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Abstract 
High-degree polynomials provide great flexibility and potentially perfect fit of historical 
time series data. Such flexibility, however, often leads to overfitting and results in models 
with poor predictive performance. Splines are a low-degree polynomial smoothing method 
which reduces these overfitting effects. We use a cross validation method for time series 
in order to compare the performance of various models which utilize smoothing splines 
with regard to their forecast accuracy of Singaporean dengue fever counts.  
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1. Dengue fever background, Time Series, Predictor Variables 

Dengue fever (DF) is a disease, borne by Aedes mosquitoes, and is endemic in tropical 
areas of the world. Typical symptoms are high fever, rash, joint and muscle pain. DF, if 
not treated, can lead to a potentially fatal, more serious disease, known as dengue 
hemorrhagic fever. Knowledge of the disease enables us to use information from 
environmental predictor variables, assisting us in forecasting DF counts more accurately. 

1.1 Dengue fever count dataset 
The DF count data used in this paper were obtained from the Ministry of Health, Singapore 
[1]. Figure 1 shows the DF counts used in this paper’s analysis. 

 
Figure 1: Weekly, reported DF counts across Singapore from Week 24, 2016. 
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2. Some Possible Predictor Variables 

As mentioned in the previous section, various environmental predictor variables were 
considered when predicting DF counts. Among these were the weekly maximum 
temperature and average daily humidity. These variables were found to have weak 
correlation with DF counts, and did not offer much improvement in forecast accuracy of 
DF Counts. The same phenomenon was observed when using Zika disease counts as a 
predictor (Zika is also carried by the same Aedes mosquito). Zika counts had a 
surprisingly weak correlation with DF counts. This challenge was compounded by the 
fact that the Singaporean Ministry of Health data for Zika counts was only available 
starting from 2016. 

Total weekly rainfall, when lagged appropriately, was found to be quite strongly 
negatively correlated with DF counts. Figure 2 shows total weekly rainfall in Singapore 
for the time period considered in this paper. Rainfall data was obtained from [3]. 

 

Figure 2: Total weekly rainfall in Singapore, from Week 21, 2016. 

Three weeks after a week with heavy total rainfall, a drop in DF counts was observed. 
The reverse was also observed to be the case (see [2] for more details). The biological 
explanation for this was the destruction of Aedes mosquito larvae due to heavy rain, and 
the two to three week incubation period before a DF infected person begins to show 
symptoms of the disease. Figure 3 plots the weekly DF counts and the total weekly 
rainfall (at a lag of 3 weeks) together and shows this phenomenon. 
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Figure 3: Weekly, reported DF counts across Singapore from Week 24, 2016 and Total 
weekly rainfall in Singapore from Week 21, 2016. 
 

3. Natural Cubic Splines and Cross-validation in Time Series 
 
3.1 Natural cubic splines 
 
Given a time series {𝑥𝑥𝑡𝑡0 ,𝑥𝑥𝑡𝑡1 , … , 𝑥𝑥𝑡𝑡𝑛𝑛}, a natural cubic spline is a sequence of cubic 
polynomials 𝑆𝑆0(𝑡𝑡), 𝑆𝑆1(𝑡𝑡), … , 𝑆𝑆𝑛𝑛−1(𝑡𝑡), where 𝑆𝑆𝑖𝑖−1(𝑡𝑡) = 𝑎𝑎𝑖𝑖−1𝑡𝑡3 + 𝑏𝑏𝑖𝑖−1𝑡𝑡2 + 𝑐𝑐𝑖𝑖−1𝑡𝑡 + 𝑑𝑑𝑖𝑖−1, 
defined on the interval 𝑡𝑡𝑖𝑖−1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖, for 𝑖𝑖 = 1, … ,𝑛𝑛. The knots associated with a cubic 
spline fit are the points 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. In our paper, the degrees of freedom associated with 
a cubic spline fit is a linear function of the number of knots considered.  
 
These cubic polynomials 𝑆𝑆0(𝑡𝑡), 𝑆𝑆1(𝑡𝑡), … , 𝑆𝑆𝑛𝑛−1(𝑡𝑡) are required to satisfy the following 
requirements: 

• 𝑆𝑆𝑖𝑖−1(𝑡𝑡𝑖𝑖) = 𝑆𝑆𝑖𝑖(𝑡𝑡𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 
• 𝑆𝑆𝑖𝑖−1′ (𝑡𝑡𝑖𝑖) = 𝑆𝑆𝑖𝑖′(𝑡𝑡𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 
• 𝑆𝑆𝑖𝑖−1′′ (𝑡𝑡𝑖𝑖) = 𝑆𝑆𝑖𝑖′′(𝑡𝑡𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 
• 𝑆𝑆0′′(𝑡𝑡0) = 𝑆𝑆𝑛𝑛−1′′ (𝑡𝑡𝑛𝑛) = 0  
• 𝑆𝑆𝑖𝑖−1(𝑡𝑡𝑖𝑖−1) = 𝑥𝑥𝑡𝑡𝑖𝑖−1 for 𝑖𝑖 = 1, … ,𝑛𝑛 
• 𝑆𝑆𝑛𝑛−1(𝑡𝑡𝑛𝑛) = 𝑥𝑥𝑡𝑡𝑛𝑛. 

In our paper, the time series {𝑥𝑥𝑡𝑡0 ,𝑥𝑥𝑡𝑡1 , … , 𝑥𝑥𝑡𝑡𝑛𝑛} would be the 3-week lagged total rainfall 
values. Thus, a natural cubic spline is fit to the historical total rainfall data. 

 
3.2 Cross-Validation in Time Series Data 

Time series data pose a unique challenge to the formation of training sets. Training data 
sets can only be subsetted in subsequential time frames (not randomized subsets). This is 
due to the sequential nature of the data, and the need to avoid creating missing values at 
random time points. 
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In this paper, we have data at 65 data points, of which the first 45 are always used for 
training. As an example, we train the model on the first 1, 2,..., 45 time points. We then 
predict for time points 46, 47, 48,..., 63, 64, and 65. This process is repeated, each time 
increasing the training set by 1 time point. Finally, we train on 1, 2,..., 61, 62 time points 
and predict for time points 63, 64, and 65. Figures 4 and 5 show two examples of the 
Time Series Training Sets used in this paper. 

 

Figure 4: Using data from time points 1 through 45 as training data for a model, and using 
the model to predict DF counts at time points 46 through 65. 
 
 

 
 
Figure 5: Using data from time points 1 through 62 as training data for a model, and using 
the model to predict DF counts at time points 63 through 65. 
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4. Natural Cubic Spline Model 1 

The first natural cubic spline model we consider (Model 1) has the form 

𝑦𝑦𝑡𝑡 = 𝑛𝑛𝑛𝑛(𝑥𝑥𝑡𝑡−3,𝑚𝑚) + 𝜀𝜀𝑡𝑡 , 

where 𝑦𝑦𝑡𝑡 is the Dengue Fever count for week t, 𝑥𝑥𝑡𝑡−3 is the total rainfall for week  t – 3, 
ns(.) is the natural cubic spline function fit to the {𝑥𝑥𝑡𝑡−3} time series data with degrees of 
freedom m, and the 𝜖𝜖𝑡𝑡 are identically and independently distributed (iid) 𝑁𝑁(0,𝜎𝜎2) 
random variables.  

Figure 6 shows an example of the actual and predicted Dengue Fever counts when using 
Model 1 with 10 degrees of freedom. The ns function in the splines R package was used 
for model fitting (see [4]). 

 
Figure 6: Actual and predicted Dengue Fever counts when using Model 1 with 10 degrees 
of freedom. 

 
5. A Metric for Prediction Accuracy and choosing the optimal Degrees of Freedom 

for Model 1 
 

The following metric for prediction accuracy across the different training sets was 
defined: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇,𝑃𝑃 = 1
𝑃𝑃Σ𝑖𝑖=1

𝑃𝑃 (𝑦𝑦𝑇𝑇+𝑖𝑖 − 𝑦𝑦�𝑇𝑇+𝑖𝑖)2, 
for 𝑇𝑇 = 46, 47, … , 62 and P is the number of required predictions (i.e. at time points  
T +1, …, T + P).   
 
For each training set, the optimal degrees of freedom in the natural cubic spline model (in 
the sense of minimizing 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇,𝑃𝑃) was determined. Table 1 shows these optimal degrees 
of freedom, indexing the results by T (the time point at which prediction begins for a 
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particular training set) and prednum, P (the number of timepoints after the final time 
point in a training set) for which predictions are made by Model 1. 
 
We note that the maximum degrees of freedom we considered was 20, as a spline fit with 
a high number of knots increases the likelihood of an overfit model. Also, in an actual 
prediction scenario, predicting for a higher number of timepoints than we have rainfall 
data for would be facilitated by using historical data from the same time the previous year 
as surrogate values. 
 
 
Table 1: Optimal degrees of freedom for Model 1 (natural cubic spline fit on 3-week 
lagged rainfall) based on training set (indexed by T) and number of predictions, P. 
(Please note that prednum = P) 
 

  
 
Some conclusions we come to from Table 1: 

• As the training set gets bigger (more time points), the optimal degrees of 
freedom increases (in many cases to the maximum we considered, which was 
20). This indicates the need for an increasingly flexible spline fit for increased 
forecast accuracy as the number of time points used for training the model 
increases. 

• For any value of T, there is more agreement on the optimal degrees of freedom 
as the value of P increases. This is unsurprising as the predictions at one time 
point and the next time point are correlated. 

 
6. Natural Cubic Spline Model 2 

The second natural cubic spline model we consider (Model 2) has the form 

𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑦𝑦𝑡𝑡−1 + 𝑛𝑛𝑛𝑛(𝑥𝑥𝑡𝑡−3,𝑚𝑚) + 𝜀𝜀𝑡𝑡 , 

where 𝑦𝑦𝑡𝑡 is the Dengue Fever count for week t,  𝑦𝑦𝑡𝑡−1 is the Dengue Fever count for 
week t – 1, 𝑥𝑥𝑡𝑡−3 is the total rainfall for week  t – 3, 𝛼𝛼0 and 𝛼𝛼1 are fixed constants, ns(.) 
is the natural cubic spline function fit to the {𝑥𝑥𝑡𝑡−3} time series data with degrees of 
freedom m, and the 𝜖𝜖𝑡𝑡 are identically and independently distributed (iid) 𝑁𝑁(0,𝜎𝜎2) 
random variables. 

Figure 7 shows a plot of the Dengue Fever count vs a 1-week lagged Dengue Fever 
count. The positive correlation between these variables justified the inclusion of the 1-
week lagged Dengue Fever count in Model 2.  
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Figure 7:  Dengue Fever count vs a 1-week lagged Dengue Fever count. 
 

7. Choosing the Degrees of Freedom for Model 2 
 

For each training set, the optimal degrees of freedom in the natural cubic spline model 
(in the sense of minimizing 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇,𝑃𝑃) was determined. Table 2 shows these optimal 
degrees of freedom, indexing the results by T (the time point at which prediction 
begins for a particular training set) and prednum, P (the number of timepoints after the 
final time point in a training set) for which predictions are made by Model 2. 
 
Table 2:  Optimal degrees of freedom for Model 2 (which included a 1-lagged 
Dengue Fever count and a natural cubic spline fit on 3-week lagged rainfall) based 
on training set (indexed by T) and number of predictions, P. (Please note that 
prednum = P) 

  
 
Some conclusions we come to from Table 2: 

• As the training set gets bigger (more time points), the optimal degrees of 
freedom increases. We note a difference in Model 2 here, where the optimal 
number of degrees is around 10 (the optimal degrees of freedom in the large 
training set scenario for Model 1 was around the maximum we considered, 
which was 20). This indicates the need for an increasingly flexible spline fit 
for increased forecast accuracy as the number of time points used for 
training the model is lessened by the inclusion of the 1-week lagged Dengue 
Fever count in Model 2. 
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• As was the case in Model 1, for any value of T, there is more agreement on 
the optimal degrees of freedom as the value of P increases.  

 
 

8. Summary 
 

• Cubic spline fits provide the availability of a flexible polynomial fit to time 
series data, without the need for high orders. 

• Historical rainfall data, when lagged appropriately, can be helpful as a 
predictor variable for Dengue Fever counts. 

• Cross-validation carried out this way is a useful method for identifying the 
optimal degrees of freedom for increased prediction accuracy. This cross-
validation method takes into account how much data is available and how 
many time points you want to predict ahead. 

• The higher the number of time points at which predictions are required, 
there is more agreement on the optimal degrees of freedom for the spline fit. 

• There is a shift in the optimal degrees of freedom for the spline fit 
depending on the time point at which prediction begins. 
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