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Abstract

Space-time Autoregressive—moving-average model with exogenous inputs (STARMAX)
models how a time-space target field depends on its own and its neighbors' past, and on
other time-space exogenous inputs (predictor fields). Time-space data arise in many
physical science studies. The interpretability of STARMAX model makes it highly
desirable.

There is not a ready to use program that will fit this model. This paper extends the model
by introducing the similar time-space lag structure to predictor fields. This paper also
develops and implements a fast Kalman filter parameter estimation and prediction
procedure that allows missing values in target process, and can be applied on big data.
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1. Introduction

This is an extension of STARMA model in Pfeifer and Deutsch (1980) and space-time
ARMAX model in David Stoffer (1986). The model considered here allows predictor
fields and applies time and space lagged relationship on both target and predictor fields.

In fitting the model, we developed an R package that takes a very similar approach as that
in R package starma (Cheysson 2016).

2. Space-Time ARMAX Model

2.1 Model STARMAX(D,,,..2, Qmy,..my {ri:u,-o.....u,-rj5j =1,..,J}

Let y(t) be the target field and x;(t), j =1, ..., J, be the jth predictor field at time t. Each
of them is a vector of n elements representing n space locations.

YO = Zh_y Tk i WOyt — k) + B T 0 W Vet — k) +
%1 Tl S o Bia WPt = 1) + () (1)
where
p: the maximum AR time lag,
Ay the spatial lag for AR time lag kK,
g: the maximum MA time lag,
my: the spatial lag for MA time lag K,
7;: the maximum time lag for jth predictor,
uj: the spatial lag for jth predictor time lag k (k=0 is allowed),
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£(t): the random error vector at time t, Var(e(t)) =3,
W ®: the space lag operator (more later).

2.1.1 Spatial lag operator

W ® is the I-th spatial lag operator. It is a matrix of n by n where

e wP =0 only if location j is a [-th order neighbor of location i

ij
e Row sum Z;'l=1 Wi(jl) =1

e Ohorder: W© =
)

e I-th order: Wy (t) is a vector with the ith element (Z;-lzl LAY (t)) being

the weighted average of [-th order neighbors of location i
o WO can be asymmetric. Asymmetric W is useful is directional locations
such as high way traffic

2.1.2 Parameters
AR parameter matrix: a matrix with row for time lag, column for space lag (starting from
0 for space lag).
b0 0 Piag, P4
: k : =| i |, where 45 = max(4,,...1,)

'y

D= : . :
Poo = Podar) s ey
MA parameter matrix: a matrix with row for time lag, column for space lag (starting from
0 for space lag).

010 = Bimy, o',

0=\ : : = ’ , where m;,, = max(my, ..mg)
0 . 0
a0 dMma/ g x (Mma+1) 1

Predictor parameter matrix: start from 0 for both time and space lag.

)] )] (j

' o0 BOuj B 8’)
pY) = P P = : |, where u; = max(u;, ...,ujrj)

C)N. )] ﬂr(l)

BT]'O ﬁrjuj Tj

(rj+1) X (uj+1)

3. Kalman filter

Kalman Filter is described here briefly because it will be used in this paper to
both fit and predict the model.

3.1 State-space form
The models of our interest can be written in the following state-space form.
State equation: z,=Fzy {+1n+Tu,

Observation equation: y; = M;z; + v;
where
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E(u;) =0, E(v)) =0,

var(u,) = U, var(vy) =V

cov(u,u,) =0, cov(v,v,) =0, ift+r,
cov(us,v;) =0foranyt, T

3.2 Kalman filter
Let’s denote

Dy = {y; : T < t}): the data known upto and including time t.
One-step ahead prediction and prediction variance of state vector:
2t|t—1 = E(24|D;-1),

~ ~ 1A
Pyi1=E ((Zt - Zt|t—1)(zt - Zt|t—1) |Dt—1>
Current prediction of state vector:
2t|t = E(z;|Dy),

Pt|t =E ((Zt - 2t|t)(zt - 2t|t),|Dt)

Predicting equation
State vector
= Zy 1 =FZi g1+ 1
- Ptlt—l - FPt—llt—lF, + FU["
Observation vector
- j\’tlt—l = Mt2t|t—1
—~ —~ !
- E(y:— ytlt—l)(yt - ytlt—l) = MPy_ My +V
Updating equation
= Zye = Zye-1 + Ke (Ve — Veje-1)
- Ptlt = - KtMt)Ptlt—l
where Ky = Py M (M(Py-1 M + Vot

3.3 Missing values in target variable

When there are missings in target field y;, we take the similar approach as that in the
paper by Kohn and Ansley (1986). We also assume that there are NO missings in
predictor fields.

Suppose that at time t, among the n locations only d; <= n locations have observations.
Let Ly = {l;, I3, ..., lg,} denote the d; locations at time t; S; be the indicator matrix with
d; rows and n columns such that §;(i,l;) = 1 at location with observation, and = 0 if
missing. If there are no missings, S; = I. Let y; = S;y;, M = S:M, v; = S;v;. The
State-space form when there are missing becomes

State equation: z; = Fz,_q +n + T'u,
Observation equation:  y; = M;z, + v;

Note that only observation equation is changed. Replace y;, M, v; by y;, M{, v} in the

Kalman recursion, everything should work.

4. Parameter Estimates
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Kalman filter is a recursive algorithm commonly used in time series analysis for
prediction. Kalman filter can also be used to directly estimate the parameters if
using the appropriate state space form of the model by setting up the parameter
vector as the state vector. The algorithm we will use are based on the article by
Cipra and Motykova (1987).

Model in eq (1) can be rewritten as: y; = X;b + & with r(s(t)) = X, b is the parameter
vector including all parameters

’ ’ 1 1 1)’ 1)’ ! li
b = (¢}, b}, 0%, .. 04, B ., B BT BY.
and X, is a matrix with following columns corresponding to AR, MA and predictors
components

Xt = (W(O)yt—l' W(l)yt—l' _"W(Aar)yt_l’ '"'W(O)yt—p' "_’W(Aar)yt_p’

WOg,_y, .., Wrmmdg,_,, ., WOg_,, .., Wwmmdg,_
WOxy Wy, o, WOy, Wy
w©x, ., ...,W(u/)x],t, . W(O)xllt_r], ---,W(u’)xu—r,)

State space representation for parameter estimation

State equation: b, = b;

Obs equation: y, = X;b, + &
where b; is the parameter estimate of b at time t given all information up to and including
time t

Apply the Kalman filter on above state space representation
Fortimet=1,...,T
— Denote b; = Bqt, Py =Py,
— Given b; & P;, when new y;,,& X;,1 are available, update by
biy1 = bt + K 1(Ve41 — Xe41be)
Piy1=P¢—Kiy1Xesq Py
where Ko = PeX 11 (Xes1 PeX piq + Zeg) ™

Final estimate: b = by

5. Prediction
Here parameters are known and we want to predict into future using the STARMAX
model. The state space form used to estimate the parameters is not appropriate to do
prediction since we need the parameters to be fixed at each time step when we do
prediction.

Model in eq (1) can be written as
State equation: z,=Fz,_ +n.+Tg;

Observation equation:  y, = Mz,

where
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and z, F are in very complicated form
(&)
art-1
(2)
art-1
©)
Zart-1
€Y)
ma,t—1
2
ma,t—1
3
ma,t—1
Zt—1 = chll?t—l
()
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V4

V4

VA
VA

V4

V4

®
X],t—l
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XJ,t—l

(3)
X],t—l

z

z

z

where

W(O)yt—l W(Aar:)yt_z W(O)yt_p

W(Aar)yt_l k W(O)yt—p+1 W(Aar)yt_p

2432



JSM 2018 - Section on Statistical Computing

/ ]/1/(0)&_2
w©g,_, wmmag, w©g, q
(€] _ . ) _ 3) _ .
Zma,t 1 'Zma,t—l - 0) : ) Zma,t 1 .
W(mma) & k w &t q+1 W(mma) &t
W(mma)et—q+1
/ W(O)xj o1 \
W(O)x t | W(u])x] t—1 | W(O)x]‘,t_rj
O , @ _ I : I HO. :
xjt 17 ’ xjt—1 ) 1 Lxjt-1 : )
Wy, ! WOx;e i1 ) W,
wl l)x] t—r+1
and
ROORD R RD EDRD R R R R R R
I 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 O(mma+1)n X (ar+Dn 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
F=190 o 0 0 0 Oy .wxmpyen O O O 0 0 o0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 o 0 0 o 0 0 0 o 0o 0o o
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
where
w©® w© w©
€Y ' w® 2 , w 3 w®
Fd=¢@| V| EP =@, ¢, )0 VT EY =, W,
W(Aar) W(Aar) W(Aar)
w© w© w©
, ® , , ® , 0
F(l) 0'.® W: ) (2) — (0 b v, 0 q_1)® W: , (3) =0 q® W: ,
W(Aar) W(Aar) W(Aar)
w© w© w©
’ W(l) 2 ’ W(l) 3 ’ W(l)
ED =800 7, ‘=B B8 L EY =, e Y
W (lar) W (Aa‘r) W (Aa‘r)

State-space form when there are missing
State equation:

where L, and S; are the same as before.

Kalman filter prediction
Predicting equation
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State vector
Zyt-1 = FZy_qe1 1
Pty = FPi_q 1 F' + rzr'

Observation vector
y2|t—1 =Mz, = Zt|t—1[Lt]
§Z|t—1 =y~ ?:|t—1
27Z|t—1 = E§Z|t—1(§:|t—1), = M;Ptlt—lM;, = Pyje—1[Le, L]
2= Piq[lin, Lin]

Updating equation
Zyt = Zye-1 t+ K§§;|t—1
Pt|t =- K;M;)Pﬂt—l = Pt|t—1 - K;Pt|t—1[l‘tv]
where

K; = Ptlt—lM;,(zat—l)_l = Ptlt—l['l‘t](zat—l)_l

6. An R package: starimax

An internal R package “starimax” is developed for Zurich Insurance Company for
some projects.

starimax {starimax} R Documentation

Space-Time ARIMAX

Description
Fit and predict the STARMAX model. Missings in target will be auto-handled. Missing in predictors are not allowed. The STARMA model is:

y(t) =2 f=1NA E (=0 3 =0 u_ikl} Bk WD )}tk + 3 {k=1}p)Y {1I=0)MA_K) @_{kl] WD pt-k) + 3_{k=1)7q3_{I=0]*m_k}
& fi} Wh{{il)} e(t-) + e(t)

Usage
starimax(datalist, wlist, paramatlist)
Arguments

datalist list of data matrices with row representing time and column representing space location. First element is for target data matrix.
The 2nd, 3rd, ..., are predictor matrices. All of them should lined up with the same row and column repressting the same time
and location. The predictor matrices may have extra rows at end. The extra rows are used in outsample prediction.

wlist list of neighborhood weight matrices, with rowsum = 1 for non-zero rows of each matrix. Neighborhood matrix doesn’t need to be
symmetric so it can handle the directional neighbor relationship. The I-th element wlist[[l] is the (I-1})-th order neighborhood
weight matrix with wlist[I]][i,j] representing the the contribution of location j to location i. The wlist[[1]], the Oth order neighbor
matrix, is an indentity matrix representing the relationship of a location to itself.

The matrices maybe sparse

paramatlist list of 0/1 matrices with 1 indicating the non-zero parameter to be estimated.

The paramatlist][1]] and paramatlist[[2]] are for AR and MA component respectively. For example, paramatlistf[1]][t.s]=1 means t-
th time lag and (s-1)-th space lag is non-zero and will be estimated.

The paramatlist][i] of i =3 are for predictors, paramatlist[[3]][t.s]=1 means the (t-1)-th time lag and (s-1)-th space lag parameter
is non-zero and te be eatimated.

Value
para: a list of (para_est, para_sd, para_tvalue) parameter estimates, the standard deviations and t-values.
yhat: a list of (yhat, sd_yhat, resid, rmse). The in sample predictions. yhatSyhat — prediction matrix with same shape of datalist[[1]]. The

yhatSyhat[t.], t = 1 to T=nrow(datalist[[1]]). is the 1-step ahead prediction based on model built using only info upto 1. The true out-sample
prediction in insample data time point.

vhat_out: a list of (yhat_out. sd_yhat_out). The 1- & 2-step ahead outsample prediction from the last insample time point T.

7. Simulation Example
7.1 Data simulation
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We will simulate some data for the 13 locations from the example road network
given Figure 1 by KAMARIANAKIS & PRASTACOS (2002)

].'K z b |
1
& .7
-,
N
10
11
12
12

FIGURE 1. The typical road network tree structure for traffic flow. The dots
represent measurement locations and the arrows the direction of flow.
(KAMARIANAKIS & PRASTACOS 2002)

The WO, W W@ are
> nbrwtlist[[1]]
[,11 [,21 [,3] [,4] [,5] [,e] [,7] [,8] [,9] [,18] [,11] [,12] [,13]
1 5] %] ] 5] %] @ ] %] 5] 5]

[1,] 0 @
[2,] 5} 1 @ 5} [} @ a8 [} 5] @ [} a8 a8
[3,] 5} a8 1 5} [} @ a8 [} 5] @ [} a8 a8
[4,] 5} a8 @ 1 [} @ a8 [} 5] @ [} a8 a8
[5,] 5} a8 @ 5} 1 @ a8 [} 5] @ [} a8 a8
[6,] 2] 2] (4] 2] (4] 1 2] (4] (5] (4] (4] 2] 2]
[7,1 5} a8 @ 5} [} @ 1 [} 5] @ [} a8 a8
[8,] 5} a8 @ 5} [} @ a8 1 5] @ [} a8 a8
[9,1] 5} a8 @ 5} [} @ a8 [} 1 @ [} a8 a8
[10,] 5} a8 @ 5} [} @ a8 [} 5] 1 [} a8 a8
[11,] 5} a8 @ 5} [} @ a8 [} 5] @ 1 a8 a8
[12,] 5} a8 @ 5} [} @ a8 [} 5] @ [} 1 a8
[13,] 2] 2] (4] 2] [4] (4] 2] [4] 5] (4] [4] 2] 1
> round(nbrwtlist[[2]],digits=2)
[,11 [,2]1 [,3] [,4] [,5] [,6] [,7]1 [,8] [,9] [,1e] [,11] [,12] [,13]
[1,] ©.00 ©0.00 0.00 ©.0 ©.0 ©.0 0.0 0.9 0.0 8.8 8.8 a8 a8
[2,] ©.00 ©0.00 0.00 ©.0 ©.0 ©.0 0.0 0.9 0.0 8.8 8.8 a8
[3,] ©.060 0.00 D.00 ©.0 0.0 ©.0 0.0 ©.0 B.0 0.0 0.0 2] 2]
[4,] ©.00 ©0.00 0.00 ©.0 0.0 ©.0 0.0 0.9 0.0 8.8 8.8 a8 a8
[5,] ©.00 ©.00 0.00 ©.0 0.0 ©.0 0.0 0.9 0.0 8.8 8.8 a8 a8
[6,] .33 ©.33 9.33 0.0 0.0 0.2 0.0 ©.0 0.2 0.0 0.0 2] 2]
[7,] ©.00 ©0.00 0.00 ©.5 ©.5 ©.0 0.0 0.9 0.0 8.8 8.8 a8 a8
[8,] ©.060 0.00 .00 ©.0 0.0 ©.5 0.5 0.0 8.0 0.0 0.0 2] 2]
[9,] ©.00 .00 .00 ©.0 0.0 ©.0 0.0 ©.0 0.0 8.8 8.8 a8 a8
[1e,] ©.00 0.00 .00 0.0 ©.0 ©.0 ©.0 0.5 0.5 8.8 8.8 a8 a8
[11,] ©.00 0.00 .00 ©.0 0.0 ©.0 0.0 ©.0 V.0 0.0 0.0 2] 2]
[12,] ©.00 0.00 .00 0.0 ©.0 ©.0 0.0 0.0 0.0 8.5 8.5 a8 a8
[13,] ©.00 0.00 .00 0.0 ©.0 ©.0 0.0 0.0 0.0 8.8 8.8 1 a8
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> round(nbrwtlist[[3]],digits=2)
[J

[,1] [,2] [,

.0

10

3 4] [,5]
.9 . .

.®
@
[an]
L]
]
@

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[e,]
[9,]
[10,]
[11,]
[12,]
[13,]

OO0 0 200
OO NDO 0
OO0 0000 000
o I v I v I o o T L T v T v o v T v I v
OO0 00000000
OO NODO000 OO
[ I v I v T o o v T v T o o v T v I v
OO NDOO0O
OO0 0000 000
OO0 NODO 00O

Model

6]
.0

OO0 DD ODDODD
OO UVO00D00000

[,71 [,8] [,9] [,10] [,11] [,12] [,13]
0.0 0.6 0.0 0.0 0.0 0 0
0.0 0.6 0.0 0.0 0.0 0 0
0.0 0.6 0.0 0.0 0.0 0 0
0.0 0.6 0.0 0.0 0.0 0 0
0.0 0.6 0.0 0.0 0.0 0 0
0.0 0.6 0.0 0.0 0.0 0 0
0.0 0.0 0.0 0.0 0.0 0 0
0.0 0.6 0.0 0.0 0.0 0 0
0.6 9.0 0.0 0.9 0.0 0 0
0.5 0.6 0.0 0.0 0.0 0 0
0.0 0.0 0.0 0.0 0.0 0 0
0.0 8.5 0.5 0.0 0.0 0 0
0.6 9.0 0.0 0.5 0.5 0 0

We will simulate data using above neighborhood matrices from following model.

vy, =04WQy, . +025W Dy, +025W Dy, , —3WDg,_, +0.6WOx,_, + &

True parameter values

0.4

® = (0.25 0.25

0

).0 =0 -03).8= (0(_’6)

7.2 Code for simulation and estimating parameters

library(MASS)
library(starimax)

# Simulate DATA, STARMA(2 _(1,0), 1 (1)) with 1 predictor

n=13

epsi = mvrnorm (200, mu=rep(0,n), Sigma = diag(n)

sim <- epsi

x = mvrnorm (200, mu=rep(0.1,n), Sigma = diag(rep(0.6,n)) )

for (tin 3:200) {

sim[t,] <- (.4* nbrwtlist[[1]] + .25*nbrwtlist[[2]]) %*% sim[t-1,] +

(.25*nbrwtlist[[1]]

) %*% sim[t-2,] +

( - 3*nbrwtlist[[2]]) %*% epsi[t-1,] +
0.6*nbrwtlist[[1]]%*% x[t-1,] + epsi]t, ]

H
y =sim[101:200,]
x=x[101:200,]

#Fit starmax model

ar_nonZeroMx <- matrix(c(1,1,1,0), 2, 2)
non-zero parameters

ma_nonZeroMx <- matrix(c(0,1), 1, 2)
beta nonZeroMx = matrix(c(0,1), 2, 1)

# phi indicator matrix with 1 indicating the

# theta indicator matrix
# beta indicator matrix

model fit <- starimax(datalist=list(y,x), wlist=nbrwtlist,
paramatlist=list(ar=ar_nonZeroMx, ma=ma_nonZeroMx, beta=beta_nonZeroMx))

7.3 Estimated model parameters
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> model fit¢$paragpara est > model fit$paraspara_sd > model fit$paragpara_tvalue

$ar $ar $ar

[)1] [)2] [’1] [’2] [11] [)2]
[1,] 0.3625931 0.2790931 [1,] 0.02411159 ©.05785846 [1,] 15.03812 4.823722
[2,] ©.2461651 ©.0000000 [2,] 0.02411603 0.00000000 [2,] 10.20753 0.000000

$ma $ma $ma

[,1] I 211 [,1] [52] B )21
[1,] 0 -0.2776523 [1.] 9 0.0790457 (1,1 © -3.512555
$beta $beta $beta

;1] s [,1]
[1,] ©.0000000 [1,] ©.00000000 [1,] ©.0000
[2,] 0.5981624 [2,] ©.03563758 [2,] 16.7846
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