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Abstract

This article considers an M/G/1 queue with workload barrier at level K > 0. Prior

service times are continuous random variables. The policy for arrivals re the barrier is:

service times that would cause the workload to exceed K are truncated at K. We give

the posterior pdf and expected value of the posterior service time due to the barrier, the

expected number served in a busy period, and related quantities. We use a metric for

the distance between the prior and posterior pdfs of service time. We specialize results

to the case where prior service times have a no-mean Pareto(II) distribution.

Key Words: M/G/1 queue, bounded workload, truncated service times, regenerative

process, renewal theory, integral equations, level crossing

1. Introduction

Consider the workload process in a workload-barrier M/G/1 queue with a barrier at level

K > 0. A sample path of workload is given in Fig. 1. Denote the posterior service time

by SK (called posterior due to presence of barrier at level K); busy period BK ; stationary

probability of a zero workload by PK,0; number served in BK by NBK . Then PK,0 exists,

and BK is finite for all λ > 0 due to the barrier. Customers with truncated service, exit the

system when their total time in the system reaches K.

Brill, 2015[3] deals with this model when E(S) < ∞, and does not consider extreme

prior service times. The present paper extends the discussion in [3] to the case where

the prior S is distributed as an extreme Pareto(II) random variable with shape parameter

α ∈ (0, 1] (Arnold, 2015[1]; Klieber and Klotz, 2003([13])); hence in the no-workload-

barrier M/G/1 queue E [S] =∞, P0 = 0 and E[busy period] =∞. In that case results will

not hold, that have formulas with explicit P0 or E [S] in the no-workload-barrier M/G/1

queue where E(S) <∞. This situation gives rise to the questions: "Which results will still

hold in the workload-barrier M/G/1 queue?" and "How far apart are the stationary pdfs of

the prior and posterior service time pdfs re a metric designed to measure that distance?" We

use such a metric in Section 6.

In the no-workload-barrier M/G/1 queue, if P0 exists and E [S] <∞, we use the same

notation as above, but omit the subscript K. It is well known that if λE [S] < 1 then P0 =
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1− λE [S] is the stationary probability of a zero workload (p. 227 & p. 235 in Gross et al.,

2008[8]). Also, E [NB] = 1/P0 (p. 233 in Cooper, 1990[6]). Thus, E [S] = (1− P0) /λ.

Also, E [B] = (1− P0) / (λP0 ) (pp. 82-84 in Brill, 2017[2]). Therefore

E [B]
E [NB]

=
1−P0
λP0
1
P0

=
1− P0
λ

= E [S] . (1)

Equation (1) partially motivates this article. Here we explore the validity of the hy-

pothesis "E [BK ]/E [NBK ] = E [SK ] ”, even if E [S] and P0 do not exist. The hypothesis

does turn out to be true (Section 4.1 below). It also turns out that PK,0 exists, and is a

fundamental quantity in both E [NBK ] and E [SK ].
The main motivating factor is to explore the model characteristics when S =

d
Pareto(II)

with α ∈ (0, 1]. The results obtained here are potentially applicable in, e.g., risk models

with a dividend barrier (e.g., Brill and Yu, 2011[4]; Gerber and Shiu, 1997[7]); queues

occurring in industry (Harris (1968)[9]), or on the internet (Harris et al. (2000)[10]); in-

put amounts in dams, and demand sizes in production inventories, with finite capacities

(Chapter 6 in [2]); etc.

Section 2 details the workload process when the barrier is at fixed level K ∈ (0,∞).
Section 3 derives E [NBK ]. Section 4 states the pdf of SK , and derives E [SK ]. Section 5

discusses the results when S =
d

Pareto(II), and uses a metric for the distance between the

posterior and prior pdfs. Section 7 discusses a computational algorithm for obtaining the

pdfs of interest.

2. Workload in the Workload-barrier M/G/1 Queue

Denote the workload process with a barrier at K by {WK(t)}t≥0 (Fig. 1). The state space

is [0,∞); this accounts for excess over level K. Note that SK 6=
d
S, because SK ≤ S

(formula (2) below).

If an arrival at time τ− "sees" WK(τ
−) = 0 ≤ y < K, then its posterior service time

SK is related to S by

SK = min(S,K − y). (2)

In (2), if S > K − y then WK(τ) = K; if S ≤ K − y then WK(τ) = y + S.

The pdf {PK,0, fK(x)}0<x<K is the stationary mixed pdf of {WK(t)}t≥0 as t → ∞.

Then

PK,0 = lim
t→∞

P (WK(t) = 0) and PK,0 +

∫ K

x=0
fK(x)dx = 1. (3)

The pdf {PK,0, fK(x)}0<x<K exists since the workload is a regenerative process re busy

cycles (e.g., Sigman and Wolff, 1993). Thus PK,0 and fK(x), 0 < x < K exist regardless

whether E [S] = ∞ and P0 = 0 or not. (The barrier has a strong effect on the statistical

properties of the system.)

2.1. BK is Finite a.s. for Every λ > 0

The article Brill, 2015[3] shows that

E(BK) < KeλK <∞. (4)
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Figure 1: Sample path of {WK(t)}t≥0 in M/G/1 with bounded workload at level K. CK :=

busy cycle, BK := busy period, IK := idle period, BK +IK = CK

3. E(NBK ) in the Workload-barrier M/G/1 Queue

Let: CK := busy cycle = BK + IK , where IK := idle period; At = number of customer

arrivals in the time interval (0, t), t > 0; ACK = number of arrivals during CK . It is shown

in [3] that

E(NBK ) =
1

PK,0
. (5)

Briefly, (5) follows from: NBK = ACK ; {At}t≥0 is a Poisson process with rate λ,

limt→∞At/t = λ;

E(CK) =
1

fK(0+)
=

1

λPK,0
; (6)

and application of the renewal reward theorem, giving

E(ACK )

E(CK)
= lim

t→∞

At
t
= λ,

implying

E(NBK )

E(CK)
=
E(ACK )

E(CK)
= λ, and E(NBK ) = λE(CK) = λ

(
1

λPK,0

)
=

1

PK.0
. (7)

proving (5).

4. Posterior pdf bK(·) and E(SK)

We denote the prior pdf and cdf (cumulative distribution function) of S by b(x), x > 0,
and B(x), x > 0 respectively, with B(x) = 1− B(x), x ≥ 0; and the posterior pdf of SK
by {πK , bK(x)}0<x<K , where πK := P (SK = K) (atom at level K). We assume that S
is absolutely continuous. The article [3] shows that the pdf {πK , bK(x)}0<x<K is given in

terms of the pdf {PK,0, fK(x)}0<x<K and the probability distribution of S by

πK = B(K)PK,0,

bK(x) = b(x)PK,0 +B(x)fK(K − x) +
∫K−x
y=0 b(x)fK(y)dy, 0 < x < K.

}
(8)
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The formulas in (8) do not explicitly contain P0 or E [S]. Therefore (8) applies even if

P0 = 0 and E [S] = ∞. Hence (8) applies when S := Pareto(II) with shape parameter

α ∈ (0, 1].
The article [3] shows, using (8), that the following necessary condition holds (law of

total probability)

πK +

∫ K

x=0
bK(x)dx = 1; (9)

also, in the workload-barrier M/G/1 queue

E(SK) =
1− PK,0

λ
. (10)

To prove (10) we use a level crossing method (Chapter 1 in [2]) to obtain an integral

equation for the continuous part of the posterior stationary pdf of the workload, i.e.,

fK(x) = λPK,0B(x) + λ

∫ x

y=0
B(x− y)fK(y)dy, 0 < x < K. (11)

Integrating both sides of (11) with respect to x ∈ (0,K), applying (9), and dividing by

λ, gives

1− PK,0
λ

= PK,0

∫ K

x=0
B(x)dx+

∫ K

x=0

∫ x

y=0
B(x− y)fK(y)dydx. (12)

In (12) integrate the first integral by parts, interchange the order of integration in the double

integral, and integrate the inner integral by parts, which leads to

1−PK ,0
λ = KPK,0B(K)

+
∫K
x=0 x

(
PK,0b(x)dx+B(x)fK(K − x)dx+

∫K−x
y=0 b(x)fK(y)dy

)
dx

1−PK ,0
λ = KπK +

∫K
x=0 xbK(x)dx = E [SK ]

(13)

upon substituting from (8), and applying the definition of expected value.

4.1. E[BK ]/E(NBK ) = E [SK ]

From Section 3, E[IK ] = 1
λ because arrivals occur in a Poisson process at rate λ and all

arrivals join the system. (All arrivals join, but some get only partial service.) Therefore

E[BK ] = E[CK ]− E[IK ] =
1

λPK,0
− 1
λ
=
1− PK,0
λPK,0

.

Using (10) and (13) gives

E[BK ]
E(NBK )

=

1−PK,0
λPK,0
1

PK.0

=
1− PK,0

λ
= E [SK ] (14)

which parallels the result in (1) for the unbounded-workload M/G/1 queue.
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5. Model where S is Distributed as Pareto(II) with Shape Parameter α

The cdf, ccdf and pdf of S are, respectively,

B(x) = 1− (1 + x)−α , 0 < x <∞,

B(x) = 1−B(x) = (1 + x)−α , 0 ≤ x <∞,

b(x) = d
dxB(x) = α (1 + x)−α−1 , 0 < x <∞.

(15)

From (11) and (15) we get

fK(x) = λPK,0 (1 + x)
−α + λ

∫ x

y=0
(1 + x− y)−α fK(y)dy, 0 < x < K. (16)

The normalizing condition is

PK,0 +

∫ K

y=0
fK(y)dy = 1. (17)

Once we have the solutions of (16) and (17) for fK(x) and PK,0, we can get explicit

solutions for E [SK ], πK , bK(x), 0 < x < K, and other characteristics.

6. Metric for Distance Between Prior and Posterior pdfs of Service Tine

We use a modified form of the metric developed in Brill and Huang, 2017[5], which

takes into account the atom with probability πK at K in the pdf {πK , bK(x)}0<x<K ,

namely, formula (19) below and inequality ρ(bK , b) in (20) below. It gives a measure

of distance between the prior and posterior pdfs of the service time. The prior pdf is

b(x) = α (1 + x)−α−1 , 0 < x <∞ (formula (15)). The posterior pdf of service, bK(·), is

given in (8), and repeated here, while substituting from (15), i.e., for 0 < x < K

πK = (1 +K)
−α PK,0,

bK(x) = α (1 + x)−α−1 PK,0
+ (1 + x)−α fK(K − x) +

∫K−x
y=0 (1 + x)−α fK(y)dy,

= α (1 + x)−α
[
(1 + x)−1 PK,0 + fK(K − x) +

∫K−x
y=0 fK(y)dy

]
.

(18)

The distance measure between bK(·) and b(· /) is defined as

ρ(bK , b) =
1

2

(∫ K

x=0
|bK(x)− b(x /)| dx+

∣∣∣∣πK − ∫ ∞
K

b(x)dx

∣∣∣∣) . (19)

It can be shown from (19) that

0 < ρ(bK , b) < 1. (20)

7. Computational Algorithm

We use a computational algorithm to solve equations (16) and (17) for the stationary pdf

of workload, {PK,0, fK(x)}0<x<K . We substitute that solution into (8) to obtain πK and

bK(·). This requires additional computation, because PK,0 and fK(x) are themselves the
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outputs of a computation. Then obtain the distance measure between bK(·) and b(· /) in (19),

by using the resulting πK and bK(·) in (18).
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