The Posterior Service Time in an M/G/1 Queue with a Workload Barrier and Extreme Prior Service Times

${ }^{a *}$ Percy H. Brill and ${ }^{b \dagger}$ Mei Ling Huang
${ }^{a}$ University of Windsor, Canada, ${ }^{b}$ Brock University, Canada

September 15, 2018

Abstract

This article considers an M/G/1 queue with workload barrier at level $K>0$. Prior service times are continuous random variables. The policy for arrivals re the barrier is: service times that would cause the workload to exceed K are truncated at K. We give the posterior pdf and expected value of the posterior service time due to the barrier, the expected number served in a busy period, and related quantities. We use a metric for the distance between the prior and posterior pdfs of service time. We specialize results to the case where prior service times have a no-mean Pareto(II) distribution.

Key Words: M/G/1 queue, bounded workload, truncated service times, regenerative process, renewal theory, integral equations, level crossing

1. Introduction

Consider the workload process in a workload-barrier M/G/1 queue with a barrier at level $K>0$. A sample path of workload is given in Fig. 1. Denote the posterior service time by S_{K} (called posterior due to presence of barrier at level K); busy period \mathcal{B}_{K}; stationary probability of a zero workload by $P_{K, 0}$; number served in \mathcal{B}_{K} by $N_{\mathcal{B}_{K}}$. Then $P_{K, 0}$ exists, and \mathcal{B}_{K} is finite for all $\lambda>0$ due to the barrier. Customers with truncated service, exit the system when their total time in the system reaches K.

Brill, 2015[3] deals with this model when $E(S)<\infty$, and does not consider extreme prior service times. The present paper extends the discussion in [3] to the case where the prior S is distributed as an extreme Pareto(II) random variable with shape parameter $\alpha \in(0,1]$ (Arnold, 2015[1]; Klieber and Klotz, 2003([13])); hence in the no-workloadbarrier M/G/1 queue $E[S]=\infty, P_{0}=0$ and $E[$ busy period $]=\infty$. In that case results will not hold, that have formulas with explicit P_{0} or $E[S]$ in the no-workload-barrier M/G/1 queue where $E(S)<\infty$. This situation gives rise to the questions: "Which results will still hold in the workload-barrier M/G/1 queue?" and "How far apart are the stationary pdfs of the prior and posterior service time pdfs re a metric designed to measure that distance?" We use such a metric in Section 6.

In the no-workload-barrier M/G/1 queue, if P_{0} exists and $E[S]<\infty$, we use the same notation as above, but omit the subscript K. It is well known that if $\lambda E[S]<1$ then $P_{0}=$

[^0]$1-\lambda E[S]$ is the stationary probability of a zero workload (p. $227 \&$ p. 235 in Gross et al., 2008[8]). Also, $E\left[N_{\mathcal{B}}\right]=1 / P_{0}$ (p. 233 in Cooper, 1990[6]). Thus, $E[S]=\left(1-P_{0}\right) / \lambda$. Also, $E[\mathcal{B}]=\left(1-P_{0}\right) /\left(\lambda P_{0}\right)$ (pp. 82-84 in Brill, 2017[2]). Therefore
\[

$$
\begin{equation*}
\frac{E[\mathcal{B}]}{E\left[N_{\mathcal{B}}\right]}=\frac{\frac{1-P_{0}}{\lambda P_{0}}}{\frac{1}{P_{0}}}=\frac{1-P_{0}}{\lambda}=E[S] . \tag{1}
\end{equation*}
$$

\]

Equation (1) partially motivates this article. Here we explore the validity of the hypothesis " $E\left[\mathcal{B}_{K}\right] / E\left[N_{\mathcal{B}_{K}}\right]=E\left[S_{K}\right]$ ", even if $E[S]$ and P_{0} do not exist. The hypothesis does turn out to be true (Section 4.1 below). It also turns out that $P_{K, 0}$ exists, and is a fundamental quantity in both $E\left[N_{\mathcal{B}_{K}}\right]$ and $E\left[S_{K}\right]$.

The main motivating factor is to explore the model characteristics when $S \underset{d}{=} \operatorname{Pareto}($ II) with $\alpha \in(0,1]$. The results obtained here are potentially applicable in, e.g., risk models with a dividend barrier (e.g., Brill and Yu, 2011[4]; Gerber and Shiu, 1997[7]); queues occurring in industry (Harris (1968)[9]), or on the internet (Harris et al. (2000)[10]); input amounts in dams, and demand sizes in production inventories, with finite capacities (Chapter 6 in [2]); etc.

Section 2 details the workload process when the barrier is at fixed level $K \in(0, \infty)$. Section 3 derives $E\left[N_{\mathcal{B}_{K}}\right]$. Section 4 states the pdf of S_{K}, and derives $E\left[S_{K}\right]$. Section 5 discusses the results when $S \underset{d}{=} \operatorname{Pareto(II)}$, and uses a metric for the distance between the posterior and prior pdfs. Section 7 discusses a computational algorithm for obtaining the pdfs of interest.

2. Workload in the Workload-barrier M/G/1 Queue

Denote the workload process with a barrier at K by $\left\{W_{K}(t)\right\}_{t \geq 0}$ (Fig. 1). The state space is $[0, \infty)$; this accounts for excess over level K. Note that $\bar{S}_{K} \neq S$, because $S_{K} \leq S$ (formula (2) below).

If an arrival at time τ^{-}"sees" $W_{K}\left(\tau^{-}\right)=0 \leq y<K$, then its posterior service time S_{K} is related to S by

$$
\begin{equation*}
S_{K}=\min (S, K-y) . \tag{2}
\end{equation*}
$$

In (2), if $S>K-y$ then $W_{K}(\tau)=K$; if $S \leq K-y$ then $W_{K}(\tau)=y+S$.
The pdf $\left\{P_{K, 0}, f_{K}(x)\right\}_{0<x<K}$ is the stationary mixed pdf of $\left\{W_{K}(t)\right\}_{t \geq 0}$ as $t \rightarrow \infty$. Then

$$
\begin{equation*}
P_{K, 0}=\lim _{t \rightarrow \infty} P\left(W_{K}(t)=0\right) \text { and } P_{K, 0}+\int_{x=0}^{K} f_{K}(x) d x=1 . \tag{3}
\end{equation*}
$$

The pdf $\left\{P_{K, 0}, f_{K}(x)\right\}_{0<x<K}$ exists since the workload is a regenerative process re busy cycles (e.g., Sigman and Wolff, 1993). Thus $P_{K, 0}$ and $f_{K}(x), 0<x<K$ exist regardless whether $E[S]=\infty$ and $P_{0}=0$ or not. (The barrier has a strong effect on the statistical properties of the system.)

2.1. \mathcal{B}_{K} is Finite a.s.for Every $\lambda>0$

The article Brill, 2015[3] shows that

$$
\begin{equation*}
E\left(\mathcal{B}_{K}\right)<K e^{\lambda K}<\infty . \tag{4}
\end{equation*}
$$

Figure 1: Sample path of $\left\{W_{K}(t)\right\}_{t \geq 0}$ in M/G/1 with bounded workload at level $K . \mathcal{C}_{K}$:= busy cycle, $\mathcal{B}_{K}:=$ busy period, $\mathcal{I}_{K}:=$ idle period, $\mathcal{B}_{K}+\mathcal{I}_{K}=\mathcal{C}_{K}$

3. $E\left(N_{\mathcal{B}_{K}}\right)$ in the Workload-barrier M/G/1 Queue

Let: $\mathcal{C}_{K}:=$ busy cycle $=\mathcal{B}_{K}+\mathcal{I}_{K}$, where $\mathcal{I}_{K}:=$ idle period; $A_{t}=$ number of customer arrivals in the time interval $(0, t), t>0 ; A_{\mathcal{C}_{K}}=$ number of arrivals during \mathcal{C}_{K}. It is shown in [3] that

$$
\begin{equation*}
E\left(N_{\mathcal{B}_{K}}\right)=\frac{1}{P_{K, 0}} . \tag{5}
\end{equation*}
$$

Briefly, (5) follows from: $N_{\mathcal{B}_{K}}=A_{\mathcal{C}_{K}} ;\left\{A_{t}\right\}_{t \geq 0}$ is a Poisson process with rate λ, $\lim _{t \rightarrow \infty} A_{t} / t=\lambda$;

$$
\begin{equation*}
E\left(\mathcal{C}_{K}\right)=\frac{1}{f_{K}\left(0^{+}\right)}=\frac{1}{\lambda P_{K, 0}} ; \tag{6}
\end{equation*}
$$

and application of the renewal reward theorem, giving

$$
\frac{E\left(A_{\mathcal{C}_{K}}\right)}{E\left(\mathcal{C}_{K}\right)}=\lim _{t \rightarrow \infty} \frac{A_{t}}{t}=\lambda
$$

implying

$$
\begin{equation*}
\frac{E\left(N_{\mathcal{B}_{K}}\right)}{E\left(\mathcal{C}_{K}\right)}=\frac{E\left(A_{\mathcal{C}_{K}}\right)}{E\left(\mathcal{C}_{K}\right)}=\lambda, \quad \text { and } \quad E\left(N_{\mathcal{B}_{K}}\right)=\lambda E\left(\mathcal{C}_{K}\right)=\lambda\left(\frac{1}{\lambda P_{K, 0}}\right)=\frac{1}{P_{K .0}} \tag{7}
\end{equation*}
$$

proving (5).

4. Posterior pdf $b_{K}(\cdot)$ and $E\left(S_{K}\right)$

We denote the prior pdf and cdf (cumulative distribution function) of S by $b(x), x>0$, and $B(x), x>0$ respectively, with $\bar{B}(x)=1-B(x), x \geq 0$; and the posterior pdf of S_{K} by $\left\{\pi_{K}, b_{K}(x)\right\}_{0<x<K}$, where $\pi_{K}:=P\left(S_{K}=K\right)$ (atom at level K). We assume that S is absolutely continuous. The article [3] shows that the pdf $\left\{\pi_{K}, b_{K}(x)\right\}_{0<x<K}$ is given in terms of the pdf $\left\{P_{K, 0}, f_{K}(x)\right\}_{0<x<K}$ and the probability distribution of S by

$$
\left.\begin{array}{l}
\pi_{K}=\bar{B}(K) P_{K, 0}, \tag{8}\\
b_{K}(x)=b(x) P_{K, 0}+\bar{B}(x) f_{K}(K-x)+\int_{y=0}^{K-x} b(x) f_{K}(y) d y, 0<x<K
\end{array}\right\}
$$

The formulas in (8) do not explicitly contain P_{0} or $E[S]$. Therefore (8) applies even if $P_{0}=0$ and $E[S]=\infty$. Hence (8) applies when $S:=$ Pareto(II) with shape parameter $\alpha \in(0,1]$.

The article [3] shows, using (8), that the following necessary condition holds (law of total probability)

$$
\begin{equation*}
\pi_{K}+\int_{x=0}^{K} b_{K}(x) d x=1 \tag{9}
\end{equation*}
$$

also, in the workload-barrier M/G/1 queue

$$
\begin{equation*}
E\left(S_{K}\right)=\frac{1-P_{K, 0}}{\lambda} \tag{10}
\end{equation*}
$$

To prove (10) we use a level crossing method (Chapter 1 in [2]) to obtain an integral equation for the continuous part of the posterior stationary pdf of the workload, i.e.,

$$
\begin{equation*}
f_{K}(x)=\lambda P_{K, 0} \bar{B}(x)+\lambda \int_{y=0}^{x} \bar{B}(x-y) f_{K}(y) d y, 0<x<K . \tag{11}
\end{equation*}
$$

Integrating both sides of (11) with respect to $x \in(0, K)$, applying (9), and dividing by λ, gives

$$
\begin{equation*}
\frac{1-P_{K, 0}}{\lambda}=P_{K, 0} \int_{x=0}^{K} \bar{B}(x) d x+\int_{x=0}^{K} \int_{y=0}^{x} \bar{B}(x-y) f_{K}(y) d y d x . \tag{12}
\end{equation*}
$$

In (12) integrate the first integral by parts, interchange the order of integration in the double integral, and integrate the inner integral by parts, which leads to

$$
\begin{align*}
\frac{1-P_{K, 0}}{\lambda} & =K P_{K, 0} \bar{B}(K) \\
& +\int_{x=0}^{K} x\left(P_{K, 0} b(x) d x+\bar{B}(x) f_{K}(K-x) d x+\int_{y=0}^{K-x} b(x) f_{K}(y) d y\right) d x \\
\frac{1-P_{K, 0}}{\lambda} & =K \pi_{K}+\int_{x=0}^{K} x b_{K}(x) d x=E\left[S_{K}\right] \tag{13}
\end{align*}
$$

upon substituting from (8), and applying the definition of expected value.

4.1. $E\left[\mathcal{B}_{K}\right] / E\left(N_{\mathcal{B}_{K}}\right)=E\left[S_{K}\right]$

From Section 3, $E\left[\mathcal{I}_{K}\right]=\frac{1}{\lambda}$ because arrivals occur in a Poisson process at rate λ and all arrivals join the system. (All arrivals join, but some get only partial service.) Therefore

$$
E\left[\mathcal{B}_{K}\right]=E\left[\mathcal{C}_{K}\right]-E\left[\mathcal{I}_{K}\right]=\frac{1}{\lambda P_{K, 0}}-\frac{1}{\lambda}=\frac{1-P_{K, 0}}{\lambda P_{K, 0}}
$$

Using (10) and (13) gives

$$
\begin{equation*}
\frac{E\left[\mathcal{B}_{K}\right]}{E\left(N_{\mathcal{B}_{K}}\right)}=\frac{\frac{1-P_{K, 0}}{\lambda P_{K, 0}}}{\frac{1}{P_{K .0}}}=\frac{1-P_{K, 0}}{\lambda}=E\left[S_{K}\right] \tag{14}
\end{equation*}
$$

which parallels the result in (1) for the unbounded-workload M/G/1 queue.

5. Model where S is Distributed as $\operatorname{Pareto}(I I)$ with Shape Parameter α

The cdf, ccdf and pdf of S are, respectively,

$$
\begin{align*}
& B(x)=1-(1+x)^{-\alpha}, 0<x<\infty \\
& \bar{B}(x)=1-B(x)=(1+x)^{-\alpha}, 0 \leq x<\infty \tag{15}\\
& b(x)=\frac{d}{d x} B(x)=\alpha(1+x)^{-\alpha-1}, 0<x<\infty .
\end{align*}
$$

From (11) and (15) we get

$$
\begin{equation*}
f_{K}(x)=\lambda P_{K, 0}(1+x)^{-\alpha}+\lambda \int_{y=0}^{x}(1+x-y)^{-\alpha} f_{K}(y) d y, 0<x<K \tag{16}
\end{equation*}
$$

The normalizing condition is

$$
\begin{equation*}
P_{K, 0}+\int_{y=0}^{K} f_{K}(y) d y=1 . \tag{17}
\end{equation*}
$$

Once we have the solutions of (16) and (17) for $f_{K}(x)$ and $P_{K, 0}$, we can get explicit solutions for $E\left[S_{K}\right], \pi_{K}, b_{K}(x), 0<x<K$, and other characteristics.

6. Metric for Distance Between Prior and Posterior pdfs of Service Tine

We use a modified form of the metric developed in Brill and Huang, 2017[5], which takes into account the atom with probability π_{K} at K in the pdf $\left\{\pi_{K}, b_{K}(x)\right\}_{0<x<K}$, namely, formula (19) below and inequality $\rho\left(b_{K}, b\right)$ in (20) below. It gives a measure of distance between the prior and posterior pdfs of the service time. The prior pdf is $b(x)=\alpha(1+x)^{-\alpha-1}, 0<x<\infty$ (formula (15)). The posterior pdf of service, $b_{K}(\cdot)$, is given in (8), and repeated here, while substituting from (15), i.e., for $0<x<K$

$$
\begin{align*}
\pi_{K}= & (1+K)^{-\alpha} P_{K, 0}, \\
b_{K}(x)= & \alpha(1+x)^{-\alpha-1} P_{K, 0} \\
& +(1+x)^{-\alpha} f_{K}(K-x)+\int_{y=0}^{K-x}(1+x)^{-\alpha} f_{K}(y) d y, \tag{18}\\
= & \alpha(1+x)^{-\alpha}\left[(1+x)^{-1} P_{K, 0}+f_{K}(K-x)+\int_{y=0}^{K-x} f_{K}(y) d y\right] .
\end{align*}
$$

The distance measure between $b_{K}(\cdot)$ and $b(\cdot \gamma$ is defined as

$$
\begin{equation*}
\rho\left(b_{K}, b\right)=\frac{1}{2}\left(\int_{x=0}^{K} \mid b_{K}(x)-b\left(x y\left|d x+\left|\pi_{K}-\int_{K}^{\infty} b(x) d x\right|\right) .\right.\right. \tag{19}
\end{equation*}
$$

It can be shown from (19) that

$$
\begin{equation*}
0<\rho\left(b_{K}, b\right)<1 \tag{20}
\end{equation*}
$$

7. Computational Algorithm

We use a computational algorithm to solve equations (16) and (17) for the stationary pdf of workload, $\left\{P_{K, 0}, f_{K}(x)\right\}_{0<x<K}$. We substitute that solution into (8) to obtain π_{K} and $b_{K}(\cdot)$. This requires additional computation, because $P_{K, 0}$ and $f_{K}(x)$ are themselves the
outputs of a computation. Then obtain the distance measure between $b_{K}(\cdot)$ and $b(\cdot)$ in (19), by using the resulting π_{K} and $b_{K}(\cdot)$ in (18).

Acknowledgement

This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[1] Arnold, B.C. (2015). Pareto Distributions, Second Edition, CRC Press, Taylor \& Francis Group, Boca Raton.
[2] Brill, P.H., 2017. Level Crossing Methods in Stochastic Models, Second Edition. Springer. New York.
[3] Brill, P.H., 2015. Note on the service time in an M/G/1 queue with bounded workload. Statistics \& Probability Letters, Volume 96, January, 162-169.
[4] Brill, P. H., Yu, K., 2011. Analysis of Risk Models Using a Level Crossing Technique. Insurance: Mathematics and Economics. 49(3), 298-309.
[5] Brill, P.H., Huang, M.L. 2017. Approximating the finite-time t probability distributions in an extreme renewal process. In JSM Proceedings, Statistical Computing Section. Alexandria, VA: American Statistical Association, pp. 1393-1401.
[6] Cooper, R.B., 1990. Introduction to Queueing Theory, $3^{\text {rd }}$ ed.. CEE PRESS Books, Washington, D.C.
[7] Gerber, H.U., Shiu., E.S.W., 1997. The Joint Distribution of the Time of Ruin, the Surplus Immediately Before Ruin, and the Deficit at Ruin. Insurance: Mathematics and Economics. 21, 129-137.
[8] Gross, D., Shortle, J. F., Thompson, J. M., Harris, C. M., 2008. Fundamentals of Queueing Theory, $4^{\text {th }}$ ed.. Wiley, New York.
[9] Harris, C.M., (1968). The Pareto Distribution as a Queue Service Discipline, Operations Research, 16(2), pp. 307-313.
[10] Harris, C.M., Brill, P.H., Fischer, M.J. (2000). Internet-Type Queues with PowerTailed Interarrival Times and Computational Methods for Their analysis, INFORMS J. on Computing, 12(4), 261-271.
[11] Huang, M.L., Coia, V., Brill, P.H. (2013). A Cluster Truncated Pareto Distribution and Its Applications, ISRN Probability and Statistics, Volume 2013, Article ID 265373, 10 pages, http://dx.doi.org/10.1155/2013/265373.
[12] Karlin, S., Taylor, H.M., 1975. A First Course in Stochastic Processes, 2 ${ }^{\text {nd }}$ ed.. Academic Press, New York.
[13] Kleiber, C., Kotz, S. (2003), Statistical Size Distribution in Economics and Actuarial Sciences, John Wiley, New York.
[14] Ross, S.M., 2010. Introduction to Probability Models, $10^{\text {th }}$ ed. Elsevier, Oxford, U.K.
[15] Sigman, K. (1999). A Primer on Heavy-tailed Distributions, Queueing Systems, 33, 261-275.
[16] Sigman, K., Wolff, R. W., 1993. A Review of Regenerative Processes. SIAM Review. 35(2), 269-288.
[17] Wolff, R.W., 1982. Poisson Arrivals See Time Averages. Operations Research,. 30(2), 223-231.

[^0]: *Corresponding author, e-mail brill@uwindsor.ca
 ${ }^{\dagger}$ This research is supported by the Natural Sciences and Engineering Research Council of Canada.

