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Abstract
The research improves the current flexible least squares procedure for time series reconciliation.

This kind of estimation was already introduced by the author but assuming a priori knowledge of a
key weighting parameter. The improved procedure allows the estimation of the weighting paramater
from the sample data by means of the Newton-Raphson iterative method. Encouraging results arise
from the reconciliation of the monthly growth rates of Argentina’s Monthly Economic Activity
Estimator (EMAE) and the quarterly growth rates of the Gross Domestic Product.
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1. Introduction

In a recent paper [2] the author proposed a linear estimator (based on the flexible least
squares criterion) to reconcile time series of different frequencies, understanding by “rec-
onciliation” a rescaling of the high-frequency series to match the low-frequency series as
close as possible. Recall that in the bibliography (see e.g. [1]) reconciliation is under-
stood as a procedure that leads to a perfect fit of a high-frequency series to a low-frequency
series, assuming that the latter is observed without error while the former is just a rough
proxy of the low-frequency series. Frank discussed the traditional view mainly for four
reasons. First, because traditional reconciliation methods do not allow adjustment of high-
frequency series in real time but only up to the last available figure of the low-frequency
series. Second, because the common practice of government statistical offices in time series
reconciliation hides to the public the corrections and updates done in the high-frequency
series after the figures of the low-frequency series become available. Third, traditional
reconciliation transfers the low-frequency errors to the high-frequency series instead of re-
moving them. Fourth, reconciliation as performed in practice is not informative about the
true relationship that links series of different frequencies. The reconciliation procedure pro-
posed in [2] overcomes these drawbacks althoug it still requires that the practitioner knows
some parameters in advance. In particular, the practitioner should know the parameter µ
that weights the error sum of squares of high-frequency series and the sum of squared de-
viations of the parameters. The procedure also requires that the time period in which the
parameters of the model remain constant be fixed in advance.

2. Objectives

The aim of this paper is to improve the reconciliation procedure proposed in 2017 regard-
ing the knowledge of the aforementioned weighting constant µ. The improved estimator
will be used to reconcile Argentina’s Monthly Economic Activity Estimator (EMAE, for
its acronym in spanish) with the quarterly Gross Domestic Product (GDP) series and the
results will be compared with those obtained in 2017.
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3. Theoretical Background

Let us recall briefly Kalaba and Tesfatsion’s flexible least squares (FLS) estimator [3] and
Frank’s estimator [2] for time series reconciliation. For ease of reading we shall write
Kalaba and Tesfatsion’s original formulas in matrix notation. Throughout the paper we
shall use the following notation: matrices are writen in bold capitals, vectors in bold lower
case, and scalars in italic; unless otherwise mentioned, all vectors are column vectors; greek
letters are used for parameters; a tilde on a matrix means that the matrix has been reshaped
in a way useful for FLS, as shown next.

3.1 Flexible Least Squares Estimation

Consider a vector of observations y and a set of explanatory variables X such that each yi is
related linearly to the corresponding row vector x′i. If the parameters of of such relationship
vary along observations, the relationship may be writen as

y = X̃ vec(B) + ε, ε ∼ N
(
0, σ2In

)
,

where y is the usual n × 1 vector of observations; X̃ is a n × nk block diagonal matrix
arranged as shown below; vec(B) stands for the nk×1 vectorized matrix of parameters and
ε is the usual error term of normal i.i.d random variables. Hereinafter we will use the tilde
to refer to block diagonal matrices in which each block is a row of the matrix mentioned
below the tilde. So,

X̃ =



x′1 0 . . . . . . 0

0 . . . . . .
...

...
. . . x′i

. . .
...

...
. . . . . . 0

0 . . . . . . 0 x′n


and vec (B) =


β1
...
βi
...
βn

 .

To estimate B under the least squares criterion the function to be minimized, which Kalaba
and Tesfatsion [3] called “incompatibility cost function”, is

C(B, µ, n) =
[
y− X̃ vec (B)

]′ [y− X̃ vec (B)
]

+ µ vec (B)′D′D vec (B)

= y′y− 2 y′X̃ vec (B) + vec (B)′
(

X̃′X̃ + µD′D
)

vec (B) (1)

where µ is a weighting constant and D is a (n−1)k×nk differentiation matrix so that D′D
has the form

D′D =



I −I 0 . . . . . . 0

−I 2 I −I . . .
...

0 −I 2 I −I . . .
...

...
. . . . . . . . . . . . 0

...
. . . −I 2 I −I

0 . . . . . . 0 −I I


and I is a k × k identity matrix. Although the incompatibility function was originally
defined by Kalaba and Tesfatsion as a function of B, µ and n, in practice it is a function of
B only and conditional on µ and n since the parameters and the sample size are supposed
to be given. Then, by solving the first order conditions for the incompatibility cost function
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we get the so-called “normal” equations and the FLS solution for vec(B) which will be
unique if and only if

(
X̃′X̃ + µD′D

)
is a full rank matrix. That is,

vec(B̂)OLS =
(

X̃′X̃ + µD′D
)−1

X̃′y. (2)

3.2 Fixing the FLS estimator to estimate µ

Let us return to the incompatibility cost function (1) and the solution to the first order con-
dition which leads to the FLS estimator (2). This estimator is conditional on the parameter
µ which up to now was supposed to be known. However, it is possible to estimate µ adding
a second condition ∂C(B, µ)/∂µ̂ = 0 in the following fashion.

C(B, µ) = y′y− 2 y′X̃ vec(B) + vec(B)′
(

X̃′X̃ + µD′D
)

vec(B),

Then, the first order condition for µ is

∂C(B, µ)

∂µ̂
= vec(B̂)′

∂A(µ)

∂µ̂
vec(B̂) = 0,

where we called A(µ) = X̃′X̃ + µD′D.1 Replacing vec(B̂) by the solution given in (2) we
get the more explicit expression

∂C(B, µ)

∂µ̂
= y′X̃

(
X̃′X̃ + µ̂D′D

)−1
D′D

(
X̃′X̃ + µ̂D′D

)−1
X̃′y = 0. (3)

Simple inspection of (3) suggests that (a) µ cannot be easily cleared because it is not related
lineraly with X, D and y; and (b) the first order condition does not have a unique solution
for µ. To show the last point let’s call

u = D
(

X̃′X̃ + µ̂D′D
)−1

X̃′y,

so that the first-order condition can be written as ∂C/∂µ̂ = u′u = 0. Without loss of
generality let’s also replace the matrix D, which pre-multiplicates the right hand side of the
equality, by the square matrix D∗′ = [D′, 0′]′. Note that D∗′D∗ = D′D so that the condition
u′u = 0 is still fullfilled. Then, excluding the trivial solution for X̃′y = 0, the condition is
satisfied if u = 0 and

|D∗|
∣∣ (X̃′X̃ + µ̂D′D

)−1 ∣∣ =
|D∗|

|X̃′X̃ + µ̂D′D|
= 0.

But as |D∗| is null, it is clear that |X̃′X̃+µ̂D′D| need not be bounded. In such circumstance,
there would not be an optimal µ̂ to find out. To overcome this drawback we propose a
slight amendment to the original incompatibility cost function of Kalaba and Tesfatsion.
The amendment proposed is a true weighted average of the error sum of squares and the
squared differences among parameters. That is,

C(B, µ) = (1− µ) y′y− 2 (1− µ) y′X̃ vec(B) + vec(B)′
[
(1− µ) X̃′X̃ + µD′D

]
vec(B).

1We called A to the matrix between parenthesis, although the reader should be aware that this matrix has
nothing to do with other matrices called so elsewhere in the paper.

 
369



Then, optimizing C with respect to vec(B) and µ results in the first order conditions

∂C(B, µ)

∂vec(B̂)
= −2 (1− µ) X̃′y + 2

[
(1− µ) X̃′X̃ + µD′D

]
vec(B̂) = 0

so that,

vec(B̂) =
[
(1− µ̂) X̃′X̃ + µ̂D′D

]−1
X̃′y (1− µ̂) = A−1X̃′y (1− µ̂), (4)

and

∂C(B, µ)

∂µ̂
= 2 y′X̃ vec(B̂) + vec(B̂)′

(
−X̃′X̃ + D′D

)
vec(B̂)− y′y = 0.

However, the second condition can be manipulated as shown below to get a more friendly
expression in order to compute the second derivative, whose usefulness will become appar-
ent shortly.

∂C(B, µ)

∂µ
= 2 (1− µ) y′X̃A−1X̃′y + (1− µ)2 y′X̃A−1

(
−X̃′X̃ + D′D

)
A−1X̃′y− y′y

= (1− µ) y′X̃A−1
[
2A + (1− µ)

(
−X̃′X̃ + D′D

)]
A−1X̃′y− y′y.

Note that the matrix between brackets may be rewritten as

2A + (1− µ)
(
−X̃′X̃ + D′D

)
= 2 (1− µ) X̃′X̃ + 2µD′D− (1− µ) X̃′X̃ + (1− µ) D′D

= (1− µ) X̃′X̃ + (1 + µ) D′D,

so

∂C(B, µ)

∂µ̂
= y′X̃A−1

[
(1− µ̂)2 X̃′X̃ + (1− µ̂2) D′D

]
A−1X̃′y− y′y = 0.

This expression is, however, non-linear with respect to µ (recall that A is also a function of
µ), so we ought to solve it by a computational method such as Newton-Raphson’s iterative
procedure. The reader may find a brief explanation of this method in the appendix at the
end of the paper. Then, in the context of the incompatibility cost function C∗(B, µ), the
recursion relationship of Newton-Raphson’s method may be restated as

µ̂(h+1) = µ̂(h) −

[
∂2C∗(B, µ)

∂µ̂2(h)

]−1
∂C∗(B, µ)

∂µ̂(h)
, (5)

where the superscript between parenthesis refers to the iteration number. To compute µ̂ in
this fashion we must compute the second derivative of C∗(B, µ) with respect to µ. To that
end, we call C = (1− µ)2 X̃′X̃ + (1− µ2) D′D. Then,

∂2C(B, µ)

∂µ2
= y′X

[
∂A−1

∂µ
CA−1 + A−1

(
∂C
∂µ

A−1 + C
∂A−1

∂µ

)]
X′y.

The reader may check that ∂C/∂µ = −2A and C = (1−µ)(A+D′D). In the appendix we
develop the derivative of A−1 with respect to µ. Replacing the derivatives involving A−1

and C and arranging the terms conveniently we get

∂2C(B, µ)

∂µ2
= y′X̃

[
A−1

∂A
∂µ

A−1CA−1 − A−1
(

2 Ink + CA−1
∂A
∂µ

A−1
)]

X̃′y

= y′X̃
(

A−1
∂A
∂µ

A−1CA−1 + A−1CA−1
∂A
∂µ

A−1 − 2 A−1
)

X̃′y
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Note that every term between brackets is a symmetric matrix, so the expression above can
be reduced to

∂2C(B, µ)

∂µ2
= 2 y′X̃A−1

(
∂A
∂µ

A−1C− A
)

A−1X̃′y. (6)

Writing ∂A/∂µ in terms of X̃ and D, and C in terms of A and D, (6) is

∂2C(B, µ)

∂µ2
= 2 y′XA−1

[
(1− µ)

(
D′D− X′X

) (
Ink + A−1D′D

)
− A

]
A−1X′y.

We are now able to solve the first order condition for µ̂ by Newton-Raphson’s recursion.
Replacing the first and second derivatives in (5) results in

µ̂(h+1) = µ̂(h) −
1

2

y′X̃A−1
[
(1− µ̂(h))2 X̃′X̃ + (1− µ̂2(h)) D′D

]
A−1X̃′y− y′y

y′X̃A−1
[(

1− µ̂(h)
) (

D′D− X̃′X̃
) (

Ink + A−1D′D
)
− A

]
A−1X̃′y

.

Although this expression looks quite cumbersome it may be rewritten in a more friendly
fashion just calling G1 = X̃′X̃, G2 = D′D, A = (1 − µ) G1 + µG2 and d = A−1X̃′y.
Then,

µ̂(h+1) = µ̂(h) −
1

2

d′Cd− y′y
d′
[
(G2 −G1)A−1C− A

]
d

(7)

3.3 Time Series Reconciliation through FLS

As already mentioned, Frank [2] proposed a FLS estimator for time series reconciliation.
The goal was to fit one or more high-frequency series to a low-frequency series assuming
that boths sets are observed with error. To that end, he proposed a data generating process
expressible by two sets of equations.

Hȳ = Z̃vec(B) + ε, ε ∼ N(0, σ2Ω), H = Im ⊗ 1q, ȳ = Py

vec(B̂0) = vec(B) + ν, ν ∼ N
[
0, σ2ν (In ⊗Ψ)

]
. (8)

In the first set, the high-frequency series in Z are related linearly to the “expanded” version
of the low-frequency series ȳ by fixed, but time-varying, parameters. The expanded low-
frequency series Hȳ is just a time series in which each observation appears repeated q
times to match the lenghth of the high-frequency series. H is an “expansion matrix” while
P = H′/q, is an m×mq matrix that averages the elements of the unobservable time series
y. Z̃ is an n× nk matrix of high-frequency series with its rows placed blockwise, as in X̃.
Perhaps, a clearer way of defining the relationship between Z̃ and y would be

ȳ = PZ̃ vec(B) + ξ, ξ ∼ N
(
0, σ2Φ

)
and Φ = PΩP′.

This relationship, however, is useless for reconciling time series in real time since the
number of rows of Z̃ must match the length of the low-frequency series, that is, n = mq.
The first set of equations in (8) has a random error term whith unknown covariance σ2Ω.
We shall explain below how to estimate σ2Ω. The second set introduces a prior estimate B̂0

of the true parameters of the first set. This estimate is supposed to be unbiased with a known
block-diagonal covariance structure In ⊗Ψ. Under this specification the incompatibility
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cost function to be optimized is the extended version of Kalaba and Tesfatsion’s original
incompatibility function given next.

C∗(B|µ) =
[
Hȳ− Z̃ vec (B)

]′ (
σ2Ω

)−1 [Hȳ− Z̃ vec (B)
]

+
µ

σ2
vec (B)′D′D vec (B) +

+
1

σ2ν

[
vec(B̃)− vec (B)

]′
(In ⊗Ψ)−1

[
vec(B̂0)− vec (B)

]
. (9)

The first order condition for minimizing C∗ conditional to µ, σ2, σ2ν and B̂0 is

∂C∗(B|µ)

∂vec(B̂)
= −2

1

σ2
Z̃′Ω−1Hȳ + 2

1

σ2
Z̃′Ω−1Z̃ vec(B̂) + 2

µ

σ2
D′D vec(B̂)+

+ 2
1

σ2ν

(
In ⊗Ψ−1

) [
vec(B̂)− vec(B̂0)

]
= 0.

Rearranging terms, calling α = σ2ν/σ
2 and manipulating conveniently the expression above

the solution for vec(B̂) is

vec(B̂) =

[
Ink +

1

α

(
Z̃′Ω−1Z̃ + µD′D

)−1 (
In ⊗Ψ−1

)]−1
vec(B̂)FGLS+

+
[
Ink + α

(
In ⊗Ψ−1

)−1 (Z̃′Ω−1Z̃ + µD′D
)]−1

vec(B̂0). (10)

where vec(B̂)FGLS is the generalized version of the FLS estimator given in (2).

vec(B̂)FGLS =
(

Z̃′Ω−1Z̃ + µD′D
)−1

Z̃′Ω−1Hȳ.

Caution! If vec(B̂)FGLS were a true GLS estimator, the term containing µ should appear
multiplied by α. However, the formula given above is correct because actually we intro-
duced the matrix Z̃′Ω−1Z̃ + µD′D to reformulate vec(B̂) as a function of vec(B̂)GLS and
vec(B̂0).

The reader may check that the weighting matrices that pre-multiply vec(B̂)FGLS and
vec(B̂0) add up to Ink so that the current estimate might be interpreted as a weighted aver-
age of the estimate of B known before sampling and that computed from the sample. Frank
[2] provided an alternative expression to compute the reconciled series Ĥȳ when all the
time periods share the same single prior b̂0. The expression is as follows

Ĥȳ |µ, α = Z̃∗
[

Ink +
1

α

(
Z̃′Ω−1Z̃ + µD′D

)−1 (
In ⊗Ψ−1

)]−1
vec(B̂)FGLS+

+ Z∗
[
Ink + α

(
In ⊗Ψ−1

)−1 (Z̃′Ω−1Z̃ + µD′D
)]−1

b̂0. (11)

To make this estimation feasible it is necessary to replace Ω, Ψ and b̂0 by proper proxies.
In fact, Frank’s paper focused on finding a good proxy for Ω. The one found is a Toeplitz
matrix W whose first column w is the linear programing solution satisfying

min
w

{
1′w
}

subject to w1 = 1, A1w = q2
[
φ1
2
, φ′i>1

]′
, and A2w ≥ 02n−1,

where A1 is a set of m linear constraints (see appendix in [2]) that relates the elements
of Ω to those of a covariance matrix Φ and A2 is a set of 2n − 1 constraints introduced
to guarantee that each wi ≥ 0 and the difference wi − wi+1 ≥ 0, as are supposed to be
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the typical covariance structures with positive autocorrelation. The covariance structure
that arises from w is completely non-parametric and can be plugged in directly in (10) if
Ω were non-singular. Anyway, to avoid numerical unstabilities if W were ill-conditioned,
Frank assumed an AR(1) covariance structure for Ω and used w to compute the single pa-
rameter of this structure, ρ.

The previous result is extensible to the FGLS estimator just calling X̃ = Ω−
1
2 Z̃ and

y = Ω−
1
2 Hȳ. However, it should be pointed out that in the new incompatibility cost

function the parameter µ has a different meaning than that in the original function. In fact,
the relationship between µ in Kalaba and Tesfatsion’s estimator and µ∗ in (4) is exactly
µ = µ∗/(1− µ∗), provided µ∗ 6= 1. So two courses of action may be followed to compute
the reconcilied series Ĥȳ. One course would be to compute directly

Ĥȳ |Ω, α = Z̃∗
{

Ink +
1

α

[
(1− µ̂∗) Z̃′Ω−1Z̃ + µ̂∗D′D

]−1 (
In ⊗Ψ−1

)}−1
vec(B̂)+

+ Z∗
{

Ink + α
(
In ⊗Ψ−1

)−1 [
(1− µ̂∗) Z̃′Ω−1Z̃ + µ̂∗D′D

]}−1
b̂0, (12)

where µ̂∗ is the estimation that arises from Newton-Raphson’s iterative procedure, per-
formed when computed vec(B̂). The other course of action would be to compute µ in a
preliminar round, but assuming Ω = I and α = 1, and then proceed in the usual way as if
µ were known.

4. Example: Reconciling EMAE with the quarterly GDP

Next, we reconcile EMAE’s growth rates with the quarterly GDP growth rates for the pe-
riod ranging from January 2010 to September 2015. We set aside the period January 2007
to December 2009 to compute the prior estimates b̂0. Note that the growth rates to be rec-
onciled are EMAE’s first published growth rates without any further revision, so the EMAE
series used in the example that follows is not the version downloadable from INDEC’s of-
ficial homepage, but one compiled by the author from INDEC’s press releases. Both the
monthly and the quarterly series chosen to examplify the proposed reconciliation procedure
are the same that those used in [2] to let the results be fully comparative.

The figure below shows EMAE’s first reported interannual growth rates, the quarterly
GDP interannual growth rates reconciled with EMAE’s last revised series (following Den-
ton’s method) and overlapped with them the reconciled series computed according to the
proposal done in [2] and the improved version given above. Simple inspection of the graph
shows that the FLS series fits better the quarterly series than the GLS series, although both
alternatives perform pretty well. The graph also shows that our procedure returns a softer
monthly series and avoids spurious values at the end of the series that are a typical out-
come of traditional reconciliation methods. Recall that the common practice to overcome
this problem is to forecast the low-frequency series one period ahead and then reconcile
the whole series as if all the figures were obtained by the same data generating process.
This practice, however, also requires forecasts of monthly future values to match the period
covered by the quarterly series. So the accuracy of the reconciliation procedure, at least at
the end of the series, relies heavily on the method chosen to forcast future periods. This
issue might obscure the whole reconciliation method.

 
373



Figure 1: EMAE’s first reported growth rates, quarterly GDP growth rates reconciled with
EMAE’s last revised series by Denton’s method and FLS reconciliation.

5. Concluding remarks

In this paper we focused on the estimation of the parameter µ, a topic that seems to have
been neglected in the literature referring to the FLS estimator. During the course of the in-
vestigation we noted that the so-called “incompatibility cost function” proposed by Kalaba
and Tesfatsion cannot be optimized with respect to µ because the parametric space of µ is
unbounded. Instead, we proposed a slightly modified version of the incompatibility cost
function to bound µ in the interval µ ∈ (0, 1). We explicitly excluded the posibility that
µ = 0 or µ = 1 because they lead to singular matrices A, or degeneracy in the estimation
of the type

lim
µ→1

vec(B) = lim
µ→1

[
(1− µ)X′X + µD′D

]−1 X′y(1− µ) = 0

The new reconciled series of quarterly and monthly growth rates did not show a major
improvement with a previous series calculated keeping µ fixed in 1. However, it is yet
premature to state that estimating µ from a sample does not improve substantially the rec-
onciliation of time series computed by assuming that µ is fixed because the value of µ
computed in our particular example was 0.4626, equivalent to 0.8608 in the traditional
scale, which is pretty close to the widespread value µ = 1 often used as a default value in
flexible estimation.

Besides, we found that starting the Newton-Raphson algorithm with values close to 0
or 1, convergence cannot always be guaranteed. We attribute these failures, mostly, to the
slowness of the algorithm and, in a lesser extent, to numerical instabilities that hindered
the inversion of matrices A. These latter cases could have been avoided by replacing prob-
lematic inverses of A with approximate inverses obtained by SVD-inversion. However, we
prefered to invert all matrices by pure Gaussian elimination and back-substitution in order
to detect this type of numerical drawbacks. When the initial values chosen were not close
to 0 or 1, and δ < 0.001, the convergence was reached in a few steps.
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A. The Newton-Raphson Method

We recall Newthon-Raphson’s recursive procedure for finding the roots of a real-valued
function. To do so, recall first the Taylor decomposition of a function f(x) in the neigh-
borhood of a certain point xm.

f(x) = f(xm) + (x− xm)′
∂f(xm)

∂xm
+

1

2
(x− xm)′

∂2f(xm)

∂xmx′m
(x− xm) + . . .

In particular, at some point xm+1, the function f(x) can be approximated by the first two
terms of the Taylor series

f(xm+1) ≈ f(xm) + (xm+1 − xm)′
∂f(xm)

∂xm

and, in case f(xm+1) = 0

xm+1 ≈ xm −
[
∂f(xm)

∂xm

]−1
f(xm). (13)

If f(x) were a function to be optimized, for instance the errors sum of squares of a linear
model, expression (13) is useful to find recursively the estimated parameters of the model.
In terms of a standard regression (13) may be rewriten as

bm+1 = bm −
[

∂2L

∂bmb′m

]−1
∂L

∂bm
.

where ∂L/∂bm is the first derivative of the error sum of squares or the log likelyhood
function, and m is the iteration number.

B. Some results in matrix calculus

Recall that for any non-singular square matrix A there exists a unique matrix A−1 such that
A−1A = I. Then, if A is a function of µ, deriving this identity with respecto to µ on both
sides of the equality yields,

∂A−1

∂µ
A + A−1

∂A
∂µ

= 0, so that
∂A−1

∂µ
= −A−1

∂A
∂µ

A−1.
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