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Abstract

This article considers an M/G/1 queue with workload barrier at level K > 0. Prior
service times are continuous random variables. The policy for arrivals re the barrier is:
service times that would cause the workload to exceed K are truncated at K. We give
the posterior pdf and expected value of the posterior service time due to the barrier, the
expected number served in a busy period, and related quantities. We use a metric for
the distance between the prior and posterior pdfs of service time. We specialize results
to the case where prior service times have a no-mean Pareto(ll) distribution.

Key Words: M/G/1 queue, bounded workload, truncated service times, regenerative
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1. Introduction

Consider the workload process in a workload-barrier M/G/1 queue with a barrier at level
K > 0. A sample path of workload is given in Fig. 1. Denote the posterior service time
by Sk (called posterior due to presence of barrier at level K); busy period B; stationary
probability of a zero workload by Px o; number served in Bx by Ng,.. Then Pk ( exists,
and B is finite for all A > 0 due to the barrier. Customers with truncated service, exit the
system when their total time in the system reaches K.

Brill, 2015[3] deals with this model when E(S) < oo, and does not consider extreme
prior service times. The present paper extends the discussion in [3] to the case where
the prior S is distributed as an extreme Pareto(ll) random variable with shape parameter
a € (0,1] (Arnold, 2015[1]; Klieber and Klotz, 2003([13])); hence in the no-workload-
barrier M/G/1 queue E [S] = oo, Py = 0 and E[busy period] = co. In that case results will
not hold, that have formulas with explicit Py or E [S] in the no-workload-barrier M/G/1
queue where E(S) < oo. This situation gives rise to the questions: "Which results will still
hold in the workload-barrier M/G/1 queue?" and "How far apart are the stationary pdfs of
the prior and posterior service time pdfs re a metric designed to measure that distance?" We
use such a metric in Section 6.

In the no-workload-barrier M/G/1 queue, if Py exists and E [S] < oo, we use the same
notation as above, but omit the subscript K. It is well known that if AE [S] < 1 then Py =
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1 — AE[S] is the stationary probability of a zero workload (p. 227 & p. 235 in Gross et al.,
2008[8]). Also, E [Ng| = 1/Py (p. 233 in Cooper, 1990[6]). Thus, E[S] = (1 — Fy) /.
Also, E [B] = (1 — Py) / (APy) (pp. 82-84 in Brill, 2017[2]). Therefore

1-Py

EB 582 1-p
FlNa ~ & = = E[9]. (1)

Equation (1) partially motivates this article. Here we explore the validity of the hy-
pothesis "E [Bk|/E [Ng, | = E [Sk]”, even if E[S] and P, do not exist. The hypothesis
does turn out to be true (Section 4.1 below). It also turns out that Pk o exists, and is a
fundamental quantity in both £ [Ng,.| and E [Sk].

The main motivating factor is to explore the model characteristics when S = Pareto(11)

with « € (0, 1]. The results obtained here are potentially applicable in, e.g., risk models
with a dividend barrier (e.g., Brill and Yu, 2011[4]; Gerber and Shiu, 1997[7]); queues
occurring in industry (Harris (1968)[9]), or on the internet (Harris et al. (2000)[10]); in-
put amounts in dams, and demand sizes in production inventories, with finite capacities
(Chapter 6 in [2]); etc.

Section 2 details the workload process when the barrier is at fixed level K € (0, o).
Section 3 derives E [N, |. Section 4 states the pdf of Sk, and derives E [Sk|. Section 5
discusses the results when S = Pareto(ll), and uses a metric for the distance between the

posterior and prior pdfs. Section 7 discusses a computational algorithm for obtaining the
pdfs of interest.

2. Workload in the Workload-barrier M/G/1 Queue

Denote the workload process with a barrier at K by {Wi ()}, (Fig. 1). The state space
is [0, 00); this accounts for excess over level K. Note that Sk # S, because Sxg < §
d

(formula (2) below).
If an arrival at time
Sk is related to S by

sees" Wik (77) =0 < y < K, then its posterior service time

Sk = min(S, K —y). 2

In(2),if S > K —ythen Wi(r) = K;if S <K —ythen Wg(r) =y +S.
The pdf { P o, fx (%) }g, x 18 the stationary mixed pdf of {Wk ()}, ast — oo.

Then
K

PK,O = tlir& P(WK(t) = 0) and PK70 + fK(SU)d:L‘ = 1. 3

=0
The pdf { P o, fi (7)}o., 5 €Xists since the workload is a regenerative process re busy
cycles (e.g., Sigman and Wolff, 1993). Thus Pk and f x(x),0 < = < K exist regardless
whether E [S] = co and Py = 0 or not. (The barrier has a strong effect on the statistical
properties of the system.)

2.1. B, is Finite a.s. for Every A > 0
The article Brill, 2015[3] shows that

E(Bg) < KM < . (4)
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Figure 1: Sample path of {W (t)},-, in M/G/1 with bounded workload at level K. Cx :=
busy cycle, By :=busy period, Zx := idle period, Bx +Zx = Ck

3. E(Ng,.) in the Workload-barrier M/G/1 Queue

Let: Cx := busy cycle = By + Tk, where Zx := idle period; A; = number of customer
arrivals in the time interval (0,¢), t > 0; A¢,. = number of arrivals during Cg. It is shown

in [3] that
1

E(Np,) = Pro’ )
Briefly, (5) follows from: N, = Ac,; {A:},~ is a Poisson process with rate A,
hmtﬂoo At/t =A; -
1 1
E(Ck) (6)

~ Tk(0F) T APy’
and application of the renewal reward theorem, giving
E(Acy) Ay

= lim — =\
E(Cr) it

implying

E(Npy) _ E(Acy) _ _ _ Ly _ 1t
BCn) ~ B — N E(NBK)_)\E(CK)_A<)\PK70> =5 O

proving (5).

4. Posterior pdf bx(-) and E(Sk)

We denote the prior pdf and cdf (cumulative distribution function) of S by b(x),z > 0,
and B(x),z > 0 respectively, with B(z) = 1 — B(z),z > 0; and the posterior pdf of S
by {7, bx (%) }gcpeir Where mg := P(Sg = K) (atom at level K). We assume that .S
is absolutely continuous. The article [3] shows that the pdf {7, bx ()}, IS givenin
terms of the pdf { Px o, fx (7)},, . x @nd the probability distribution of S by

TK :E(K)PKQ, (8)
bic(x) = b(x) Prco + B(x) fx (K — ) + [,57 b(@) fic(y)dy,0 < @ < K.
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The formulas in (8) do not explicitly contain Py or E [S]. Therefore (8) applies even if
Py = 0 and E[S] = oo. Hence (8) applies when .S := Pareto(ll) with shape parameter
a € (0,1].

The article [3] shows, using (8), that the following necessary condition holds (law of
total probability)

K
wK+/ bic(@)da = 1; (©)
=0
also, in the workload-barrier M/G/1 queue
1-P
B(Sk) = ———" K0, (10)

To prove (10) we use a level crossing method (Chapter 1 in [2]) to obtain an integral
equation for the continuous part of the posterior stationary pdf of the workload, i.e.,

fia) = APaB@) A [~ Bla-nfe)n 0<o<K. @
.

Integrating both sides of (11) with respect to = € (0, K), applying (9), and dividing by
A, gives

1—-P K K z
Py [ Bajdar [ / Bl pfsdydr. (12

In (12) integrate the first integral by parts, interchange the order of integration in the double
integral, and integrate the inner integral by parts, which leads to
120100 — K Pre o B(K)
+ [ (Prob(@)de + B(w) fic (K = w)da + [,7 b(x) fic (y)dy) de
2P0 — Ky + [R | ab(e)de = B[Sk

(13)
upon substituting from (8), and applying the definition of expected value.

4. B[By)/E(Ns,.) = B[Sk]

From Section 3, E[Zx]| = % because arrivals occur in a Poisson process at rate A and all
arrivals join the system. (All arrivals join, but some get only partial service.) Therefore

1 1 1-—Pgpo
APko A APkpo

E[Bk| = E[Ck] — E[Ik] =

Using (10) and (13) gives

1-Pg o

E[BK] APk o 1— Pk
— 2 e I = E S 14

which parallels the result in (1) for the unbounded-workload M/G/1 queue.
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5. Model where S is Distributed as Pareto(11) with Shape Parameter «
The cdf, ccdf and pdf of S are, respectively,

Bz) =1-(1+2)",0<z< o0,
B(r) =1-B(x)=(1+2z)"*,0<x < oo, (15)
b(r)=LB(x)=a(l+2)"* " 0<z < cc.
From (11) and (15) we get
fr(x) =APgo(l+z) "+ )\/I (14+z—vy) " fr(y)dy,0 <z < K. (16)
Y

=0

The normalizing condition is

K
Pro + / Tty = 1. (17)
.

Once we have the solutions of (16) and (17) for fx(x) and Pk o, we can get explicit
solutions for £ [Sk]|, 7k, bx (x),0 < x < K, and other characteristics.

6. Metric for Distance Between Prior and Posterior pdfs of Service Tine

We use a modified form of the metric developed in Brill and Huang, 2017[5], which
takes into account the atom with probability 7 at K in the pdf {7, bx(2)}ocpe s
namely, formula (19) below and inequality p(bx,b) in (20) below. It gives a measure
of distance between the prior and posterior pdfs of the service time. The prior pdf is
b(z) =a(l+z) 1,0 <z < oo (formula (15)). The posterior pdf of service, by (-), is
given in (8), and repeated here, while substituting from (15), i.e.,, for0 < z < K

T = (1+ K)™“ Pk,
br(z) =a(l+ w)_o‘_l Pr o
+ (14 2) " fic(K —2) + [57 (14 2)™° fre(y)dy, (18)

—a(l+a) [(L+2) 7" Prco + [ (K = o) + [;57 fr(y)dy)

The distance measure between by () and b(-) is defined as

TK —/ b(z)dx > : (19)
K

0 < p(bg,b) < 1. (20)

K
ploe) = ([ owle) ~ vl o+

It can be shown from (19) that

7. Computational Algorithm

We use a computational algorithm to solve equations (16) and (17) for the stationary pdf
of workload, { Pk 0, fx ()}, k- We substitute that solution into (8) to obtain 7 and
bk (-). This requires additional computation, because Px o and fx (x) are themselves the
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outputs of a computation. Then obtain the distance measure between by (-) and b(-) in (19),
by using the resulting 7 and bx (-) in (18).
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