Figure 1. Flowchart of the simulation steps. 

4.1.1. Simulation of SNP dataset 
For each simulation run, we generate a 500 by 8000 SNP dataset based on Price et al. 
(2006) and Xu et al. (2013) using the following procedure.  

1. Simulate a 500-by-150 SNP dataset as the case 1 described in Price et al. (2006).
Specifically, the SNP dataset is composed of two separate population groups (i.e., 250
individuals for each group), with three categories of SNPs: the common SNPs which has

AP= Accuracy_after – Accuracy_before 

Generate 500x8000 SNPs data 
based on the approach by Price et 

al, 2006. 

 Use SVM for classification 
of the subgroups in SNPs 
data  

Contaminate SNPs Data with 5% 
or 10% 

based on Three Types of Outliers 
Extreme, Gaussian, Arbitrary 

Calculate Classification 
Accuracy based on 10-fold 
CV for contaminated data 

Calculate Classification 
Accuracy based on 10-fold CV 
for clean data (after removing 
identified outliers by the four 
methods) 

 Use 4 outlier detection 
methods and identify 
outliers. 

Start 
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no difference across population groups, differential SNPs whose MAFs differ between 
population groups, and casual SNPs whose MAF depends on the case/control conditions.   

2. Mapping the SNP dataset from low dimension to high dimensions. We bring the 500-
by-150 SNPs dataset (Z) to high dimension (i.e., d=8000) following the steps in Xu et al.
(2013).  To achieve this goal, we use a 150-by-8000 random matrix A and compute: X =
Z *A, in which Z is the original 500-by-150 SNP dataset. We then categorize X in to 0, 1,
2, by setting all entries less than 0 to 0; all entries that greater than 2 were set to 2, and set
those between (0, 2) to 1.

4.1.2 Contamination of outliers.  
We contaminate data to the high-dimensional SNP matrix X using three methods: 
Extreme outliers, Gaussian outliers, and Arbitrary outliers which are displayed in Figure 
2. 

Figure 2. Outlier types. 

Extreme outliers based on the procedures in Liu et al. (2013), in which we add p 
proportion (i.e., p = 5% or 10 % ) extreme values to  the 2nd eigenvector of the SNPs 
dataset.  The procedures are as following: 

1. Obtain singular value decomposition (SVD) of the X matrix as X= UD V, where U and
V are orthogonal matrices of the eigenvectors of XXT and XTX, respectively and D is the
diagonal matrix of singular values of X.
2. Let u be the 2nd eigenvector of X.
3. Randomly sample p*500 individuals from this vector and replace those values with
randomly generated extreme values from a uniform distribution with [𝒖ഥ  𝟐𝒔𝒖 , 𝒖ഥ 
𝟑𝝈𝒔𝒖 ]. The modified vector u was referred to as umod.
4.replace the second column of the eigenvector matrix, U,  with the modified umod (i.e.,
obtain  the modified matrix Umod), and compute the SVD of the contaminated matrix X:
Xmod = Umod D V.
5. Categorize Xmod to 0, 1, 2 by setting all entries less than 0 to 0; all entries that greater
than 2 were set to 2, and set those between (0, 2) to 1.

Gaussian outliers based on the procedures in Xu et al. (2013): 
1. Randomly sample p*500 individuals from X.  Add Gaussian noise to the sampled
individuals, in which the Gaussian signal is a p*500 by 8000 matrix following
multivariate normal distributed with mean 0 and covariance matrix Id.
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2. Categorize the modified data matrix Xmod by setting all entries less than 0 to 0; all
entries that greater than 2 were set to 2, and set those between (0, 2) to 1.

Arbitrary outliers based on the procedures in Xu et al. (2013): 
1. Generate a random data matrix of p*500 by 8000 following the uniform distribution.
2. Categorize the random data matrix to 0,1,2 by setting all entries less than 0 to 0; all
entries that greater than 2 were set to 2, and set those between (0, 2) to 1,
3. Combine the random data matrix and the X matrix by rows.

4.1.3 Assessment of Classification Accuracy of the PCA-based Outlier Detection Methods 
in Identification of Population Structure 
We compared the classification accuracy of the methods based on PCA, BF, and 
ROBPCA outlier detection methods using the following steps: 

1. For each simulated data with added contamination (5% and 10%), detect outliers based
on each method.
2. Use support vector machine (SVM; implemented via R package “e1071”, Meyer et al.
2017) to determine how well the subgroups classified by using 10 fold CV technique for
the contaminated data and clean data (i.e., after removing identified outliers)
3. Compute the classification accuracy for the contaminated and clean data and the
criteria AP to assess the performance of the methods. If AP>0, outlier removal improves
the classification accuracy. If AP<0, outlier removal does not improve the classification
accuracy.

4.1.4 Simulation Results 
To compare the performance of the methods, we generated side-by-side boxplot (Figure 
3) for the AP measure for each scenario of the simulation.

We also conducted t-test to compare the AP of each method against 0. The BF achieved 
significant improvement with Extreme outliers 5% contamination, Guassian outliers 5% 
contamination, Arbitrary outliers at 5% and 10% contamination, while Robpca achieved 
significant improvement with both 5% and 10% Extreme outliers, and both 5% and 10% 
Arbitrary outliers. PCA achieved no significant improvement under none of scenarios.    

Both BF and ROBPCA achieved significant improvement under 4 out of 6 scenarios.  
The results indicate that Benford’s based outlier detection approach is promising, and 
could be applied to genotype dataset.  
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Figure 3. Comparison of relative classification accuracies of three outlier detection 
methods 
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4.2. Real Data Application 
We further applied Benford’s law based genotype outlier detection approach to two real 
datasets. The Hapmap3 dataset (International HapMap 3 Consortium, 2010) include 957 
human individuals across 11 populations.  We collapse the groups into four groups (i.e., 
Africa, Europe, Asia1, Asia2) here (Figure 4).  The dataset assayed for 14,389 SNPs. 

Figure 4. PC scores plot for HapMap 3 dataset 

The Genetic Analysis Workshop 17 (GAW17) dataset (Almasy et al., 2011) include 697 
independent individuals across 9 populations.  We collapse the populations into three 
groups (i.e., Africa, Asian, Europe) (Figure 5).   The dataset assayed for 24,487 SNPs. 

Figure 5. PC scores plot for GAW17 dataset 

For each dataset, we first detect outliers with PCA, BF, and ROBPCA methods.  We then 
conducted a bootstrapped cross-validation for B=50 times. The bootstrapping procedure 
is similar to the cross-validation procedure described in simulation section.   
 Apply PCA, BF, and ROBPCA to detect outliers
 Apply 10-fold cross validation via SVM on the data before and after removing

observations detected as above outliers.
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Figure 6. Comparison of methods for Hapmap3 data; ROBPCA outperforms the other 
methods 

Figure 7. Comparison of methods for GAW17 data; BF, PCA and ROBPCA seem to 
separate the existing groups in the data 

In summary, ROBPCA based outlier detection achieved significant improvement in both 
Hapmap3 and GAW17 dataset, while PCA and BF based outlier detection achieved 
improvement in GAW17 dataset.  

5. Discussion and Limitation

The application of Benford’s law has been popular in social and economic fields.  In 
recent years, Benford’s law has also been applied to Bio-system fields. As the first study 
to apply Benford’s law in GWAS, the current study attempted a primitive trial to transfer 
the BF based methods into a genotype dataset. Our results reveal that removing Benford’s 
outlier could improve population identification.  In simulation study, the Benford’s 
approach performed close to the Robust PCA. In real data application, our approach also 
improved population identification in GAW17 dataset. The results indicate that the BF 
based outlier detection is promising and acquires further investigation.   
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Benford’s law based outlier detection approach is distributional free and easy to compute. 
Unlike Mahalanobis distance or Robust PCA, it does not require the numerical dataset to 
be normally distributed. The computation load is also reduced to a goodness-of-fit test. 
The application of Benford’s law approach could potentially bring benefits to GWAS and 
analysis of high-dimensional dataset in general.  

One important issue related to the Benford’s law and its application is its theoretical 
foundation. Despite of the widespread application of Benford’s law in fraud detection, it 
needs explanation why disobeying of the Benford’s law would indicate abnormality, and 
what types of dataset would confirm or not confirm to the Benford’s law. Those are 
important research questions relating to the application of the Benford’s law.  

The current study is limited in several aspects.  Firstly, we only included two-group setup 
when simulating the SNP dataset (i.e., the case 1 of Price et al. simulation setup).  In the 
future, we can include more simulation settings such as the admixture population 
structure, or population structure of more than two groups.  Secondly, we can also 
include more available goodness-of-fit tests for testing the Benford’s law, such as the 
Kolmogorov–Smirnov, Mantissa-Arc Test (Alexander, 2009). Different test may have 
different sensitivity/specificity, which could also impact the results of outlier detection.  

The application of Benford’s law in GWAS is a novel and promising research topic. The 
current study found that removing Benford’s outliers would improve classification 
accuracy in identifying sub-populations. In the future, Benford’s law based robust-PCA 
procedure could be developed which does not require the removal of outliers.  Research 
could also be conducted regarding whether Benford’s law based outlier-detection method 
could improve the power of association analysis. 

References 

Alexander, J. (2009). Remarks on the use of Benford's Law. Working paper, Case 
Western Reserve University, Department of Mathematics and Cognitive Science. 

Almasy, L., et al. (2011). Genetic Analysis Workshop 17 mini-exome simulation. BM 
Proceedings. 5:9. 

Amos, C.I. (2007). Successful design and conduct of genome-wide association studies,  
Human Molecular Genetics, 16:2, 2007, 220–225. 

Benford, F.(1938). The law of anomalous numbers. Proceedings of the American 
philosophical society, 551–572. 

Costas, E., López-Rodas, V.,  Toro, J.F.,  Flores-Moya, A. (2008). The number of cells in 
colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford's law 
Aquatic Botany, 89(3),341–343. 

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel and   Friedrich 
Leisch (2017). e1071: Misc Functions of the Department of   Statistics, Probability 
Theory Group (Formerly: E1071), TU Wien. R   package version 1.6-8. 
https://CRAN.R-project.org/package=e1071 

Devlin, B., and Roeder, K. (1999), Genomic control for association studies, Biometrics,  
      55, 997-1004. 
Dieter William Joenssen (2015). BenfordTests: Statistical Tests for   Evaluating 

Conformity to Benford's Law. R package version 1.2.0. https://CRAN.R-
project.org/package=BenfordTests 

2375



Hill, T. P. (1995). A statistical derivation of the significant-digit law. Statist. Sci., 10, 
354-363.

Hubert, Mia, Peter J. Rousseeuw, and Karlien Vanden Branden. "ROBPCA: a new 
approach to robust principal component analysis." Technometrics 47.1 (2005): 64-79. 

International HapMap 3 Consortium (2010), Integrating common and rare genetic 
variation in diverse human populations, Nature, 467, 52–58. 

Joenssen, D.W. (2015).  BenfordTests: statistical tests for   evaluating conformity to 
Benford's Law. R package version 1.2.0.  https://CRAN.R-
project.org/package=BenfordTests 

Karthik, D., Stelzer, G.,Gershanov,S., Baranes,D., and Salmon-Divon, M. (2016). 
Elucidating tissue specific genes using the Benford distribution. 
BMC Genomics, 17, 595:609 

Li, Q., Yu, K. (2008). Improved correction for population stratification in genome-wide 
association studies by identifying hidden population structures. 
Genetic Epidemiology, 32(3), 215-226. 

Liu, L., Zhang, D., Liu, H., and Arendt, C. (2013). Robust methods for population 
stratification in genome wide association studies. BMC Bioinformatics, 14: 132. 

Mahalanobis, P. C. (1936). On the generalized distance in statistics. National Institute of 
Science of India. 

Newcomb, S. (1881).  Note on the frequency of use of the different digits in natural 
numbers. Am J Math, 4: 39-40 

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., et al. (2006). Principal 
components analysis corrects for stratification in genome-wide association 
studies.Nat Genet, 38, 904–909. 

Pritchard, J.K., Stephens, M., Donnelly, P. (2000).  Inference of population structure 
using multi-locus genotype data. Genetics. 155, 945–959. 

Rosenberg, N.A., et al. (2002). Genetic structure of human populations. Science. 298, 
2381–2385. 

Tom Reynkens (2018). rospca: Robust Sparse PCA using the ROSPCA Algorithm. R 
package version 1.0.4. https://CRAN.R-project.org/package=rospca 

Xu, H., Caramanis, C., and Mannor, S. (2013). Outlier-robust PCA: the high-dimensional 
case. IEEE transactions on information theory, 59(1), 546-572. 

2376




