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Abstract
The Mantel test is routinely used in many areas of ecology to test the independence of the elements in two

distance matrices. Despite its popularity, the Mantel test has some well known disadvantages, and the fact that
the test is only sensitive to linear or monotonic dependencies is often overlooked by the practitioners. In this
paper we focus on resemblance matrices with nonlinear structures and point out that partial distance correlation
is a powerful alternative to the Mantel statistic for measuring association of such matrices.
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1. Introduction

The Mantel test is a statistical test for the association between two matrices whose rows and columns
correspond to the same objects. The test is an example of the well-known permutation tests, and
the matrices of interest are typically resemblance matrices containing dissimilarities or distances
computed from multivariate data tables. Routinely used in many areas such as ecology, genetics
and biology, the Mantel test is a widely accepted tool for testing linear or monotonic independence
between the matrices. The test was introduced in an epidemiological study by Mantel (1967) for
identifying the dependence between a matrix of spatial distances and a matrix of temporal distances.
Smouse, Long and Sokal (1986) proposed the partial Mantel test, which extends the idea to assessing
the dependence between two matrices while controlling the effect of a third matrix.

Despite its tremendous popularity, the Mantel test is not free of criticism. The main criticism
is the lack of a clear specification of the null and alternative hypotheses, resulting in practitioners
overlooking the fact that the test is only sensitive to linear or monotonic dependencies in the sim-
ilarity matrices. As will be described below, in case of nonlinear spatial patterns, the test may be
misleading. For a detailed discussion on this drawback and for some attempts for solution, see,
for example, Goslee and Urban (2007), Guillot and Rousset (2013) and Legendre, Fortin and Bor-
card (2015). Another criticism on the Mantel test states that it should be used only in situations
where it is appropriate to express the hypothesis in terms of the distance matrices. As noted by
Dutilleul et al. (2000), even if the covariance of columns in the raw multivariate data table is zero,
the Mantel statistic computed from the distance matrices may be non-zero. The third notable issue
with the Mantel test is on the construction of the permutation test. Typically objects in one of the
resemblance matrices are permuted in order to calculate the p-value of the Mantel test. However,
Legendre (2000) points out that different permutation procedures must be preferred under different
conditions, which introduces another complexity from the practitioner’s point of view.

In this paper we focus on resemblance matrices with complex nonlinear structures and point
out that distance correlation is a powerful tool for testing independence of such matrices. Proposed
by Székely, Rizzo and Bakirov, N.K., (2007), distance correlation characterises independence of
random vectors in arbitrary dimensions. In Section 2 we give an overview of simple and partial
Mantel test, distance correlation, and partial distance correlation. We focus on a data set with
a nonlinear spatial component in Section 3, and point out that distance correlation is superior to
Mantel statistic in terms of identifying these associations. Section 4 concludes.
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2. Background

2.1 Simple and Partial Mantel Test

Consider two multivariate data sets contained in an n × p matrix X and an n × q matrix Y . Here,
for example, X may be p environmental characteristics for n locations, and Y may be q species
compositions for these locations such that the i-th row of Y describes the same location as the i-th
row of X . Now consider pairwise dissimilarity (or distance) matrices DX and DY computed from
X and Y using an appropriate distance metric such as Jaccard, Bray-Curtis, or Euclidean distance.
Clearly, DX and DY are n × n symmetric matrices with zero diagonals, whose rows and columns
correspond to same set of objects. If X and Y contain the data sets in the above example, then
DX displays the dissimilarities between the environmental characteristics of n locations, and DY

displays the dissimilarities between the species composition of the same locations. Then the Mantel
statistic, denoted by rM , is the Pearson correlation between the upper (or lower) triangular portions
of DX and DY .

The null hypothesis of the Mantel test states that distances among DX are linearly independent
of the distances among the same objects in DY . In the context of the above example, this hypothe-
sis states that the environmental dissimilarities are linearly independent of the species composition
dissimilarities. Since same individual observations are used repeatedly in generating the distance
matrices, the matrix entries are correlated with each other and therefore the usual large sample re-
sults for Pearson correlation cannot be used for obtaining the null distribution of the Mantel statistic.
Instead, the significance of the test statistic is assessed by a permutation test. The usual approach in
the Mantel test is to randomly permute the rows and columns of one of the matrices, say DX , and
compute the Mantel statistic between DY and the permuted matrix. Note that the permutation of
rows and columns must agree and the resulting matrix should also be symmetric. This procedure is
repeated a large number of times to obtain the null permutation distribution of the Mantel statistic.
Then the p-value of the Mantel test is the proportion of the Mantel statistics in the null permuta-
tion distribution which are larger than the original Mantel statistic. This procedure is known as the
Simple Mantel Test.

The simple Mantel test only considers the relationship between two dissimilarity matrices. An-
other possibility is to study the relationship between two matrices, but taking into account the effect
of a third one. For instance, in the above example the researcher may want to find out if the species
composition dissimilarities are indeed related with the environmental dissimilarities, or if the ob-
served relationship appears only because both variables are spatially structured by intrinsic effects.
In other words, the researcher may want to measure the dependence between two matrices, after
the effect of a third matrix containing the geographical distances have been removed. Proposed by
Smouse et al. (1986), the Partial Mantel Test addresses this issue using the partial correlation.

Consider three distance matrices DX , DY , and DZ whose rows and columns correspond to
the same set of objects. The partial Mantel statistic rM (DX , DY ;DZ), measuring the relationship
between the matricesDX andDY while controlling for the effect ofDZ , is computed the same way
as the first order partial correlation coefficient as follows.

rM (DX , DY ;DZ) =
rM (DX , DY )− rM (DX , DZ)rM (DY , DZ)√

1− rM (DX , DY )2
√

1− rM (DY , DY )2
, (1)

where rM (A,B) is the simple Mantel test statistic between matrices A and B. Similar to the
simple Mantel test, partial Mantel test is also a permutation test where typically the objects in one
of the original dissimilarity matrices are permuted and others are left unpermuted. However, some
alternative permutation methods have been proposed and shown to have higher power under certain
conditions. Note that all these methods produce the same value for the Mantel statistic, but may
produce different p-values for the test. See, for example, Legendre (2000) for a detailed discussion
on the effect of permutation methods in partial Mantel test.

Constructing a Mantel test controlling for more than one matrices is straightforward. Note that
the first order partial correlation in (1) is a special case of the broader idea of partial correlation.
In general, partial correlation between data vectors A and B controlling for the effect of vectors
C1, ..., Cn requires regressing A and B separately on C1, ..., Cn. The Pearson correlation between
the residuals of these two regressions is defined to be the partial correlation, and when n = 1
this amounts to (1). Therefore, when constructing partial Mantel test controlling for more than
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one matrices, one may employ the general definition of partial correlation on the upper (or lower)
triangular portions of the matrices. Again, significance of the test is obtained by a permutation test
where typically one of the original matrices is permuted.

Another useful extension of the Mantel statistic is the Mantel correlogram, a graphic displaying
autocorrelations within subsets of the distance matrix of interest corresponding to similar items in
terms of another distance matrix. To illustrate, in our example above it may be of interest to study the
relationship between species composition distances (DX ) and geographical distances (DZ) across
space. In order to do this, the matrix DZ can be divided into several sub-matrices, each one de-
scribing pairs within an interval of geographical distances. Let us define these sub-matrices by Zk,
matrices with binary entries returning a value of 1 if pairs are within a geographic distance referred
to as distance class k, and returning a value of 0 otherwise. In order to analyse correlations across
space one may create multiple non-overlapping and contiguous distance classes, and compute the
Mantel statistic between DX and Z1, Z2,...,Zk. The Mantel correlogram is constructed by plotting
Mantel statistics against the mid-point of the distance classes k. This tool is especially useful for
displaying nonlinear relationships between DX and DZ . The definition of the distance classes in
terms of number and boundaries is somewhat arbitrary and depends on the spatial distribution of
data.

2.2 Distance Correlation and Partial Distance Correlation

Distance correlation is a relatively new and powerful dependence measure introduced by Székely,
Rizzo and Bakirov, N.K., (2007). For all distributions with finite first moments, distance correlation
generalizes the idea of correlation in two fundamental ways. Firstly, distance correlation is defined
for variables in arbitrary dimensions, it is not limited to the bivariate case. Secondly, distance
correlation vanishes if and only if the variables are independent.

Consider random vectors X in Rp and Y in Rq . The characteristic functions of X and Y are
denoted by fX and fY , respectively, and the joint characteristic function of X and Y is fX,Y . The
distance covariance between X and Y is

V 2(X,Y ) = ‖fX,Y (t, s)− fX(t)fY (s)‖2

=
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

|t|1+p
p |s|1+q

q

dtds,

where cd = π(1+d)/2/Γ{(1 + d)/2}, Γ is the complete gamma function, and |a|d is the Euclidean
norm of a in Rd. Similarly, the distance variance of X is

V 2(X) = ‖fX,X(t, s)− fX(t)fX(s)‖2, (2)

and the distance correlation between X and Y is the positive square root of

R2(X,Y ) =

{
V 2(X,Y )√
V 2(X)V 2(Y )

, V 2(X)V 2(Y ) > 0

0, V 2(X)V 2(Y ) = 0
. (3)

Székely and Rizzo (2014) extend the idea of distance correlation to define partial distance cor-
relation. The partial distance correlation between X and Y , given Z is

R∗(X,Y ;Z) =


R2(X,Y )−R2(X,Z)R2(Y,Z)√

1−R4(X,Z)
√

1−R4(Y,Z)
,

R(X,Y ) 6= 1 and R(X,Y ) 6= 1;

0, R(X,Y ) = 1 or R(X,Y ) = 1,

(4)

where R(X,Y ) denotes the distance correlation. The empirical distance correlation and empirical
partial distance correlation are defined in the referred papers, and independence tests have been
proposed. The R package energy by Rizzo and Székely (2011) can be used for implementation of
these methods.
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Forest Cover (Y ) Location (Z)
Composition (X) 0.34 0.23
Forest Cover (Y ) - 0.05

Table 1: Pairwise Mantel statistics for plant community composition data.

3. Understanding Nonlinear Spatial Structures

While studying spatial autocorrelation, ecologists often measure the significance of correlation be-
tween compositional or environmental dissimilarity and geographic distance. In such cases partial
Mantel statistic is expected to correct any spatial autocorrelation as it considers the partial corre-
lation between composition and environmental dissimilarities, given geographical distance. When
the underlying spatial structure is nonlinear, the Mantel statistic may be misleading as it implicitly
assumes linearity. In this section we will first reveal this drawback of Mantel statistic using a real
data set. Then we will illustrate that distance correlation may capture and correct for such nonlinear
spatial structures, providing a strong alternative to Mantel statistic.

In order to illustrate how Mantel test may fail to respond to complex spatial patterns, we follow
the steps of an illustration given in Goslee and Urban (2007), which analyses the Plant Community
Composition Data compiled by Tracy and Sanderson (2000). The data set contains 50 vegetation
samples taken on 12 farms in northern New York. The observed variables are Composition (X),
mean values of canopy cover estimates from 10 quadrats located within a pasture; Forest Cover
(Y ), percentage forest cover in the area; and Location (Z), a function of longitude and latitude since
sites fall along southwest to northeast line. The main question here is whether or not there is an
association between plant community composition and the percent forest cover within a circle of
one kilometer surrounding the farm. There is a change in species identity from north to south, so
the effect of location must be accounted for when considering any relationship between community
composition and other factors.

3.1 Analysis Using Simple and Partial Mantel Statistic

The pairwise Mantel statistics between the variables are given in Table 1. All pairwise Mantel
statistics indicate statistically significant association with p-values less than 10−8. Since the ques-
tion of interest is “Is there a relationship between community composition (X) and surrounding
forest cover (Y ), once spatial effects (Z) have been accounted for?” the usual approach would be to
use partial Mantel test on composition and forest cover, given the effects of location.

The partial Mantel statistic between community composition and surrounding forest cover, given
spatial effects turns out to be 0.3417. In other words, once the effect of location is removed, there is
a significant relationship between community composition and forest cover. We know that Mantel
test only removes the linear component of the variation, not more complex spatial patterns. In this
example, we see that the simple Mantel statistic and the partial mantel statistic are very close, thus,
the inclusion of the partial had no effect. In fact, the percentage reduction in the Mantel statistic
after the removal of the location effect is only 0.43%.

3.2 Identifying the Nonlinear Spatial Patterns

As observed above, the conventional use of partial Mantel statistic is unable to remove the potential
spatial component of the relationship between plant community composition and forest cover. This
may be due to the fact that the spatial component is nonlinear. In this section we further analyse the
data in order to understand the nature of the spatial effect.

In spatial statistics a correlogram displays the value of Mantel statistic of observations with a
specified distance (lag) apart from each other. In Figure 1 we display the spatial correlograms in
order to identify potential nonlinear relationships. The correlogram on the left panel indicates that
the plant community composition shows a roughly linear relationship at closer distances, with space
being unimportant at farther distances. However, when we focus on forest cover displayed on the
right panel, we see a strong nonlinear pattern. Recall that Mantel test was insignificant because
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there is little or no linear component to the relationship. Using the Mantel statistic alone would
have given a false impression on the structure of the data.

Figure 1: Correlograms for plant community composition data.

Next, we vectorize all observed distances and create a matrix plot to see the nonlinear spatial
association from a different perspective. The plots in Figure 2 verify the linear spatial characteristic
of community composition and the nonlinear spatial characteristic of forest percentage indicated by
the correlogram analysis. Both figures provide some evidence that the nonlinear spatial character-
istic of forest percentage may be the reason that the partial Mantel statistic cannot account for the
spatial effect while quantifying the association between community composition and forest cover.

Figure 2: Scatter Plots.
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Forest Cover (Y ) Location (Z)
Composition (X) 0.18 0.45
Forest Cover (Y ) - 0.27

Table 2: Pairwise Distance Correlations for plant community composition data.

3.3 Analysis Using Partial Distance Correlation

Having observed the nonlinear spatial characteristic of data, partial distance correlation is consid-
ered to be a strong alternative to the commonly used Mantel statistic. In this section we repeat
every step of the Mantel analysis described above using bias-corrected distance correlation and par-
tial distance correlation. The distance correlation matrix is given in Table 2. The partial distance
correlation between composition and forest percentage, given the location is observed to be 0.068.
We see that, removing the effect of location greatly reduces the distance correlation between com-
position and forest percentage, namely, from 0.18 to 0.068. This is what we wanted to achieve in
this example as we observed that a strong nonlinear relationship exists between forest cover and
location. The percentage reduction in distance correlation after the removal of the location effect is
observed to be 62.3%.

4. Conclusion

In this paper we focus on resemblance matrices with nonlinear structures and point out that distance
correlation is a powerful tool for measuring association of such matrices. The illustrative example
we focus on reveals that in case of nonlinear spatial associations, partial distance correlation is su-
perior to the commonly used partial Mantel statistic, in terms of measuring the association between
two distance matrices while accounting for the effect of geographical distances.
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