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Abstract
Estimating heterogeneous treatment effect is an important task in causal inference with wide appli-
cation fields. It has also attracted increasing attention from machine learning community in recent
years. In this work, we reinterpret the heterogeneous treatment effect estimation and propose ways
to borrow strength from neural networks. We analyze the strengths and drawbacks of integrating
neural networks into heterogeneous treatment effect estimation and clarify the aspects that need to
be taken into consideration when designing a specific network. We proposed a specific network
under our guidelines. In simulations, we show that our network performs better when the structure
of data is complex, and reach a draw under the cases where other methods could be proved to be
optimal.
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ing, Neural Networks

1. Introduction

Estimating heterogeneous treatment effect is a task commonly encountered in economic,
marketing, public policy, and personalized medicine. With the growing accessibility of data
of various forms, it is possible to have more accurate heterogeneous treatment estimation
of individuals based on the observable covariates.

1.1 Definitions and Problem Setting

Following the Neymann-Rubin Potential Outcome framework [6], we have two treatment
conditions, Ti = 1 for treated and Ti = 0 for control, two corresponding potential out-
comes, Yi(1) for treated and Yi(0) for control, and we can only observe one of the potential
outcomes. Therefore, the observed data is (Yi, Xi, Ti), where Xi is covariates. We assume

our observed data come from a super probabiity distribution, that is (Yi, Xi, Ti)
iid∼ P.

Our goal is to estimate Individual Treatment Effect (ITE), Yi(1)− Yi(0), as accurately
as we can when we are given a new item with Xi observed. But this is not possible without
strong assumptions [4] . A naive choice is to estimate the Average Treatment Effect (ATE)
τ = E(Yi(1) − Yi(0)) as a substitute for Yi(1) − Yi(0). However, this approach does not
consider the individual properties given in Xi. Another way people often use is to estimate
Conditional Average Treatment Effect (CATE) E(Yi(1) − Yi(0)|Xi = x) as a substitute
for Yi(1) − Yi(0), using information in Xi. We use this more reasonable and widely used
way in this work.

However, it should be noticed that Xi is what we observed, so that it does not necessar-
ily carry enough pertinent information about Yi(1)− Yi(0) due to two facts: 1, We cannot
assert we can observe all the measures related to Yi(1) − Yi(0); 2, Xi can be very noisy
and noise does not tell us much about the Yi(1) − Yi(0). Therefore, the distribution of
(Yi(1)− Yi(0)|Xi = x) could be heavy tail due to the noise, or only have a small concen-
tration around the likely Yi(1) − Yi(0) due to missing information. In these cases, which
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are very likely, CATE is not a good substitute for Individual Treatment Effect, conditional
mode may be a better choice. We will elaborate on this more later in a specific case, but for
now, what’s under consideration is CATE.

To make CATE estimable, we need some conditions:

• Unconfoundedness: T ⊥⊥ (Y (1), Y (0))|X ,

• Strict Overlap: ∃ϵ ∈ (0, 1), P (T = 1|X) ∈ [ϵ, 1− ϵ].

1.2 Related Works

Many endeavors have been made to borrow strength of machine learning methods for esti-
mating various treatment effects. Two main streamlines are linear regression based methods
and tree based methods.

Linear regression based methods include unadjusted regression, which is regression on
treatment indicator; adjusted regression[3], which is regression on both treatment indicator
and covariates; and adjusted regression with interaction term[5], which is regression on
treatment indicator vector, covariates and interaction term of treatment indicator vector and
covariates.

Tree based methods include Causal Tree [1], which integrated the notion of treatment
effect into the tree building and fitting procedure and is designed to estimate the treatment
effect; Causal Forest [7], which ensembles Causal Trees and can do both estimation and
inference; and Meta-learners[4], a set of methods integrating treatment indicator into ma-
chine learning methods, mostly tree based methods.

Aforementioned work have also validated their methods theoretically under specific
settings, mostly assume the truth is a regression model and enjoys Lipschitz conditions or
certain degree of smoothness.

However, with the growing accessibility of data of various form, the structure of data
could be complex. In target marketing, data includes user’s profile photo, posts, demog-
raphy information and purchase behaviors. In a medical setting, observable covariates are
not restricted to blood pressure, hemogram, gender, image data like CT scan can also be
collected. Therefore, data can be of very high dimension, can has complex structure, and
can be very noisy. The simple models may fail to be representative in a lot of applications
as mentioned above.

1.3 Reinterpretation of the problem

The problem of heterogeneous treatment effect estimation is defined on some model as-
sumptions that captures the essentials of the real world problem, but with concessions and
approximations. All the aforementioned methods are by nature a designation of a compu-
tation procedure, resulting in an output, no matter what model assumptions are. Therefore,
the task becomes, coming up with a computation procedure that can result in an output
“closer”, as measured by mean squared error (MSE) or other criterion, to “truth” or its
proxy, which is CATE in our problem setting, under the model assumptions we defined
above. However, the model assumptions of the problem is too general for this goal to be
fully achieved, a reasonable goal is to achieve good performances in a reasonable wide
arrange of settings, among which, regression models with Lipschitz conditions are only a
small part.

Some preferable characteristics of such methods are:

• Can fit different models well without knowing the model specification,

 
2386



• Can achieve consistency when sample size grows to infinity,

• Computationally feasible.

The second is hard to achieve theoretically when the first is achieved empirically, as the
setting could be complex enough to resist statistical and mathematical analysis. The third is
also in conflict with the second one to some extent, when one goes for optimal convergence
rate in some problems [2]. Therefore, in this work, we do not put any of the criterion as
dominant, all the three are important.

2. Causal Networks

2.1 Integrating Neural Network into Heterogeneous Treatment Effect Estimation

Neural network has proved to be successful in image tasks and text tasks, due to its amazing
expressiveness and the ability to deal with structured data, which motivates borrowing its
strength into heterogeneous treatment effect estimation.

A working neural network has two basic elements: network structure and training
paradigm.

The neural network structure is normally composed of input layer, several hidden lay-
ers and an output layer. Each Layer is composed of operators: linear transformation or
piecewise linear transformation (max pooling), activation function, and batch normalizing
(stabilize the input data in each layer). One can have an output with a neural network
when parameters are fixed. With a given pre-specified loss function, the aim is to optimize
the loss function, where the training paradigm comes into consideration. Common train-
ing paradigms are back propagation based training paradigm, Adam and SGD are popular
ones.

2.1.1 Expressiveness of Neural Networks

Neural networks can express a wide range of relationships through a specific realization
of parameters. For example, only a linear transformation operator is enough to express
linear relationship, as could be expressed in linear regression based methods. When there
are more layers with activation functions, whether linear or not, linear relationship can also
be approximated as long as the activation function is differentiable on an interval, mean
while, nonlinearity could also be detected as long as the activation function is second-
order differentiable. Our exploratory simulation shows that two layer neural network with
nonlinear activation function can detect nonlinearity (see appendix).

Though neural network output is a continuous function of input, the step function could
be approximated by two Relu (a kind of activation function) with opposite direction. Forest
structure with a given number of trees can also be approximated by adding an averaging
layer (which is a linear transformation) in the end.

The expressiveness of neural network makes it possible to incorporate several methods
in one network structure, the conventional model selection procedure is some what incor-
porated in the training procedure w.r.t. minimizing the loss function. The notion of model
selection in neural network setting becomes selecting a neural network structure.

2.1.2 Computational Burden

A key issue in exploiting neural network based method is it’s computational burden — it
does not compute the exact solution and the computation time could be long.
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Computation time primarily depends on the number of nodes and complexity of the
function used in that node, so moderately large neural networks do not require much time
for one updating procedure and it is linear to sample size. On the other hand, for random
forest type methods, the computation time depends both on number of trees in the forest
and the tree fitting procedure, both of which commonly grow with sample size. Besides,
with the development of neural network in computer science, chips for computing neural
networks are under development, in which situation the computation of basic operators
becomes a single instruction like “==” and “!=”. The problem of computational time is not
an issue then.

What can not be offset by the recent development in computer hardware is that the
problem is not exact solution. In our exploratory simulation, we find that with increasing
iteration and access to new data, this problem can be allieviated. The problem exists, but to
mild extent.

2.1.3 End to End Approach

Another characteristic coming along is that this is an end to end approach, this gives the
method a huge space for accommodating to different data form. Data of text form, image
form, traditional covariates could be considered together in one neural network. Though
images data normally use CNN based neural network, text data normally use RNN based
network, two kinds of network structure could be connected and merged into a big one and
which is not the case for other methods.

2.1.4 Utilizing Treatment Group/ Control Group Information

A key task in integrating neural network in heterogeneous treatment effect estimation is
figuering out how to use the information in treatment group and control group.

Treatment group and control group shares a part of information, as the data of the two
are of the same form and the outcome depends not only on what treatment is given but also
on which individual it is. Two groups also has separate information due to the different
treatment, which is what we want to get. How to achieve this information sharing and
information separation is a key question.

Diverter
Here we design a “diverter”, which “diverts” the information flow of two groups (though

our way of integrating treatment information does not restrict treatment indicator to be bi-
nary, it could be continuous):

• Compute according to first several layers of network with covariate Xi to be the
input, getting f(Xi),

• Control Flow diverter:
Diverting mechanism: fc(Xi) = max(1− sigmoid(max(0, f(Xi) + Ti)), 0)
Keep going after diverting : f̃c(Xi) = gc ◦ fc(Xi)

• Treatment Flow diverter:
Diverting mechanism: ft(Xi) = sigmoid(max(0, f(Xi) + Ti − 1))
Keep going after diverting: f̃t(Xi) = gt ◦ ft(Xi)

• Merge two flows:
Adding the two flow up to be the output:
ŷ(Xi) = f̃c(Xi) + f̃t(Xi)
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Intuition of diverter
The intermediate output f(Xi) has reasonable range, adding the treatment indicator

separate the range of control group and treatment group to some extent, so it is possible to
extract the part with “mostly control group”, and the part with “mostly treatment group”,
resulting in control flow diverter and treatment flow diverter. After the flow are diverted,
they keep going on their computation or transformation. In the end, they are added up
together, two flows merges.

With diverter, both information sharing and information separation are incorporated
and the extent of information separation are learned through training, as we do not impose
a hard separation.

2.2 Our Causal Network

Under the guidance we discussed above, we designed a simple neural network with a di-
verter, as shown in figure 1. The network is composed of a input block, a diverter, three
processing block and an output block. This neural network is simpler than the simplest
standard neural network, like Alexnet. Parameters in each convolution layer is only the
convolution kernel, which is shared across different location of the image tensor.

Figure 1: Causal Network

We use standard SDG for our training procedure. And we use L2 loss function of the
outcome to train our network. Our philosophy here is to achieve good performance on
CATE estimation through good performance on outcome estimation.

3. Simulation

In this section, we test Causal Network on various settings and compare it with other meth-
ods, namely adjusted regression, adjusted regression with interaction term, S-learner with
standard random forest [4] and T-learn with standard random forest [4].
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The first part is on image data with treatment effect being related to its topological
structure, where we try to make the input similar to tumors. We show that our causal net-
work is able to detect the treatment effect information incorporated into the image through
topological structures, while all other methods totally fail. We also discussed a little bit on
the criterion of CATE in the setting where X is noisy, which is very likely in reality.

The second part is devoted to the setting where data is generated according to the fol-
lowing schemes: linear, polynomial, given trees, and given neural networks, some of which
provably favor linear regression based methods or tree based methods. The covariate is still
image, which is of high dimension when seen as a vector, and signal to noise ratio is less
than 10. Therefore, these tasks are very difficult. Our results show that all the methods do
not perform well, and their performance are of the same order.

We also choose difference sample sizes for training data to see how the performance
vary with sample size. Testing dataset is always the same one with sample size 10000,
which is independent to training dataset.

3.1 Image

3.1.1 Noiseless Covariate

Simulation Setting
Data generating scheme is as follows:

• X is an 32 * 32 image containing a circle with radius R and center at the origin O,

• Radius R ∼ Unif(0, 16),

• Origin O ∼ Unif(0, 32) ∗ (0, 32), and O ⊥⊥ R,

• For pixels inside the circle defined above, pixel=180,

• For pixels outside the circle defined above, pixel =0,

• Potential Outcomes Y (0) ∼ N(0, 1), Y (1) ∼ N(R, 1),

• T ∼ B(1, 0.5) independent of (X, Y(0),Y(1)).

Figure 2 illustrates how the covariates (images) look like. In this case, X contains the
pertinent noiseless information about the treatment effect, and E(Y (1)− Y (0)|X) = R.

We chose training sample size to be 2000,4000,6000,8000,10000, and test sample size
to be 10000.
Results

For training sample size equal to 10000, we plot estimation versus true treatment effect
on training dataset and test data set. The plots of Causal Net, S-learner, T-learner, adjusted
regression with interaction term are shown in figure 3, figure 4, figure 5 and figure 6.
Adjusted regression without interaction term’s estimation is 8.040767. We can see that
Causal Networks performs better than other methods, where other methods are basically
predicting the mean.

When sample size varies, MSE for different methods on both training and testing set
are shown in figure 7 (for adjusted regression with interaction term, collinearity exists).
Since the true treatment effect is uniform on (0,16), it has variance 64

3 , which is about
21.3, and through checking the estimation versus true value plots for different methods on
different training sample size, other methods’ estimations are almost independent of the
true treatment effect.
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Figure 2: Noiseless Images

Figure 3: Causal Network on Noiseless data with training sample size 10000

3.1.2 Noisy Covariate

Simulation Setting
Covariates in the previous simulation does not have noise irrelevant to heterogeneous

treatment effect. In the real settings however, images are polluted with information that is
irrelevant to heterogeneous treatment effect. In this simulation, we add Guassian noise to
see how different methods work.

However, we notice that E(Y (1)−Y (0)|X) is not necessarily R in this situation, and it
changes continuously with the variance of noise. In this situation, the only information that
images contain about treatment effect is R, so when we are given a new individual, what we
really what to get is still R. Our substitute for individual treatment effect, CATE, therefore
is not a good substitute when the variance of noise is large. Reasons are as follows. Though
for R far away from the truth and whatever origin, the probability is smaller than that of the
true R and O, the conditional probability of a true R and absurd origin is also small. Since
most origins are absurd, advantage of the true R over absurd R is decreased with respect to
conditional probability, which is further decreased when conditional expectation is taken.
In a very noisy setting, taking the conditional mode to be the substitute may be a better
choice.

Detailed data generating scheme is as follows:

• X is an 32 * 32 image containing a circle with radius R and center at the origin O,

 
2391



Figure 4: S learner on Noiseless data with training sample size 10000

Figure 5: T learner on Noiseless data with training sample size 10000

Figure 6: Adjusted regression with interaction term on Noiseless data with training sample
size 10000
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Figure 7: Performance of 5 Methods on Noiseless Data Set with 5 Training Sample Size
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• Radius R ∼ Unif(0, 16),

• Origin O ∼ Unif(0, 32) ∗ (0, 32), and O ⊥⊥ R,

• For pixels inside the circle defined above, pixels ∼ N(180, 64), truncated to [0,255]
and rounded,

• For pixels outside the circle defined above, pixels ∼ N(0, 64), truncated to [0,255]
and rounded,

• Potential Outcomes Y (0) ∼ N(0, 0.4), Y (1) ∼ N(R, 0.4),

• T ∼ B(1, 0.5) independent of (X, Y(0),Y(1)).

Figure 8 is an illustration of noisy images (covariates). Since the CATE is hard to
compute exact in this setting, we take R to be our substitute for treatment effect, and do not
change the names in our figures.

Figure 8: Noisy Images

Results
Figures 9 - 12 show the estimation versus the substitute of CATE ( radius ) of Causal

Network, S-learner, T-learner, and adjusted regression with interaction term, for sample
size 10000. Adjusted regression without interaction term estimates CATE as 8.032603.
Figure 13 shows the performance of 5 methods on noisy data when sample size varies. The
behavior on noisy data is similar to that of noiseless data.

3.2 Simple Relations

Since the linear regression based methods and tree based methods have been under intensive
studied and has theoretical guarantees under simple model settings, we also want to test how
the methods perform when the data generation procedure follows those simple models, or
are likely to be preferable to linear regression base methods or tree based methods. We
find four kinds of setting worth testing: data comes from a linear model, data comes from a
polynomial model, data comes from two trees (one for treatment group and one for control
group), data comes from two neural networks (one for treatment group and one for control
group).

The covariates we use here are noisy images mentioned above, we generate outcomes
according to different simple relations.

Simulation Setting
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Figure 9: Causal Network on Noisy data with CATE substitution and training sample size
10000

Figure 10: S-learner on Noisy data with CATE substitution and training sample size 10000

Figure 11: T-learner on Noisy data with CATE substitution and training sample size 10000
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Figure 12: Adjusted regression with interaction term on Noisy Data with CATE substitu-
tion and training sample size 10000

Figure 13: Performance of 5 Methods on Noisy Data with CATE substitution and 5 Train-
ing Sample Size
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For all simple relations, data comes from two regression model and the experiment is
randomized and balanced. More precisely, it follows the following model.

• Y (0) = f0(X) + ϵ0,

• Y (1) = f1(X) + ϵ1,

• ϵ0 ∼ N(0, σ2), ϵ1 ∼ N(0, σ2),

• ϵ0, ϵ1 and X are mutually independent,

• X obeys the same distribution as of noisy data in previous subsection,

• T ∼ B(1, 0.5), T ⊥⊥ (X,Y (1), Y (0)).

For linear data generator, ft(X) = Xβ1 + tXβ2, where (β1, β2) are generated from
N(0, 10), with seed 5, and only keep first 20 components of β1 and β2 to be nonzero.

σ =
√

mean(Y 2
i )/10, where Yi are data we generated with sample size 10000.

For polynomial data generator, ft(X) = Xβ3+XTD1X+(Xβ4+XTD2X)t, where
D1 and D2 are diagonal matrix. All components of β3, β4, diag(D1), diag(D2) are gen-

erated independently from N(5, 50). σ =
√

mean(Y 2
i )/10, where Yi are the data we

generated with sample size 10000.
For tree based data generator, f1 and f2 are random forests trained by mnist dataset,

with responses being 1 to 9 and interchanging responses with same remainders when di-

vided by 5 . σ = 1.1, which is approximately
√
mean(Y 2

i )/10, where Yi are the data we
generated with sample size 10000.

For neural network based data generator, f1 and f2 are pretrained VGG net and pre-

trained Alexnet respectively. σ =
√
mean(Y 2

i )/10, where Yi are the data we generated
with sample size 10000.
Results

For all the figures shown below, y axis is MSE divided by the variance of CATE of test
dataset. Therefore, the method is only valid when it is less than 1, or it is meaningless to
say the method could detect heterogeneity. When it is larger than 1, fine-grid comparison
scale is not reasonable, going to scales as rough as the order it is of may be a better choice.
Linear

Figure 14 shows the performances of 5 methods, with different training sample size,
on linearly generated data. Missing points stand for value being larger than the scope. In
this setting, linear regression based methods could be theoretically proved to be optimal.
However, tree based methods perform better here, which may due to the sparsity imposed
during data generation. Causal Net do not perform well in this setting, but it is of the same
order with the best one, while the best one is no better than always guessing the average.
Polynomial

Figure 15 shows the performances of 5 methods, with different training sample size, on
polynomially generated data. Missing points stand for value being larger than the scope.
All the methods are well above one, indicating bad performances. They are also of the
same order except adjusted regression with interaction term.
Tree Based Data Generator

Figure 16 shows the performances of 5 methods, with different training sample size,
on data generated by tree based data generator. Missing points stand for value being larger
than the scope. This setting is expected to be favorable for trees, though tree based methods
mysteriously have drastically higher training error than test error. Though both training
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Figure 14: Performance of 5 Methods on Linear Data Generator with 5 Training Sample
Size
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Figure 15: Performance of 5 Methods on Polynomial Data Generator with 5 Training
Sample Size
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Figure 16: Performance of 5 Methods on Tree Based Data Generator with 5 Training
Sample Size

error and test error of tree based methods are better than others, we can see that training
error is of the same order of other methods and test error is also above 1. All the methods
perform bad in this setting.
Neural Network Based Data Generator

Figure 16 shows the performances of 5 methods, with different training sample size, on
data generated by neural network based data generator. The missing points stand for value
being larger than the scope. This setting is expected to favor neural network, however, since
both VGG network and Alexnet are much more complicated and involved, causal network
does not include those models, despite of the fact that all of them are neural networks. In
this setting, all the methods performs unsatisfactory— they are all above one, and of the
same order, except the adjusted regression with interaction term.

4. Discussion

In this paper, we reinterpreted heterogeneous treatment effect estimation, discussed both
the criterion for heterogeneous treatment effect estimation methods and the justifiability of
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Figure 17: Performance of 5 Methods on Neural Network Data Generator with 5 Training
Sample Size
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using CATE to quantify heterogeneous treatment effect.
We analyzed both the advantages and issues needing consideration of integrating neu-

ral network into heterogeneous treatment effect estimation. It wins in its expressiveness,
ability of dealing with data of various forms (e.g. structured data like image and text), ease
of combining different networks into one, short computational time for moderately large
network, computational support on hardware level, and the ability for smart use of both
shared and separate information of control and treatment group (our diverter mechanism).
It losses in issues of its optimization, the accuracy and convergence behavior (optimization
wise convergence) of which is not yet well understood and involves tuning (optimization
wise), despite of the empirical success and wide applicable range of default off the shelf
parameter setting.

We proposed diverter mechanism to automatically enable both information share and
separation in treatment and control group, and in our diverter mechanism, treatment indi-
cator is not by nature restricted to 0 and 1, it can take continuous value, like dose. We give
a specific configuration of causal network. We tested our network on simulated image data,
both in setting where the image (covariates) does not have completely irrelevant noise, and
in setting where the image (covariate) has completely irrelevant noise, thus we can also
see where CATE stops to be a good quantification of heterogeneous treatment effect. In
both settings, causal network performs much better than other methods. We tested causal
net along with linear regression based methods and tree based methods on simulated data
generated by linear data generator, polynomial data generator, tree based data generator
and neural network based data generator, with the covariate being the images mentioned
above, in order to see how causal network behaves in settings where linear regression based
method, tree based methods, neural net based methods, S-learner scheme and T-learner
scheme are expected to do better. But the settings themselves are hard problem due to high
dimensionality of images, the nonstandard distribution of covariate and topological-free re-
lationship between the responses and images. We found that all the methods behave badly
on these settings, and approximately equally bad except adjusted regression with interac-
tion term being extremely bad, especially when training sample size is small.

Therefore, causal networks shows huge advantage in image data setting, where the
topological structure is related to heterogeneous treatment effect. And for hard situations,
our specific causal network does not save the day in all the cases, and does not ruins the
day either.

Our specific causal network configuration is very simple and is CNN based, but it al-
ready shows huge advantage in heterogeneous treatment effect estimation with informative
image data. It is promising to combine the strength of other time proved network struc-
tures (e.g. RNN) and expressiveness of networks (incorporating time proved non neural
network based methods or structures ) to fully borrow the strength of neural networks into
heterogeneous treatment effect estimation with various form of data. Given the flexibil-
ity of integrating treatment information into the neural network, exploration of continuous
treatment indicator or indicator of different forms is promising. In the end, however, it is
always important to balance the representation capacity, the network structure complexity
and computational complexity, and this should always be kept in mind when designing
networks.
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6. Appendix

Following are some exploratory simulations to explore neural networks’ characteristics on
simplified toy networks.

6.1 Linear Neural Network on Linear Data generator

Network: One layer linear neural network with linear activation function
Data Generator: Linear Data Generator
Purpose: separate out computational issue
Result: figure 18 shows the computational issue affects accuracy, but when sample size

gets larger and iteration number gets larger, it is alleviated.

6.2 Linear with Non Linear Activation Function

Network: One layer linear neural network with sigmoid activation function
Data Generator: Linear Data Generator
Two optimizing initializing points
Purpose: separate out issue of choosing initializing points
Result: figure 19 shows different initial points affects the accuracy in the first several

iterations but in the long run, is not a big issue.
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Figure 18: Computing accuracy

Figure 19: Influence of starting points

6.3 Ability of detecting nonlinearity

Network: Two layer nonlinear activation function
Data Generators: linear (figure 21), polynomial with small variance (figure 22) ,poly-

nomial with large variance (figure 23)
Purpose: Explore the behavior of deeper neural network on linear data ; Explore the

ability of detecting nonlinearity
Results: Two layer nonlinear activation function can detect nonlinearity when linearity

increase, though perform a bit worse than linear regression based method in linear model,
in which setting the linear regression based method is provably optimal.
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Figure 20: Two layer nonlinear NN with Linear Data generator

Figure 21: Two layer nonlinear NN with Nonlinear Data generator, Small Variance

Figure 22: Two layer nonlinear NN with Nonlinear Data Generator, Large Variance
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