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Abstract

Group variable selection is a relatively new problem in statistics. When the predic-
tors can be naturally grouped in regression analysis, it is important to select important
groups of variables that are influencing the response. One method of performing group
variable selection is a method based on the least absolute shrinkage and selection op-
erator (LASSO), which is called the group LASSO. This method works well in most
cases, but has issues when there are outliers in the response. This paper proposes
two methods which are based on the least absolute deviation (LAD), the group LAD-
LASSO and the adaptive group LAD-LASSO, to perform group variable selection,
in the presence of outliers in the response. Both methods perform well when there
are outliers in the y-direction; however, only the adaptive version has nice theoretical
properties, including the oracle property. Further, selection of the shrinkage parameter
and those properties are discussed. Simulation studies and an application to a real data
set are also presented for both methods.

Keywords: Group LASSO, Robust variable selection, Multiple regression, Group
variable selection

1 Introduction

Regression analysis, in general, encounters two major problems. The first involves the es-
timation of the regression coefficients. In real-life situations involving regression analysis,
datasets are not always optimal. There may be heavy-tailed errors or outliers in the response
or in the predictor variables, and as a result, methods used for estimation in regression need
to be adapted for these situations, which are called robust regression methods. For this pa-
per, the focus is on one of these two scenarios: outliers in the response. In this case, the
ordinary least squares (OLS) estimators can perform poorly, such that the estimators are
unstable and inconsistent. A suitable robust method for this case has been proposed, the
least absolute deviation (LAD) estimators, which work well when there are outliers in the
response.

In addition to estimating the regression coefficients, variable selection is another impor-
tant problem in regression analysis. Typically, regression analysis begins with modeling one
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response with several predictor variables. It is beneficial to select a subset of explanatory
variables to predict the response. Including too many predictors in a regression model will
result in a model that is inefficient. Predictions from the given model will also be inaccu-
rate. Including too few predictors in a model will lead to a biased model and predictions. As
a result, several variable selection methods have been proposed to aid in selecting the true
underlying model in a regression problem. Stepwise regression is one of those such meth-
ods, which includes forward selection, backwards elimination, and bidirection elimination.
Other criteria have been proposed for variable selection including the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), and Mallows’s Cp.

One can simultaneously estimate significant regression coefficients and shrink insignif-
icant predictors to zero using the least absolute shrinkage operator (LASSO) method (Tib-
shirani, 1996). The LASSO is convenient in this respect; however, the LASSO does not
perform well in the presence of outliers. Some robust versions of the LASSO have been
briefly explored and mentioned. Along the same lines, the LAD-LASSO (Wang et al.,
2007) method has been derived to take advantage of the simultaneous estimation and se-
lection of regression coefficients while also doing well with outliers in the response. The
LAD-LASSO method combines the LAD regression penalty with the LASSO restriction on
the regression coefficients.

Another recent problem of interest involves grouped predictors. That is, the predictors
can be naturally grouped in such a way that is inherent to the structure of the data. For
example, markers on genes can be grouped such that there are 5 markers per gene. Grouped
predictors are also a part of function MRI (fMRI) data, as well as survey data, where vari-
ables can be grouped by demographic factors. A few group variable selection methods have
been proposed, including the group LASSO (Yuan and Lin, 2006). The group LASSO will
estimate the regression coefficients of important groups of variables and shrink the insignif-
icant groups all to zero simultaneously. With normally distributed errors, the group LASSO
does well in distinguishing the true model; however, when there are outliers in any direc-
tion, it often leads to incorrect models and bad prediction results. As a result, there is a need
for methods to execute group variable selection robustly when there are outliers in the data.

The rest of the paper is organized as follows. Section 2 proposes the group LAD-
LASSO method and discusses its computation and tuning parameter selection. Section 3
proposes the adaptive group LAD-LASSO and discusses its computation and tuning pa-
rameter selection; its properties are also mentioned. Section 4 presents a simulation study
demonstrating the robustness of the methods in the presence of outliers. Section 5 applies
the methods to a real data set. Section 6 concludes the paper.

2 Group LAD-LASSO

Consider the multiple linear regression model

yi = β0 + x
T
i β + εi (1)

for i = 1, . . . , n, where yi are the responses, xi = (xi1, xi2, . . . , xip)
T is the 1×p vector of

predictors, β = (β1, β2, . . . , βp)
T are the regression coefficients, and εi are the iid random
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errors. Without loss of generality, assume that β0 = 0. This can be done practically by
centering both the predictors and the response. As a result, consider the linear regression
model:

yi = x
T
i β + εi (2)

for i = 1, . . . , n. The ordinary least squares (OLS) criterion for estimating the regression
parameter vector β requires the minimization of the following objective function:

Q(β) =
n∑
i=1

(yi − xTi β)2. (3)

The solution results in the estimator β̂ = (XTX)−1XTY , where X is the n × p de-
sign matrix of explanatory variables such that xTi is the ith row with rank p and Y =
(y1, . . . , yn)

T is the n× 1 vector of responses. The OLS method relies on the assumptions
that the errors εi are random normal errors with mean 0 and constant variance σ2. Thus,
when the data include outliers, it is known that the OLS estimators perform poorly.

Least absolute deviation (LAD) regression is a method well suited as an alternative to
the OLS method when there are outliers in the response. The only assumption the LAD
method requires is that the random errors ε have median 0. Consider the LAD regression
minimization criterion:

Q(β) =

n∑
i=1

|yi − xTi β|. (4)

In order to also perform variable selection while estimating the regression coefficients,
the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) has been
proposed. The LASSO minimizes the least squares equation, while including a penalty on
the sum of the absolute value of the regression coefficients. The LASSO criterion to be
minimized is the following:

Q(β) =

n∑
i=1

(yi − xTi β)2 + nλ

p∑
j=1

|βj | (5)

for i = 1, . . . , n and j = 1, . . . , p and where λ > 0 is a tuning parameter, which controls
the amount of shrinkage applied to the regression coefficients. When the assumptions of
the OLS method are fulfilled, the LASSO performs optimally.

A method for estimation and variable selection is the LAD-LASSO (Wang et al., 2007),
which combines the robustness of the LAD method for estimation and the shrinkage of the
LASSO penalty for variable selection. The criterion to be minimized for the LAD-LASSO
is the following:

Q(β) =
n∑
i=1

|yi − xTi β|+ nλ

p∑
j=1

|βj | (6)
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for i = 1, . . . , n and j = 1, . . . , p and where λ > 0 is a tuning parameter. The LAD-
LASSO will help to minimize the effect of the outliers in the response, but not the outliers
in the explanatory variables. In this paper, we want to adapt this same idea to a multiple
regression model with grouped predictors. This requires some extra notation. Consider the
linear regression model:

yi =

p∑
j=1

xijβj + εi (7)

for i = 1, . . . , n and j = 1, . . . , p, where yi are the responses, xij are the values for the
individual predictor variables, βj’s are the regression coefficients, and εi are the iid random
errors with mean 0 and constant variance. Further assume that the predictor variables are
grouped such that there are K groups for k = 1, . . . ,K and each group k has pk predictors
where

∑k
i=1 pk = p.

Therefore, in general, the linear regression model for grouped predictors may be written
as the following:

yi =

K∑
k=1

xikβk + εi (8)

where xik is an 1×pk vector of predictors in group k and βk is a pk×1 vector of regression
coefficients for group k for i = 1, . . . , n.

The regression coefficients in the typical linear regression setting are usually estimated
with the OLS criterion, minimizing the sum of squares of the residuals. This can also be
done for the case of grouped variables, where the sum of the squares of the residuals are still
minimized, but with respect to the groupings. An alternative is the group LASSO (Yuan and
Lin, 2006), which adds the L2 penalty to the minimization criterion of the OLS method:

Q(β) =

n∑
i=1

1

2
(yi −

K∑
k=1

xikβk)
2 + nλ

K∑
k=1

||βk||2. (9)

The group LASSO will identify important groups and estimate their regression coeffi-
cients while shrinking unimportant groups to 0. It is known that the LASSO estimates can
be sensitive to outliers, because of the dependency of (9) on the OLS criterion. The algo-
rithm for the group LASSO is based off of the ”shooting algorithm” proposed by Yuan and
Lin (2006), and it is described as a ”group descent” algorithm by Breheny (2015). Its im-
plementation is defined to be the same as that for coordinate descent algorithms (Friedman
et al., 2007; Wu and Lange, 2008), but requires a modification to minimize the criterion in
(9) with respect to the groups. This algorithm requires a few basic arithmetic operations,
which makes for a computationally efficient algorithm (Breheny, 2015).

In the case of outliers in the response, the LAD estimators can relieve some of this
sensitivity, in addition to using the LASSO penalty for shrinkage and selection. Hence, the
combination of the LAD-LASSO method with grouped predictors to obtain:
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Q(β) =

n∑
i=1

1

2
|yi −

K∑
k=1

xikβk|+ nλ

K∑
k=1

||βk||2 (10)

which is the minimization criterion for the group LAD-LASSO to simultaneously estimate
significant groups and shrink nonsignificant groups to 0. Note that if pk = 1 for all k, then
(10) reduces to the LAD-LASSO equation (6). This method is implement in R with a small
modification to the loss function in the grpreg package in R.

The tuning parameter, λ, should be chosen so that it is large enough that there is a
desired shrinking effect for insignificant groups, but it should also be chosen such that it
is small enough that all the group are not shrunk to 0. In general, Cross-validation and
generalized cross-validation methods can be used to find the optimal value of the tuning pa-
rameter λ (Tibshirani, 1996; Fan and Li, 2001). In this case, we use k-fold cross-validation
after modifying the objective function to be that of the group LAD-LASSO to find the best
value of λ, such that the cross-validation error is minimized.

Unfortunately, because of using one tuning parameter, λ, to control all shrinkage, the
properties of consistency, sparsity, and the oracle property do not hold for the group LAD-
LASSO (Wang et al., 2007).

3 Adaptive Group LAD-LASSO

The adaptive LASSO is an extension of the LASSO which penalizes each coefficient differ-
ently with its own tuning parameter instead of penalizing each coefficient equally with the
L1 penalty that may not necessarily be the best way to treat the predictors when they don’t
all contribute to the regression model. (Zou, 2006).

The adaptive LASSO is designed to minimize the following equation:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

wj |βj | (11)

where the weights are defined to be wj to be wj = 1
|β̂j |ν

, where β̂j is the LSE for the jth
parameter and ν > 0. Equivalently, (11) can be written as:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 +

p∑
j=1

λj |βj |. (12)

The solution to (11) is based on a convex optimization problem. Algorithms used to
solve for the LASSO solutions can be used to compute the adaptive LASSO solutions with
a very simple modification. The tuning parameter λj for each regression coefficient is
found using cross-validation along with the LARS algorithm, similar to how it is found for
the LASSO. The oracle properties, including consistency and sparsity, hold for the adaptive
LASSO method (Zou, 2006).

Wang and Leng (2008) proposed the adaptive group LASSO which assigns a different
tuning parameter for each group, allowing the shrinkage to vary from group to group and
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also showed that this method has model selection consistency and is efficient. The adaptive
group LASSO criterion to minimize is the following:

1

2

n∑
i=1

(yi −
K∑
k=1

xikβk)
2 + n

K∑
k=1

λk‖βk‖2 (13)

where λk ≥ 0 is an adaptive tuning parameter, yi is the ith response, xik is a 1× pk vector
of predictors in the kth group for the ith observation, and βk is a pk × 1 vector of regres-
sion coefficients for group k. The flexible tuning parameter applies varying amounts of
shrinkage to the different groups of predictors. As a result, it can be understood intuitively
that applying a high amount of shrinkage to insignificant groups, which would go to 0, and
applying a low amount of shrinkage to significant groups, which would be nonzero, would
result in an efficient estimator. Even if there is no prior information on which groups are
significant and which are not, the shrinkage parameter can be chosen in such as way to get
as efficient an estimator as possible.

To choose an appropriate tuning parameter λk, usually, cross-validation (CV) or gener-
alized cross-validation (GCV) is used. However, these methods can be too computationally
intensive for the adaptive group LASSO, because of the possible high number of tuning pa-
rameters that need to be estimated. An ideal candidate for the tuning parameter, according
to Wang and Leng (2008) is:

λk =
λ

||β̂k||
γ
2

(14)

where β̂ = (β̂1, β̂2, . . . , β̂p)
T is the LSE and γ > 0 is a prespecified positive number. For

their simulation study and real data example, the authors chose γ = 1. With this choice of
shrinkage parameter for each group, the problem of finding an optimal shrinkage parameter
reduces to a univariate problem to solve for λ, which can be found similarly as in the case
of the LASSO based on various criteria, including Cp, GCV, AIC, and BIC.

Due to the nature of the adaptive tuning parameter, it can be shown that the adaptive
group LASSO estimators possess the oracle property (Wang and Leng, 2008).

However it is well known that this method is not robust in the presence of outliers,
thus may yield incorrect estimators and as a result incorrect models. Therefore a robust
version of this method is needed. The solution to this problem is to combine the adaptive
tuning parameter from the adaptive group LASSO with the objective function of the group
LAD-LASSO. With this mixture, we consider the following objective function to minimize:

Q(β) =
1

2

n∑
i=1

|yi −
K∑
k=1

xikβk|+ n

K∑
i=1

λk||βk||2. (15)

Define xik to be a 1 × pk vector of predictors, where pk is the number of predictors in
group k, while βk is a pk × 1 vector of regression coefficients. The penalty is the typical
L2 norm. The tuning parameter is defined such that λk ≥ 0. Effectively, this results
in regression estimators that will be robust to outliers in the response, while enjoying the
shrinkage and nice theoretical properties of the adaptive LASSO to perform group selection.
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The computation is the same as for the group LAD-LASSO with a small adjustment for the
adaptive tuning parameter. This is done in R with a small modification to our code using
the grpreg package for our simulations (Breheny, 2015).

3.1 Tuning Parameter Selection

In general, the tuning parameter can usually be found using cross-validation (CV) or gen-
eral cross-validation (GCV). However, this can be computationally intensive for the adap-
tive group variable selection problems, because there may be a large number of tuning
parameters to compute if the number of groups k is large. For the tuning parameter λk in
the adaptive group LAD-LASSO, we follow the example of Wang and Leng (2008) and
choose:

λk =
λ

||β̃k||
γ
2

(16)

such that β̃ = (β̃T1 , . . . , β̃
T
p )

T is the LAD estimator and γ > 0 is a positive number
chosen beforehand. For our simulation and real data application, we use γ = 1, as used by
Wang and Leng (2008). As a result, instead of calculating a λk for each group, this reduces
to a one-dimension problem where we only need to choose an appropriate λ. There are
some well known selection criteria for λ, suggested by Wang and Leng (2008), such as CV,
GCV, AIC, BIC where all require the df , the degrees of freedom and this is defined as in
Yuan and Lin (2006), given by:

df =
K∑
k=1

I{||β̂k||2 > 0}+
K∑
k=1

||β̂k||2
||β̃k||2

(pk − 1). (17)

Adapted for the adaptive group LAD-LASSO, β̃ are the unpenalized LAD estimators,
and σ̂2 is the variance estimator associated with β̃. For our simulations , we use the default
setting of choosing λ with the smallest value of the BIC criterion, which is given by

BIC = log(
1

n
||Y −Xβ̂||22) + log(n) ∗ df/n. (18)

Using the BIC criterion is an example of a consistent model selection criteria. The
consistent model selection criteria have the property of being able to identify the true model
consistently, if a finite-dimensional true model exists. This is comparable to the efficient
model selection criteria, which have the property of being able to select the best model
by an appropriately defined asymptotic optimality criterion, which are useful when the true
underlying model is too complicated to be well approximated by a finite-dimensional model
(Wang et al, 2007).

3.2 Theoretical Properties

Assume that we decompose the regression coefficientβ = (βTa ,β
T
b ), whereβa = (β1, . . . , βp0)

T

are the significant coefficients and βb = (βp0+1, . . . , βp)
T are the insignificant coefficients
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and denote the corresponding adaptive group LAD-LASSO estimators as β̂ = (β̂Ta , β̂
T
b ),

and let the adaptive group LAD-LASSO objective function be denoted byQ(β) = Q(βa,βb).
Further, we make the following assumptions:

• The errors εi have continuous and positive density at the origin.

• The matrix cov(x) = Σ exists and is positive definite.

and define an = max{λj , j ≤ p0} and bn = min{λj , j > p0}. First, we can establish
the consistency of the adaptive group LAD-LASSO estimators.

Theorem .1. (Estimation Consistency) If
√
nan →p 0, then β̂ − β = Op(

√
n).

Theorem 1 implies that if the shrinkage associated with the relevant nonzero predictors
is sufficiently small, then the corresponding adaptive group LAD-LASSO estimator can be√
n-consistent. The proof can be seen in the Appendix. The next theorem relates to the

method’s ability to properly estimate insignificant variables as zero.

Theorem .2. (Selection Consistency) If
√
nan →p 0 and

√
nbn →p ∞, then P (β̂b = 0)→

1.

This theorem can also be thought of as proving the sparsity property. In other words, the
adaptive group LAD-LASSO can consistently estimate zero coefficients as zero. That is,
the method can perform parameter estimation and variable selection simultaneously. The
proof of the theorem can be found in the Appendix. With both Theorem 1 & 2, we can
establish the Oracle property.

Theorem .3. (Oracle Property) If
√
nan →p 0 and

√
nbn →p ∞, then

√
n(β̂a − βa)→d

N(0,Σa).

Based on Theorem 2, with probability tending to one, all of the zero coefficients will
be estimated as such, essentially performing variable selection. Based on Theorem 1, all of
the estimates of the nonzero coefficients must be consistent, which implies that the nonzero
coefficients must be estimated as such with probability tending to one. Putting these two
theorems together leads to the conclusion of Theorem 3, which states that the adaptive
group LAD-LASSO has the property to identify the correct model consistently.

The details and proofs of the above theorems are given in the appendix.

4 Simulation Study

Three main simulation studies were performed. The first is a simulation with outliers only
in the response to compare the group LASSO to the group LAD-LASSO, while the second
also has outliers only in the response to compare the adaptive group LASSO to the adaptive
group LAD-LASSO. The package grpreg was used for the simulation in the statistical
software R. The third simulation study involves high-dimensional data for the adaptive
group LAD-LASSO.
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4.1 Group LAD-LASSO

For sample sizes n=50,100, and 200, let ε be the contamination rate equal to values ε=0.1,
0.2, and 0.3 such that m = [εn] is the number of contaminated data points. The first
n − m data points are generated from the true model y1 = X1β1 + σε, where X is
multivariate normal with 0 mean and the pairwise correlation between xi and xj equal to
cor(xi,xj) = 0.5|i−j|. The regression parameter vector is set to be β1 = (3, 1.5, 2, 0, 0, 0),
such that there are two sequential groups of three variables. The errors ε are generated
from the standard normal distribution, the t-distribution with 3 degrees of freedom, and
the t-distribution with 5 degrees of freedom, while σ will be 0.5 and 1. This will allow for
heavy-tail error distributions and some outliers in the response direction. Them points from
the contaminated data are produced with the following model: y2 = X2β2, where X2 is
multivariate normally distributed with µ2 6= 0 and covariance equal to I . Let β2 6= β1. For
our simulation, µ2 = 5 and β2 = (4.5, 4, 3, 10, 0, 0) such that the first group has 4 nonzero
values and the second group has 2 zero values. Both vectors were selected beforehand using
a random number generator in R. The closer the values of µ2 and β2 are to µ1 and β1, the
smaller the error becomes when there is contamination in the response and vice versa. For
each combination of sample size, contamination rate, sigma, and error distribution, the
simulation is performed 200 times, and the model error (ME) will be calculated for each of
the given method’s fit on the data for comparison purposes. The model error is calculated
by:

ME(β̂) =
(β̂ − β)TXTX(β̂ − β)

n
. (19)

The model error can be thought of as another measure of mean square error. Values of
model error close to 0 indicate the calculated model is close to the true model, while values
far away from 0 indicate the fitted model is not very close to the actual model. The results
from the simulation are in Tables 1-3. Figure 1 provides box plots for the distributions of
the model errors for the simulation for t3 errors. Each time the group LAD-LASSO has the
smallest median model error.

4.2 Adaptive Group LAD-LASSO

The adaptive group LASSO and adaptive group LAD-LASSO will be evaluated for data
with outliers in the y-direction only, performed under the same conditions as the previous
simulation for the group LAD-LASSO. In addition to the model error, the tables include a
column for the mean % of correct zeros, denoted as Mean % of CZ. For the 200 times the
simulation is run, the percentage of correct zeros is calculated (of the zeros found by the
model, the percentage of correct zeros is determined as the fraction of coefficients that are
actually supposed to be zero and the overall number of zero coefficients), and this column
indicates the overall average percentage of correct zeros of those 200 simulations. Tables
4-6 give the resulting model errors for the various setups. Figure 2 gives the box plots for
model error for the two adaptive methods. In all cases with contamination, the adaptive
group LAD-LASSO gives the smallest model error, which is also close to 0. This is sup-
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Table 1: Simulation results for N(0, 1) errors for strictly Y-outliers

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.03 0.02

g LAD-LASSO 0.03 0.03
0.1 g LASSO 0.37 0.22

g LAD-LASSO 0.17 0.13
0.2 g LASSO 1.27 0.99

g LAD-LASSO 0.34 0.24
0.3 g LASSO 2.95 2.36

g LAD-LASSO 0.70 0.46
100 0 g LASSO 0.01 0.01

g LAD-LASSO 0.01 0.01
0.1 g LASSO 0.26 0.18

g LAD-LASSO 0.09 0.07
0.2 g LASSO 1.18 0.95

g LAD-LASSO 0.21 0.17
0.3 g LASSO 3.03 2.88

g LAD-LASSO 0.37 0.33
200 0 g LASSO 0.01 0.01

g LAD-LASSO 0.01 0.01
0.1 g LASSO 0.22 0.18

g LAD-LASSO 0.06 0.05
0.2 g LASSO 1.22 1.09

g LAD-LASSO 0.15 0.13
0.3 g LASSO 3.08 3.08

g LAD-LASSO 0.24 0.21
1.0 50 0 g LASSO 0.10 0.10

g LAD-LASSO 0.11 0.10
0.1 g LASSO 0.46 0.28

g LAD-LASSO 0.25 0.20
0.2 g LASSO 1.44 1.07

g LAD-LASSO 0.47 0.32
0.3 g LASSO 3.04 2.33

g LAD-LASSO 1.02 0.60
100 0 g LASSO 0.06 0.05

g LAD-LASSO 0.06 0.05
0.1 g LASSO 0.37 0.26

g LAD-LASSO 0.13 0.12
0.2 g LASSO 1.09 0.91

g LAD-LASSO 0.25 0.19
0.3 g LASSO 2.84 2.69

g LAD-LASSO 0.51 0.38
200 0 g LASSO 0.03 0.02

g LAD-LASSO 0.03 0.02
0.1 g LASSO 0.26 0.22

g LAD-LASSO 0.07 0.05
0.2 g LASSO 1.18 1.07

g LAD-LASSO 0.15 0.12
0.3 g LASSO 2.99 2.79

g LAD-LASSO 0.34 0.28
 

126



Table 2: Simulation results for t3 errors for strictly Y-outliers

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.07 0.06

g LAD-LASSO 0.09 0.06
0.1 g LASSO 0.43 0.23

g LAD-LASSO 0.19 0.16
0.2 g LASSO 1.34 1.13

g LAD-LASSO 0.37 0.27
0.3 g LASSO 3.03 2.34

g LAD-LASSO 0.79 0.50
100 0 g LASSO 0.04 0.03

g LAD-LASSO 0.04 0.03
0.1 g LASSO 0.29 0.20

g LAD-LASSO 0.09 0.06
0.2 g LASSO 1.20 0.99

g LAD-LASSO 0.20 0.17
0.3 g LASSO 3.08 2.91

g LAD-LASSO 0.38 0.30
200 0 g LASSO 0.02 0.01

g LAD-LASSO 0.02 0.02
0.1 g LASSO 0.23 0.19

g LAD-LASSO 0.06 0.05
0.2 g LASSO 1.11 1.02

g LAD-LASSO 0.16 0.14
0.3 g LASSO 2.87 2.75

g LAD-LASSO 0.27 0.24
1.0 50 0 g LASSO 0.31 0.23

g LAD-LASSO 0.31 0.22
0.1 g LASSO 0.58 0.36

g LAD-LASSO 0.38 0.26
0.2 g LASSO 1.50 1.15

g LAD-LASSO 0.57 0.39
0.3 g LASSO 3.24 2.78

g LAD-LASSO 1.50 0.78
100 0 g LASSO 0.14 0.11

g LAD-LASSO 0.14 0.12
0.1 g LASSO 0.40 0.26

g LAD-LASSO 0.22 0.17
0.2 g LASSO 1.23 1.05

g LAD-LASSO 0.30 0.22
0.3 g LASSO 2.98 2.70

g LAD-LASSO 0.93 0.56
200 0 g LASSO 0.08 0.06

g LAD-LASSO 0.07 0.06
0.1 g LASSO 0.31 0.26

g LAD-LASSO 0.09 0.07
0.2 g LASSO 1.15 1.02

g LAD-LASSO 0.18 0.14
0.3 g LASSO 2.94 2.73

g LAD-LASSO 0.44 0.34
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Table 3: Simulation results for t5 errors for strictly Y-outliers

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.05 0.04

g LAD-LASSO 0.05 0.04
0.1 g LASSO 0.39 0.21

g LAD-LASSO 0.17 0.12
0.2 g LASSO 1.21 0.91

g LAD-LASSO 0.41 0.27
0.3 g LASSO 3.04 2.42

g LAD-LASSO 0.66 0.47
100 0 g LASSO 0.02 0.02

g LAD-LASSO 0.02 0.02
0.1 g LASSO 0.27 0.17

g LAD-LASSO 0.09 0.08
0.2 g LASSO 1.11 1.01

g LAD-LASSO 0.22 0.15
0.3 g LASSO 2.76 2.46

g LAD-LASSO 0.38 0.28
200 0 g LASSO 0.01 0.01

g LAD-LASSO 0.01 0.01
0.1 g LASSO 0.24 0.20

g LAD-LASSO 0.06 0.05
0.2 g LASSO 1.21 1.16

g LAD-LASSO 0.15 0.13
0.3 g LASSO 3.00 2.89

g LAD-LASSO 0.25 0.23
1.0 50 0 g LASSO 0.17 0.14

g LAD-LASSO 0.17 0.14
0.1 g LASSO 0.56 0.36

g LAD-LASSO 0.30 0.22
0.2 g LASSO 1.41 0.99

g LAD-LASSO 0.57 0.37
0.3 g LASSO 3.40 2.74

g LAD-LASSO 1.25 0.63
100 0 g LASSO 0.10 0.09

g LAD-LASSO 0.09 0.08
0.1 g LASSO 0.37 0.27

g LAD-LASSO 0.14 0.12
0.2 g LASSO 1.30 1.10

g LAD-LASSO 0.27 0.22
0.3 g LASSO 2.90 2.60

g LAD-LASSO 0.61 0.41
200 0 g LASSO 0.04 0.04

g LAD-LASSO 0.05 0.04
0.1 g LASSO 0.29 0.24

g LAD-LASSO 0.08 0.07
0.2 g LASSO 1.13 0.98

g LAD-LASSO 0.17 0.14
0.3 g LASSO 2.92 2.84

g LAD-LASSO 0.37 0.32
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Figure 1: Boxplots for Model Error for the strictly y-outlier simulation for comparing the
group LASSO (gLASSO) to the group LAD-LASSO (gLAD-LASSO) for various contam-
ination levels for ε ∼ t3 over 200 simulations for σ = 1 and n = 100.
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Figure 2: Boxplots for Model Error for the strictly y-outlier simulation for comparing the
adaptive group LASSO (agLASSO) to the adaptive group LAD-LASSO (agLAD-LASSO)
for various contamination levels for ε ∼ t3 over 200 simulations for σ = 1 and n = 100.

ported visually by the box plots, indicating that the adaptive group LAD-LASSO works
well for data with contaminations in the response variable.

4.3 Adaptive Group LAD-LASSO for High-Dimensional Data

In order to demonstrate the effectiveness of the group variable selection methods with high-
dimensional data, we perform a simulation study where p > n (Huang et al, 2008). The
conditions for calculating y1, X1, y2, and X2 are the same as for the previous two sim-
ulation studies. For sample size n, let ε be the contamination rate equal to values ε=0.1,
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Table 4: Simulation results for N(0, 1) errors for strictly Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
0.5 50 0 ag LASSO 99.7 0.03 0.02

ag LAD-LASSO 100 0.02 0.01
0.1 ag LASSO 26.4 0.57 0.39

ag LAD-LASSO 99.8 0.36 0.24
0.2 ag LASSO 26.0 1.75 1.37

ag LAD-LASSO 98.0 0.20 0.08
0.3 ag LASSO 29.8 4.02 3.51

ag LAD-LASSO 95.6 0.72 0.38
100 0 ag LASSO 100 0.01 0.01

ag LAD-LASSO 100 0.01 0.01
0.1 ag LASSO 30.1 0.47 0.34

ag LAD-LASSO 100 0.31 0.24
0.2 ag LASSO 29.9 1.54 1.38

ag LAD-LASSO 100 0.08 0.15
0.3 ag LASSO 33.4 3.46 3.24

ag LAD-LASSO 96.7 0.67 0.28
200 0 ag LASSO 100 0.01 0.01

ag LAD-LASSO 100 0.00 0.00
0.1 ag LASSO 24.5 0.35 0.31

ag LAD-LASSO 100 0.23 0.20
0.2 ag LASSO 25.6 1.31 1.22

ag LAD-LASSO 100 0.36 0.17
0.3 ag LASSO 43.1 3.17 3.03

ag LAD-LASSO 99.4 0.30 0.28
1.0 50 0 ag LASSO 97.8 0.08 0.07

ag LAD-LASSO 92.3 0.08 0.06
0.1 ag LASSO 24.6 0.62 0.44

ag LAD-LASSO 91.5 0.50 0.34
0.2 ag LASSO 25.7 1.79 1.47

ag LAD-LASSO 93.0 0.42 0.15
0.3 ag LASSO 23.2 4.16 3.39

ag LAD-LASSO 94.7 0.20 0.12
100 0 ag LASSO 99.0 0.04 0.03

ag LAD-LASSO 100 0.04 0.03
0.1 ag LASSO 24.2 0.40 0.31

ag LAD-LASSO 95.7 0.31 0.25
0.2 ag LASSO 38.3 1.51 1.36

ag LAD-LASSO 96.2 0.09 0.01
0.3 ag LASSO 43.3 3.53 3.21

ag LAD-LASSO 97.0 0.16 0.16
200 0 ag LASSO 98.8 0.02 0.02

ag LAD-LASSO 99.3 0.02 0.01
0.1 ag LASSO 39.5 0.32 0.26

ag LAD-LASSO 100 0.24 0.20
0.2 ag LASSO 37.6 1.34 1.24

ag LAD-LASSO 96.6 0.24 0.21
0.3 ag LASSO 24.8 3.27 3.14

ag LAD-LASSO 97.4 0.37 0.26
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Table 5: Simulation results for t3 errors for strictly Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
0.5 50 0 ag LASSO 99.1 0.09 0.05

ag LAD-LASSO 99.8 0.18 0.04
0.1 ag LASSO 45.7 2.87 1.96

ag LAD-LASSO 98.7 0.47 0.32
0.2 ag LASSO 38.4 9.91 7.84

ag LAD-LASSO 96.8 0.30 0.14
0.3 ag LASSO 29.5 24.11 21.95

ag LAD-LASSO 94.8 0.23 0.14
100 0 ag LASSO 93.6 0.03 0.03

ag LAD-LASSO 95.8 0.02 0.02
0.1 ag LASSO 44.7 2.23 1.75

ag LAD-LASSO 95.7 0.30 0.27
0.2 ag LASSO 32.0 8.55 7.33

ag LAD-LASSO 99.5 0.20 0.15
0.3 ag LASSO 23.3 21.39 19.90

ag LAD-LASSO 97.1 0.36 0.23
200 0 ag LASSO 99.3 0.02 0.02

ag LAD-LASSO 99.7 0.01 0.01
0.1 ag LASSO 39.6 1.99 1.71

ag LAD-LASSO 91.4 0.23 0.19
0.2 ag LASSO 31.5 7.78 7.49

ag LAD-LASSO 90.7 0.48 0.44
0.3 ag LASSO 21.8 20.29 19.11

ag LAD-LASSO 94.5 0.44 0.32
1.0 50 0 ag LASSO 95.9 0.28 0.17

ag LAD-LASSO 96.5 0.23 0.15
0.1 ag LASSO 48.1 3.43 2.39

ag LAD-LASSO 95.9 0.64 0.45
0.2 ag LASSO 44.7 11.20 9.51

ag LAD-LASSO 93.5 0.55 0.49
0.3 ag LASSO 23.6 24.10 22.36

ag LAD-LASSO 92.4 0.44 0.39
100 0 ag LASSO 97.0 0.10 0.07

ag LAD-LASSO 99.0 0.11 0.08
0.1 ag LASSO 47.3 2.35 1.91

ag LAD-LASSO 94.8 0.37 0.28
0.2 ag LASSO 41.5 8.83 7.62

ag LAD-LASSO 92.7 0.33 0.29
0.3 ag LASSO 21.4 20.69 18.80

ag LAD-LASSO 92.1 0.27 0.28
200 0 ag LASSO 99.3 0.05 0.04

ag LAD-LASSO 99.8 0.05 0.03
0.1 ag LASSO 45.3 1.86 1.55

ag LAD-LASSO 95.4 0.28 0.21
0.2 ag LASSO 28.1 7.83 7.35

ag LAD-LASSO 92.4 0.54 0.48
0.3 ag LASSO 20.2 20.12 19.56

ag LAD-LASSO 91.3 0.39 0.28
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Table 6: Simulation results for t5 errors for strictly Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
0.5 50 0 ag LASSO 97.4 0.05 0.04

ag LAD-LASSO 97.5 0.03 0.02
0.1 ag LASSO 48.7 3.80 2.44

ag LAD-LASSO 93.7 0.35 0.24
0.2 ag LASSO 43.0 10.69 9.03

ag LAD-LASSO 93.0 0.53 0.45
0.3 ag LASSO 32.9 23.98 22.08

ag LAD-LASSO 90.0 0.43 0.40
100 0 ag LASSO 98.4 0.02 0.02

ag LAD-LASSO 98.7 0.01 0.01
0.1 ag LASSO 48.0 2.44 1.81

ag LAD-LASSO 94.1 0.28 0.21
0.2 ag LASSO 36.5 8.48 7.51

ag LAD-LASSO 93.1 0.58 0.48
0.3 ag LASSO 27.6 21.21 20.02

ag LAD-LASSO 91.6 0.32 0.28
200 0 ag LASSO 99.9 0.01 0.01

ag LAD-LASSO 100 0.01 0.00
0.1 ag LASSO 47.3 1.98 1.67

ag LAD-LASSO 95.6 0.24 0.22
0.2 ag LASSO 36.1 7.53 6.95

ag LAD-LASSO 93.3 0.64 0.40
0.3 ag LASSO 23.0 19.87 18.74

ag LAD-LASSO 92.8 0.32 0.25
1.0 50 0 ag LASSO 97.2 0.14 0.12

ag LAD-LASSO 97.8 0.15 0.10
0.1 ag LASSO 47.8 3.85 2.40

ag LAD-LASSO 94.2 0.54 0.34
0.2 ag LASSO 43.0 11.69 9.21

ag LAD-LASSO 92.8 0.30 0.25
0.3 ag LASSO 30.5 23.65 22.12

ag LAD-LASSO 90.5 0.35 0.20
100 0 ag LASSO 98.6 0.07 0.05

ag LAD-LASSO 98.7 0.06 0.05
0.1 ag LASSO 46.6 2.29 1.82

ag LAD-LASSO 94.4 0.33 0.27
0.2 ag LASSO 40.1 8.40 7.25

ag LAD-LASSO 93.1 0.33 0.29
0.3 ag LASSO 26.4 20.95 19.68

ag LAD-LASSO 90.8 0.39 0.28
200 0 ag LASSO 99.1 0.03 0.02

ag LAD-LASSO 99.2 0.02 0.02
0.1 ag LASSO 44.6 1.90 1.55

ag LAD-LASSO 97.0 0.26 0.21
0.2 ag LASSO 32.0 8.02 7.71

ag LAD-LASSO 93.8 0.30 0.16
0.3 ag LASSO 21.1 19.48 18.49

ag LAD-LASSO 92.5 0.25 0.17
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0.2, and 0.3 such that m = [εn] is the number of contaminated data points as before. The
first n −m data points are generated from the true model y1 = X1β1 + σε, where X is
multivariate normal with 0 mean and the pairwise correlation between xi and xj equal to
cor(xi,xj) = 0.5|i−j|. The m points from the contaminated data are produced with the
following model: y2 =X2β2, whereX2 is multivariate normally distributed with µ2 6= 0
and covariance equal to I . Let β2 6= β1. Both vectors were selected beforehand using a
random number generator in R.

This simulation specifically sets a high-dimensional setting for the data where p > n.
To achieve this, n = 100 and p = 400. The first 15 predictors are nonzero, while the
last 385 predictors are zero, which also allows for a sparse predictor matrix. The predictor
matrix is partitioned into 80 groups of 5 predictors each such that pk = 5. The first five
predictors of β1 are equal to 2.5, the next five predictors are equal to 1.5, the third group
of five predictors is equal to 0.5, while the rest of the groups of five predictors are all
equal to 0. The contamination is included such that µ2 = 5, and the first five components
of β2 are equal to 5, the second five components are equal to 4, the third group of five
components is equal to 3, the fourth group of five components is equal to 2, the fifth group
of five components is equal to 1, and the remaining 375 components, which comprise the
remaining 75 groups of five components each, are all equal to 0. The errors are t-distributed
with 5 degrees of freedom, while σ = 1. The simulation is replicated 200 times in R.
The model error (ME) will be calculated for each of the given method’s fit on the data for
comparison purposes as in (19).

The results of the high-dimensional simulation are shown in table 7, and the box plots
of the model error for the various contamination levels are shown in figure 3. The adaptive
group LASSO and the adaptive group LAD-LASSO perform similarly when there is no con-
tamination with model errors both close to zero. However, once there is contamination, the
advantage in the robust adaptive group LAD-LASSO becomes apparent. The mean model
error for the adaptive group LASSO begins to increase to 10.30, 44.95, and 71.14, as the
contamination level increases to 10%, 20%, and 30%, respectively, while the mean model
error for the more robust adaptive group LAD-LASSO stays close to 0 by being equal to
0.18, 0.14, 0.11, as the contamination level increases to 10%, 20%, and 30%, respectively.
The results also show that the adaptive group LAD-LASSO correctly estimates the zero
groups as zero more often than the adaptive group LASSO when there is contamination,
supporting the sparsity property of the adaptive group LAD-LASSO. Results are similar for
non-adaptive comparisons between the group LASSO and the group LAD-LASSO.

5 Real Data Application

In order to show the effectiveness of the two methods, a real data example is presented.
The data are from microarray experiments of mammalian eye tissue samples and contain
gene expression information from 120 subjects (Scheetz et al., 2006). The response is the
expression level of gene TRIM32, which causes Bardet-Biedl syndrome. There are 100
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Table 7: Simulation results for t5 errors for strictly Y-outliers with High-Dimensional Data

σ n ε Method Mean % of CZ Mean ME Median ME
1.0 100 0 ag LASSO 98.6 0.05 0.05

ag LAD-LASSO 99.0 0.05 0.05
0.1 ag LASSO 77.2 10.30 10.29

ag LAD-LASSO 95.6 0.18 0.17
0.2 ag LASSO 73.7 44.95 44.89

ag LAD-LASSO 94.0 0.14 0.13
0.3 ag LASSO 69.5 71.14 70.98

ag LAD-LASSO 93.4 0.11 0.11
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Figure 3: Boxplots for Model Error for the strictly y-outlier simulation with high-
dimensional data for comparing the group LASSO (gLASSO) to the group LAD-LASSO
(gLAD-LASSO) for 0% (top left), 10% (top right), 20% (bottom left), and 30% (bottom
right) contamination levels for ε ∼ t5 over 200 simulations for σ = 1, n = 100, p = 400.
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Table 8: MSE for the application on the Bardet data set.

Method Contamination Mean MSE Median MSE
gLASSO 0% 0.023 0.021

gLAD-LASSO 0.029 0.028
agLASSO 0.010 0.010

agLAD-LASSO 0.010 0.010
gLASSO 20% y-outliers 84.949 85.476

gLAD-LASSO 0.173 0.176
agLASSO 56.194 56.263

agLAD-LASSO 0.060 0.040

predictors, which are the expression levels of 20 genes, which were expanded using 5 basis
B-splines (Yang and Zou, 2012). That is, each 5 consecutive columns corresponds to a
grouped gene.

Preliminary analyses of the data indicate there is multicollinearity between the predic-
tors. For example, marker 4 has a correlation equal to 0.77 with marker 19, and marker 5
has a correlation equal to 0.99 with marker 30. However, since this happens with only a
few pairs of variables, the multicollinearity is not severe enough to warrant a change from
the LASSO-based methods (Dormann et al, 2013). A scatter plot matrix indicates that there
is at least one outlier in the response, and some outliers in the predictor space, including
about nine observations for marker 4. As a result, 24 observations in the response are ran-
domly chosen and shifted to become outliers. (24 observations are 20% of the overall 120
observations, indicating there will be 20% contamination of outliers).

All four methods are performed on the data set to see which groups of genes are im-
portant in predicting the expression level of gene TRIM32. The methods are examined by
using the following measure. We find the mean square error for each method over 100 runs
of fitting the model with k-fold cross-validation and report the average of the 100 mean
square errors.

MSE =
1

n− p

n∑
i=1

(yi − ŷi)2 (20)

The results are in Table 7. Box plots of the mean square error are provided

When there are no outliers, all of the methods perform equivalently. When accounting
for outliers in the response, it is clear the the group LAD-LASSO and the adaptive group
LAD-LASSO outperform their non-robust counterparts, the group LASSO and the adaptive
group LASSO. This can also be seen from the box plots.
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Figure 4: Box plot for the Mean Square Error for the adaptive group LASSO (agLASSO)
and the adaptive group LAD-LASSO (agLAD-LASSO) for the given condition over 100
fittings on the Bardet data set.

6 Conclusions

In this paper, two new methods for robust variable selection with grouped predictors were
proposed. The group LAD-LASSO and the adaptive group LAD-LASSO is appropriate
when the data includes outliers in the response. Both methods prove to be more robust
in simulations and in a real data example than the group LASSO and the adaptive group
LASSO. The adaptive group LASSO is shown to have nice theoretical properties, including
the oracle property, due to its adaptive tuning parameter. In all cases presented when there
are outliers in the response and group selection is a priority, the group LAD-LASSO and
adaptive group LAD-LASSO are well-suited to the task.

Additionally, this work leads to ideas to pursue for further research in the area of group
variable selection methods that perform group selection and variable selection within the
groups simultaneously, which the group LASSO is not designed to do. One such method
that could do this is the group bridge. For instance, in the real data set example, both of
the adaptive methods selected all three groups, so a group selection method that also does
within-group variable selection would be useful in that case in order to see if a subset of the
individual variables within the group are actually significant.
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7 Appendix

7.1 Proof of Theorem 1

Before the proof, first assume all of the conditions presented before the theorem in section
3.3. Therefore, we assume the groups are ordered such that all significant nonzero groups
are first in the grouping order, and all insignificant zero groups are ordered to be last. For
example, if there are four groups, and two are significant, groups 1 and 2 would be the
significant groups, and groups 3 and 4 would be the nonsignificant groups. Furthermore,
assume k0 is the largest value of k such that the group k0 is significant and nonzero.

It should be noted that the objective function of the adaptive group LAD-LASSO Q(β)
(15) is convex. As long as we can show a local minimizer ofQ(β), which is

√
n-consistent,

then by global convexity of Q(β), the local minimizer must be β̂, the adaptive group LAD-
LASSO estimators. In order to show the existence of a

√
n-consistent local minimizer, we

want to show that for any given ε > 0, there exists a sufficiently large constant C such that

lim
n

inf P

{
inf
||u||=C

Q(β + n−1/2u) > Q(β)

}
> 1− ε, (21)

where u = (u1, . . . , up)
T is a p-dimensional vector such that ||u|| = C. Let Dn(u) =

Q(β + n−1/2u)−Q(β). Then,
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Dn(u) =
n∑
i=1

1

2
|yi −

K∑
k=1

xik(βk + n−1/2uk)|+ n

K∑
k=1

λk||βk + n−1/2uk||2

−
n∑
i=1

1

2
|yi −

K∑
k=1

xikβk|+ n
K∑
i=1

λk||βk||2

(22)

=

n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

+ n
K∑
k=1

λk||βk + n−1/2uk||2 − n
K∑
i=1

λk||βk||2

(23)

=

n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

+ n
K∑
k=1

λk||βk + n−1/2uk||2 − n
k0∑
k=1

λk||βk||2

(24)

≥
n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

+ n

k0∑
k=1

λk(||βk + n−1/2uk||2 − ||β||2)

(25)

≥
n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

+ p0
√
nan

k0∑
k=1

||uk||2

(26)

Equation (25) follows from (24), because βk = 0 for any j > p0. Divide equation
(26) into two parts, separated by the +. Denote the first part as Ln(u). Because of the
theorem’s conditions, we know

√
nan = o(1), which implies the second and last term is of

o(1). Next, we must show how Ln(u) behaves.
Using an equation from Knight (1998), for x 6= 0:

|x− y| − |x| = −y[I(x > 0)− I(x < 0)] + 2

∫ y

0
[I(x ≤ s)− I(x ≤ 0)]ds

Then Ln(u) can be rewritten as:

n∑
i=1

{|yi −
K∑
k=1

xikβk −
K∑
k=1

xikn
−1/2uk| − |yi −

K∑
k=1

xikβk| (27)

which, in turn, can be written as (with help from Knight (1998):
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−n−1/2u
n∑
i=1

xi[I(εi > 0)−I(εi < 0)]+2
n∑
i=1

∫ n−1/2uTxi

0
[I(ε ≤ s)−I(ε ≤ 0)]ds (28)

By the Central Limit Theorem, the first term of (28) converges in distribution to uTW ,
whereW is a p-dimensional normal random vector with mean 0 and covariance matrix Σ.
Now, as for the second part of (28), denote the c.d.f. of εi by F and

∫ n−1/2uTxi
0 [I(ε ≤

s)− I(ε ≤ 0)]ds by Zni(u). Hence,

nE[Zni(u)I(n
−1/2|uTxi| ≥ η)] ≤ nE{(

∫ n−1/2|uTxi|

0
2ds)2I(n−1/2|uTxi| ≥ η)}

(29)

= 4E[|uTx|2I(|uTx| ≥
√
nη)] (30)

= o(1) (31)

However, due to the continuity of f , there exists an η > 0 and 0 < κ < ∞ such that
sup|x|<η f(x) < f(0) + κ. Let R = nE[Z2

ni(u)I(n
−1/2|uTxi| < η)]. Then,

R ≤ 2nηE{
∫ n−1/2|uTxi|

0
|I(εi ≤ s)− I(εi ≤ 0)ds ∗ I(n−1/2|uTxi| < η)} (32)

≤ 2nηE{
∫ n−1/2|uTxi|

0
[F (s)− F (0)]ds ∗ I(n−1/2|uTxi| < η)} (33)

≤ 2nη{f(0) + κ}E{
∫ n−1/2|uTxi|

0
sds ∗ I(n−1/2|uTxi| < η)} (34)

≤ {f(0) + κ}E|uTxi|2 (35)

The terms in (35) converge to 0 as η → 0. This implies that R is dominated by
the given function. It follows that as n → ∞, V ar(

∑n
i=1 Zni) =

∑n
i=1 V ar(Zni) ≤

nE(Z2
ni(u))→ 0. Hence,

∑n
i=1{Zni(u)− E[Zni(u)]} = o(1). Furthermore,

E(

n∑
i=1

Zni(u)) = nE[Zni(u)] (36)

= nE{
∫ n−1/2uTxi

0
[F (s)− F (0)]ds} (37)

= E

∫ n−1/2

0
uTxisf(0)ds}+ o(1) (38)

= 0.5f(0)uT (xix
T
i )u+ o(1) (39)

because
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P{n−1/2max(|uTx1|, . . . , |uTxn| > η∗)} (40)

≤ nP{|uTx1| > η∗n1/2} (41)

≤ 1

(η∗)2
E{|uTx1|2I(|uTx1| > η∗n1/2)} → 0 (42)

Thus, because of the Law of Large Numbers, it follows that
∑n

i=1 Zni(u)→p
1
2f(0)u

TΣu,
which is a quadratic function inu. Therefore, the second part of (31) converges to f(0)uTΣu
in probability. Hence, when C is sufficiently large, the second term of (28) dominates both
the first part of (28) and the last term in (26). This implies (21) and completes the proof.

7.2 Proof of Theorem 2

First, assume all conditions from the proof of theorem 1 are true. Using an argument from
Bloomfield and Steiger (1983), it follows that Q(β) is piecewise linear and reaches the
minimum at some breaking point. Take the first derivative of Q(β) at any differentiable
point β̃ with respect to βj , j = p0 + 1, . . . , p, to obtain:

n−1/2
∂Q(β̃)

∂βj
= −n−1/2

n∑
i=1

sgn(yi − xTi β̃)xik +
√
nλk

β̂b

||β̂b||2
(43)

where

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(44)

.
For any ∆ ∈ Rp, let

V (∆) = n−1/2
n∑
i=1

xisgn(εi − n−1/2xTi ∆). (45)

By the Central Limit Theorem, it follows that

V (0) = n−1/2
n∑
i=1

xisgn(εi)→d N(0,Σ), (46)

where →d means ‘convergence in distribution.’ Because n−1/2max{|uTxi|} = o(1)
and because of lemma A.2 from Koenker and Zhao (1996), it follows that

sup
||∆||≤M

|V (∆)− V (0) + f(0)Σ∆| = o(1) (47)

whereM is any fixed number. Then, for any β̃ = (β̃Ta , β̃
T
b )

T such that
√
n(β̃a−βa) =

Op(1) and |β̃b − βb| ≤ εn =Mn−1/2,
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n−1/2
n∑
i=1

sgn(yi − xTi β̃)− n−1/2
n∑
i=1

xisgn(ε) + f(0)Σ∆∗ = o(1) (48)

where ∆∗ =
√
n(β̃ − β). Ultimately, this implies

n−1/2
n∑
i=1

xTi sgn(y1 − xTi β̃) = o(1), (49)

which, in turn, implies that the first term of (43) is o(1). As for the second term of (43),
note that if β̂b 6= 0, there exists a c such that |β̂bc| = max{|β̂bc′ | : 1 ≤ c′ ≤ pk}. Without
loss of generality, we can assume c = 1, then we must have

|β̂b1|
||β̂b||2

≥ 1
√
pk

> 0. (50)

Note that
√
nλk ≥

√
nbn → ∞. This implies that

√
nλkβ̂bc

||β̂b||2
dominates the first term in

(43) with probability tending to 1. This means (43) cannot be true as long as the sample
size is sufficiently large. Hence, we can conclude that with probability tending to 1, ‖β̂b‖
must be undifferentiable. Therefore, β̂b has to be exactly zero.

7.3 Proof of Theorem 3

With theorem 1 and 2, theorem 3 implies that the group LAD-LASSO estimator is robust
against heavy-tailed errors, because the

√
n-consistency of β̂a is established without mak-

ing any moment assumptions on the regression error. Also, it implies that the resulting
estimator has the same asymptotic distribution as the group LAD-LASSO estimator ob-
tained under the true model establishing the oracle property of the estimator. Combining
theorem 1 and 3, we know that β̂k 6= 0 for k0 < p0 and β̂k = 0 for k0 > p0.

For any v = (v1, . . . , vp0)
T ∈ Rp0 , let Sn(v) = Q(βa+n−1/2v, 0)−Q(βa, 0). Then,

Sn(v) =

n∑
i=1

{|yi−xiaβa−n−1/2vTxia|−|yi−xTiaβa|+n
p0∑
j=1

λj{|βj+n−1/2vj |−|βj |}

(51)
where xia = (xi1, . . . , xip0)

T . Similar to the proof of theorem 1, the first term of (51),
such that (51) is separated by the +, converges in distribution to vTWa+f(0)v

TΣv, where
Wa is a p0-dimensional normal random vector with mean 0 and variance matrix Σa. Also,
the absolute value of the second term of (51), which can be denoted by ∗∗ is constrained by
the following

| ∗ ∗| ≤
√
nan

p0∑
j=1

|vj | → 0 (52)

Using the results from theorem 2 and remark 1 from Davis (1992), the central limit
theorem follows, which completes the proof of theorem 3.
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