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1. Abstract

A method for handling small sample cases using a variation of stratified k-folds cross-
validation is presented. The key difference between traditional stratified k-folds cross-
validation and the sampling approach presented here is over representing the smaller strata.
Further, the specific cases to utilize the new approach is when stratified k-folds cross-
validation cannot be used. An intuitive explanation is provided alongside simulations using
synthetic data and the famous Fisher or Anderson iris dataset.

2. Introduction

Cross-validation (CV) has become an integral part of many fields such as statistics,
machine learning, and artificial intelligence. CV’s roots can be traced back to Mosteller
and Wallce [14]. However, the first true definition of cross-validation seems to have been
provided by Mosteller and Tukey [13]. Stone provided an overall summary of cross-
validation at the time[16]. Breiman and Spector and Kohavi showcased the power and
efficiency of k-folds cross validation during their simulations to be used in more modern
applications[2, 11]. Kohavi continues on to mention that stratified k-folds cross validation
may achieve better results in regards to the bias and variance of the estimators [11].

2.1 Recent Work

Others are working on variations of CV that are tailored to specific types of modeling prob-
lems. For instance, work has already been done on a CV algorithm that is tailored for
network analysis [3]. Others have developed a modeling averaging approach utilizing k-
folds CV [10]. Some have investigated the relationship between CV and tuning parameters
[5]. Investigations have also been conducted on studying heterogeneity and the ensembling
of data sets using Bayesian methods [18]. STORKC is very general and can be applied in a
variety of settings. STORKC can be thought of as a practical substitution for stratified CV
when it is not feasible to utilize.

2.2 Outlined Approach

There are many variations of CV [8]. However, a critical assumption for stratified CV is
that the data is sufficiently large to support such a schema that requires stratification. It
is desired to develop an approach that can handle smaller samples of specific cases. Mur-
phy has already shown on data that some of these small sample scenarios can render CV
unhelpful[15]. An approach that can handle some of these scenarios will be referenced
as stratified over-representative k-folds cross-validation, also known as STORKC (which
is pronounced like the bird, ’Stork’). Further, the simulations will show that traditional
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non-stratified k-folds CV will fail to provide prediction error values at a consistent level
regardless of the amount of noise in the data. This points to the need for a more robust
sampling method that is more resistant the composition of the data.

The outline for the paper is as follows: the definition of terms, the intuition and simple
examples, the formal setup, simulations on synthetic data and the runs on the Fisher or An-
derson iris data set from base R using simple linear regression, discussion and conclusion.

3. Background

3.1 Defining Terms

Before the main idea is discussed in detail, it is desired to define some basic termi-
nology. Different communities define the same words to mean different things, or merely
swap around definitions and words. Thus, for the sake of absolute clarity, three terms will
be defined and used in this paper as follows:

• Validation Data = Data never used to create the model, but used to check the model’s
performance.

• Training Data = Data used to create the model, but not used to check the model’s
performance.

• Testing Data = Data not used to create the model, but used to check the model’s
performance.

Note that the training and testing data can be interchanged or varied. An example of this
occurs during k-folds CV. The totality of the training and testing data will be referred to as
T , or the ‘T-set’.

3.2 Intuition for STORKC

The problem that STORKC attempts to solve is the following: assume you have an ad-
equately size data set composed of two subpopulations to perform k-folds CV for a given
k. Such a setup implies that stratified CV would be the optimal choice [11]. Presume, how-
ever, that one of the subpopulations is grossly larger than the other to the point where the
proportions cannot be made for a given number of folds. Under this circumstance, stratified
cross-validation cannot be utilized.

Recall that stratified CV calls for the k-folds to preserve the proportions of the subpop-
ulations in the T [11]. For example, if the T had 96 from subpopulation one and 4 from
subpopulation two, then the k-folds must have 0.96 of each fold to be from subpopula-
tion one and 0.04 from subpopulation two. In the case of k=10, stratified CV cannot be
achieved. Note that each of the folds will have 10 observations. If there is one observation
from subpopulation two, then the proportion for subpopulation two in that given fold will
be 1

10 = 0.10 which is greater than 0.04. On the other hand, if there is zero from subpopu-
lation two, then the given fold will have a corresponding proportion of 0 which is less than
0.04. Thusly, stratified cross validation cannot be utilized.

What is proposed instead is to over-represent the smaller subpopulation. In essence, we
ensure that in every fold of the T , the proportion of observations from the smaller subpop-
ulation is larger than what stratified CV demands. For instance, in the previous example
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explained above, the proportion from subpopulation two would be 0.10, which implies that
the number of observations from subpopulation two is 1. This implies that subpopulation
one would contain the remaining proportion. Note that this approach can be applied in
cases where the number of subpopulatoins is greater than 2. We would simply continue to
round up in the proportions for each subpopulation until the smaller strata have at least one
observation in each fold. This requires that the number of subpopulations is less than the
sample size in each fold.

This schema requires careful consideration in how the smaller subpopulation obser-
vations are sampled. Most importantly, should the algorithm sample with or without re-
placement for the smaller subpopulation? For example, in Efron’s paper on the bootstrap,
he sampled with replacement [4]. There he treated the observed data as the best estimate
of the distribution of the population’s distribution. Thus, each observation has a unique
chance of being pulled 1

N , where N is the total sample size. Further, one will be pulling
observations for a large number of times from the data. This provides some nice sound
statistical properties.

However, the problem proposed has a very important difference. Here, there are only a
few observations and only a few pulls. For instance, in the previously constructed example,
we only have four observations from subpopulation two and only 10 folds. Thus, the data
to represent the population is only of size 4 and we will only have 4 runs. This does not
allow for a large sample properties and theoretical implications to come into effect. Fur-
ther, the sample size of 4 may in fact look very different from the actual true subpopulation.

Due to these complications, the following sampling schema is proposed: for the larger
subpopulation, assign observations from T as normal. For the smaller subpopulation, ran-
domly pull without replacement. If it is the case the smaller subpopulation sample size,
n2, is smaller than k, then replace all of n2, when all have been assigned to different folds,
and repeat the sampling without replacement. Continue this process until every fold has
the specified number of observations. In a way, one can think of STORKC as a variation of
CV utilizing a combination of sampling with and without replacement for the creation of
the k-folds.

For instance, if n2 = 4 and the observations are labeled A,B,C,D, a possible ordering
of the observations for 10-folds is:

D,B,A,C,C,B,A,D,B,A

where the first D belongs to the first fold, the first B belongs to the second fold and so
on.

Why perform this more complicated sampling schema? Since there are so few obser-
vations with a high chance of being noisy imperfect data, each observation will provide a
different kind of insight about what the true smaller subpopulation behaves. Thus, each
model will account for a different ”scenario” of the smaller subpopulation. When all k
models are created, those models will be better able to handle those cases from the smaller
subpopulation than those models never trained on them on the first place. Thus, ensuring
that all observations are represented as equally as possible is important.

Figure 1 showcases a toy example of 10 simulated data points. The red and blue lines
are two simple linear regression lines of best fit. The red (or gray) line accounts for only the
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Figure 1: 10 simulated observations where X is the independent variable and Y is the
dependent variable. The red (or gray) and blue (or dark gray) lines are two simple linear
regression lines of best fit. The red line accounts for only the red points while the blue line
accounts for the red and blue points. One can think of the red dots as observations from
subpopulation 1 and the blue dot as an observation from subpopulation 2.

red points while the blue (or dark gray) line accounts for the red and blue points. STORKC
is intended to create lines similar to the blue line while k-fold CV will most likely create
lines like the red line. Thus, it is question of modeling intention. The modeler must decide
if the final model is meant to describe the typical observation from the population or all
observations from the population. While the red line accounts for the typical observation
better, the blue line will better predict the population more accurately.

Here is a practical example: suppose it is desired to model the lung capacity of runners
where Y = lung capacity and X = average pace in a 10 kilometers run. Presume that the
data collected looks similar to Figure 1. Suppose that the blue observation has asthma while
the red observation are non-asthmatic runners. Only considering simple linear regression
as a modeling technique, should the analyst jackknife the blue observation or not? If the
purpose of the analysis is to model the typical observation, then yes the analyst should.
However, if the purpose of the model is to describe the relationship of all runners, then the
modeler should not jackknife the blue runner. The approach is the same while considering
STORKC and traditional CV. One needs to verify the modeling intent is unified before de-
ciding on which method to use. Thus, careful considerations must be made in regards to
the choice of using traditional k-folds CV or STORKC.

Others have encountered different modeling situations were the need for a method like
STORKC could have been implemented. For example, work has been done one building
models to classify pill shapes [12]. However, some less common pill shapes, like hexagons
and octagons, have less observations from which to build a model. For instance, these
shapes were collected less than 10 times combined. This is dramatically smaller than the
979 round pills [12]. Thus, STORKC would provide a common methodology to build
models in these types of scenarios.
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3.3 Modeling Considerations

What has been said thus far has been primarily concerned with the case where the response
variable is some type of measure like amount of money made, a continuous random vari-
able, or number of complete boxes crushed, a discrete random variable. No considerations
have been made concerning classification problems such as cancer or no cancer. Special
care must also be made for these cases. However, STORKC can still be applied without
loss of generality. Furthermore, STORKC is applicable in a variety of different modeling
techniques such as SVM or neural networks.

3.4 Formal Setup

Let K = the number of roughly equal-sized parts from the T . During the kth trial, the re-
maining k − 1 parts will be utilized as the training set. The kth part will be utilized as the
testing set [8]. This is performed K times. We then combine the predictions to obtain the
prediction error [8].

Let f̂−k(x) = the fitted function, where the function is computed without the given
kth set (the training data). Let N = the total sample size of the T . Also let L() = the
loss function [8]. In this case, the residual sum of squares (RSS) will be utilized as the
loss function, but without loss of generality. Then, the cross-validation estimate of the
prediction error for the T is

CV (f̂) = 1

N

N

∑
i=1

L(yi, f̂−k(xi)) (1)

or when utilizing RSS, the following is obtained

RSS(f̂) = 1

N

N

∑
i=1

(yi − f̂−k(xi))2 (2)

Afterwards, the validation set for the CV prediction error, or RSS, is computed in a
similar fashion if applicable [8].

3.5 STORKC Formalization

STORKC has a similar setup. However, there are a few distinct differences. Let there
be p subpopulations where l is the largest. Here, we will consider p = 2, without loss
of generality. Let X1 represent the larger subpopulation. Let X2 represent the smaller
subpopulation. Let N1 and N2 be the total size of the first and second subpopulations,
respectively, where N = N1 +N2. Thus, when formulating the T , X1 will be partitioned in
the usual way. However, X2 will be allocated in such a way that at least one observation is
made in each of the k partitions. Otherwise, the number of times an observation appears in
each of the partitions should be as close the perfect stratified proportion as possible. This
simplifies to

STORKC(f̂) = 1

N
[
N1

∑
i=1

L(yi,1, f̂−k(xi,1)) +
N2

∑
l=1

L(yl,2, f̂−k(xl,2))] (3)
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or when utilizing RSS, the following is obtained

RSSSTORKC(f̂) = 1

N
[
N1

∑
i=1

(yi,1 − f̂−k(xi,1))2 +
N2

∑
l=1

(yl,2 − f̂−k(xl,2))2] (4)

X2 will be sampled without replacement until all of the observations from X2 are uti-
lized. What is possible is there may not be enough observations from subpopulation X2 to
allocate to all the different K partitions. In this case, once all of the observations from X2

have been partitioned, repartition the observations from the X2 until all the K folds have
been created. Note that this may in turn have that not all the observations from X1 utilized.

4. Evaluation

4.1 Simulated Experiment 1

The simulated data will have 100 observations for the T and 100 observations for the
validation set. The T will be composed of 96 random observations from a N(100,1) and
4 random observations from a N(−1880,1). The number of folds, k, will be fixed to 10.
Thus, using traditional stratified cross-validation is unobtainable. STORKC will be utilized
instead where 9 observations will be from the first subpopulation and 1 observation from
the second subpopulation in each of the folds. The true relationship is defined to be a simple
linear regression relationship that is specifically

Y = 13X

This will be performed 10,000 per each of the different levels of noise, j, where

Y = 13X + ε

where ε is distributed as N(0, j2) and j ∈ {1,2, ...,10} is the standard deviation. Thus,
there will be a total of 100,000 simulations performed for tradition k-folds cross validation
and STORKC. At each of the m simulations, the RSS is recorded. Table 1 and Figure 2
shows the means of the RSS prediction error for the simulations. Table 2 and Figure 3
shows the variances of the RSS prediction error for the simulations alongside the expected
value for RSS. Base R was utilized to perform the simulations, and ggplot2 was used to
create the plots in conjunction with reshape, xtable, scales, and GGally.

4.2 Simulated Experiment 2

The second simulated data will be similar to the first. It will have 100 observations for
the T and will be composed of 96 random observations from a N(100,1) and 4 random
observations from a N(−1880,1). The number of folds, k, will be fixed to 10. Thus, using
traditional stratified cross-validation is unobtainable. STORKC will be utilized instead
where 9 observations will be from the first subpopulation and 1 observation from the second
subpopulation in each of the folds. The true relationship is defined to be a simple linear
regression relationship that is specifically

Y = 13X − 1000Z

where

Z = { 1 ; X ∈X2

0 ; else
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Figure 2: Figure summarizing Table 1 for the first experiment. Notice that traditional CV
is unstable as the noise level increases. However, STORKC remains constant at a fairly
predictable rate.

Figure 3: Figure summarizing Table 2 for the first experiment. Note that traditional CV’s
variance is chaotic and unpredictable while STORKC is fairly constant and consistent.
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Table 1: Table including the means rounded to 2 significant digits of the RSS prediction
errors of each of the 10,000 simulations at each of the 10 noise levels for the first experi-
ment. The means are reported for both the T sets for both traditional cross-validation (CV)
and STORKC. The exact expected value for RSS, E[RSS], is given in the last column.

Noise Level STORKC Traditional CV E[RSS]
1 1.31 × 1001 2.51 × 1002 9.8 × 101
2 4.44 × 1001 2.33 × 1002 3.92 × 102

3 9.62 × 1001 2.75 × 1002 8.82 × 102
4 1.69 × 1002 3.27 × 1002 1.568 × 103

5 2.63 × 1002 3.89 × 1002 2.450 × 103
6 3.79 × 1002 5.46 × 1002 3.528 × 103

7 5.12 × 1002 1.11 × 1003 4.802 × 103
8 6.69 × 1002 7.44 × 1002 6.272 × 103

9 8.50 × 1002 2.20 × 1003 7.938 × 103
10 1.05 × 1003 1.46 × 1003 9.800 × 103

Table 2: Table including the variances of the RSS prediction error of each of the 100,000
simulations at each of the noise levels for the first experiment. The variances are reported
for the testings sets for both traditional cross-validation (CV) and STORKC.

Noise Level STORKC Traditional CV
1 4.91 × 1000 9.65 × 1007
2 5.46 × 1001 2.50 × 1008

3 2.65 × 1002 2.62 × 1008
4 7.90 × 1002 2.15 × 1008

5 1.95 × 1003 1.39 × 1008
6 4.07 × 1003 1.62 × 1008

7 7.29 × 1003 1.50 × 1009
8 1.28 × 1004 6.51 × 1007

9 2.07 × 1004 3.00 × 1009
10 3.13 × 1004 7.40 × 1008

Thus, the observed model will be

Y = 13X − 1000Z + ε

However, we will have our estimated model be Y = 13X + ε. We run the model in this
manner as some of the folds will not be containing any observations from X2 in the tradi-
tional CV models. Thus, Z would not be able to be estimated in those cases. Thusly, Z is
removed from the model in this simulation.

The simulation will be performed 10,000 per each of the different levels of noise, j,
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where
Y = 13X + ε

where ε is distributed as N(0, j2) and j ∈ {1,2, ...,10} and is the standard deviation. Thus,
there will be a total of 100,000 simulations performed for tradition k-folds cross validation
and STORKC. At each of the m simulation, the RSS is recorded. Table 3 and Figure 4
shows the means of the RSS prediction error for the simulations. Table 4 and Figure 5
shows the variances of the RSS prediction error for the simulations alongside the expected
value for RSS.

Table 3: Table including the means rounded to 2 significant digits of the RSS prediction
errors of each of the 10,000 simulations at each of the 10 noise levels for the second exper-
iment. The means are reported for both the T sets for both traditional cross-validation (CV)
and STORKC. The exact expected value for RSS, E[RSS], is given in the last column.

Noise Level STORKC Traditional CV E[RSS]
1 1.31 × 1001 2.51 × 1002 9.8 × 101
2 4.44 × 1001 2.33 × 1002 3.92 × 102

3 9.62 × 1001 2.75 × 1002 8.82 × 102
4 1.69 × 1002 3.27 × 1002 1.568 × 103

5 2.63 × 1002 3.89 × 1002 2.450 × 103
6 3.79 × 1002 5.46 × 1002 3.528 × 103

7 5.12 × 1002 1.11 × 1003 4.802 × 103
8 6.69 × 1002 7.44 × 1002 6.272 × 103

9 8.50 × 1002 2.20 × 1003 7.938 × 103
10 1.05 × 1003 1.46 × 1003 9.800 × 103

Table 4: Table including the variances of the RSS prediction error of each of the 100,000
simulations at each of the noise levels for the second experiment. The variances are reported
for the testings sets for both traditional cross-validation (CV) and STORKC.

Noise Level STORKC Traditional CV
1 4.91 × 1000 9.65 × 1007
2 5.46 × 1001 2.50 × 1008

3 2.65 × 1002 2.62 × 1008
4 7.90 × 1002 2.15 × 1008

5 1.95 × 1003 1.39 × 1008
6 4.07 × 1003 1.62 × 1008

7 7.29 × 1003 1.50 × 1009
8 1.28 × 1004 6.51 × 1007

9 2.07 × 1004 3.00 × 1009
10 3.13 × 1004 7.40 × 1008
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Figure 4: Figure summarizing Table 3 for the second experiment. Notice that traditional
CV is unstable as the noise level increases. However, STORKC remains constant at a fairly
predictable rate.

Figure 5: Figure summarizing Table 4 for the second experiment. Note that traditional
CV’s variance is chaotic and unpredictable while STORKC is fairly constant and consistent.
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4.3 Experiment on the Iris Data

The famous Fisher Iris data set provided in base R was utilized to compare the two
methods [6]. A similar approach is utilized as the simulation setup. Simple linear regres-
sion was still utilized, where a subset of the virginica and setosa species were used. 25
observations from the setosa subpopulation and 5 observations from the virginica subpop-
ulation are utilized in the T . Only the petal width and petal length variables are used where

Petal Width = β0 + β1(Petal Length)

This is performed 10,000 times using k = 10 folds utilizing both traditional cross-validation
and STORKC. The only major difference between the iris data runs and the artificial data
simulations is that the runs are not done over different noise levels. Table 5 summarize the
results for the testing data sets.

Table 5: Table including the summary results for the RSS prediction error mean, variance,
and Q3 for the testing data sets.

RSS Prediction Error STORKC Testing Regular Testing
Mean 9.549 × 10−2 8.778 × 10−2

Variance 1.1791 × 10−3 1.203 × 10−3

5. Discussion

For the first experiment, Figures 2 and 3 show that traditional CV is more chaotic than
STORKC. While in many cases, the means of the Traditional CV RSS is closer to the ex-
pected values of the RSS, the variation of the actual values will greatly differ given the
composition of the data. However, STORKC will given a much more consistent and reli-
able estimate, despite being generally overly optimistic on the estimated value of the RSS.
However, the fact that a method utilizing some form of CV and providing an optimistic
value for the RSS is not a new phenomena [9]. Providing a method that in fact is more
consistent in the value it provides is worthwhile, which is what STORKC is able to achieve.

The second experiment shows similar results as the first. In short, STORKC is more sta-
ble and predictable than traditional CV. This applies to both situations simulated. The first
was the case of attempting to model the true model, and the second was the case of missing
one of the actual variables in the model. There are some cases where the two methods give
the same values. This is more likely to occur at lower noise levels. However, STORKC is
more does not provide any surprises or oddities. It is a much more stable method for as-
sessing model performance, which traditional k-folds CV is volatile in other circumstances.

The iris data experiment shows that the STORKC and traditional k-folds CV show
similar values. In this case, the analyst to utilize what they deem as the more appropriate
method. For instance, if the analyst is attempting to create a model that will be consistently
reproduced for the population, STORKC may be the better choice.

Some may argue that STORKC may overfit the model to the data. This may in fact
occur. However, it is still believed that given subpopulations may be known and desired
to be accounted for during the model building process in some fashion. The reasons for
this can vary by the different applications. For instance, a model may desire to classify pill
shapes, but simply foes not have enough observations for each subpopulation [12]. Without
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STORKC or some other method, models will be required to extrapolate needlessly. Thus,
while overfitting may be an inherent risk, STORKC allows for models to be built that would
otherwise be unable to be created.

6. Conclusion

There is promise that STORKC has the capacity to improve models more consistently.
While some of the theoretical properties have be investigated for k-folds CV, this is war-
ranted for STORKC [3, 19]. Additional investigations comparing leave on out cross vali-
dation may also be worthwhile.

Furthermore, this modeling technique favors the models built for the population, rather
the those models meant for the typical observation. However, even with noisy data, STORKC
performs consistently well under these conditions. Further investigations are needed to see
if other sampling variations based upon the spirit of k-folds CV show improvement.

Additionally, further investigations with more variables are warranted. The perfor-
mance of STORKC under these more complicated conditions is imperative to many real
life applications. Further, investigating the potential of STORKC to be utilized in con-
junction with the least absolute shrinkage and selection operator, the LASSO, and other
methods of variable selection like ridge regression are worthwhile investigations [1, 7, 17].
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