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Abstract
For the maximum likelihood estimator (MLE) to be unique, the parameter must be both identifiable
and estimable. A parameter is identifiable if there is a one-to-one correspondence between param-
eter values and density functions. A parameter is estimable if the likelihood function has a unique
mode. The method of data cloning has been proposed as a way to diagnose structural deficiencies—
such as non-identifiability and inestimability—in a model. In this paper, we discuss cases in which
the number of clones required to detect model deficiencies may be impractically large, and provide
guidelines for avoiding such cases.
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1. Introduction

The method of maximum likelihood is the most commonly used method for estimating pa-

rameters in statistical models. For the maximum likelihood estimator (MLE) to be unique,

the parameter must be both identifiable and estimable. There is some debate about how

one ought to define parameter identifiability in different contexts (for example, see ?, ?,

?). However, the most widely used definition is given in the statement of the classical reg-

ularity conditions (for a statement of these regularity conditions, see ? or ?). Given data

x = (x1, x2, ..., xn) with a likelihood L(θ|x), the model parameter θ is said to be identifi-

able if, for all θ2,θ1 ∈ Θ, L(θ2|x) = L(θ1|x) for almost all x implies that θ2 = θ1. Oth-

erwise, θ is non-identifiable. In the context of regularity conditions, the term “estimability”

used in ? is not standard. However, the concept being referred to is that the likelihood has

a unique global maximum. When the likelihood does not have a unique global maximum,

θ is said to be inestimable. Note that estimability can depend on the data.

For most models in applications, checking whether these conditions are satisfied is dif-

ficult to the point that such checks are rarely attempted (?). Data cloning, a technique

originally developed in ? to compute maximum likelihood estimates for linear mixed mod-

els and generalized linear mixed models, has been proposed as a way to check whether a

model has an inestimable parameter. In this paper, we seek to promote the effective use of

data cloning by discussing cases in which the number of clones required to detect multiple
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maxima in the likelihood function may be impractically large, and by providing guidelines

for avoiding such cases. In Section ??, we describe data cloning as a diagnostic tool, pro-

vide simple examples of multimodal likelihood functions (that arise from non-identifiable

or inestimable parameters), and discuss an application of data cloning to photovoltaic (PV)

performance modeling. The purpose of the discussion of PV performance modeling is to

provide a brief example of a robust application of data cloning. Then, in Section ?? and

Section ??, we describe situations where the data cloning procedure maps a multimodal

likelihood function onto a posterior distribution that is, for practical purposes, unimodal. In

such cases, inferences made about the uniqueness of the MLE that are based on properties

of the posterior distribution, such as those made through data cloning, can be misleading.

Our descriptions include practical guidelines for avoiding these issues.

2. Data Cloning as a Diagnostic Tool

Suppose that the observations x = (x1, x2, ..., xn) arise from a model f(x;θ), where

θ = (θ1, ..., θp) is a vector of model parameters. In ?, data cloning was proposed as a

way of finding MLEs for cases where f(x;θ) is intractable, including cases of general

hierarchical models for which maximum likelihood estimation requires high-dimensional

integration. To implement data cloning for the purpose of calculating MLEs, one develops

a Bayesian model for the problem at hand and uses Markov chain Monte Carlo (MCMC)

to compute MLEs or diagnose model inadequacies. We note that, although data cloning

uses Bayesian tools, such as Bayes’ Theorem and MCMC, it is not necessarily a “Bayesian

method”; rather, it uses Bayesian computational tools to provide frequentist inferences, i.e.,

MLEs and their standard errors. Consequently, data cloning does not require any adherence

to the assumptions of Bayesian inference (e.g., a Bayesian interpretation of probability or

the modeling of parameters as random variables).

We can cast data cloning as a thought experiment: suppose that, by coincidence, one

observed k independent identical samples of size n:

xnk
= (x1, ..., xn, ..., x1, ..., xn)︸ ︷︷ ︸

k independent repeats

.

The resulting likelihood function would beLk(θ|xnk
) = [L(θ|x)]k. To construct a Bayesian

model, we let π(θ) be any proper prior density for θ. The kth posterior distribution is de-

fined, up to a constant of proportionality, as

πk(θ|x) ∝ Lk(θ|xnk
)π(θ).
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Properties of the kth posterior distribution are informative about MLE theory and potential

model inadequacies. For sufficiently large k, πk(θ|x) is nearly degenerate around θ̂ML

with covariance matrix approximately equal to
1

k
I(θ̂ML)−1, where I(θ̂ML) is the Fisher

information matrix evaluated at θ̂ML, and is defined as

I(θ̂ML) = E
[
− ∂2

∂θ2
log(L(θ|x))

]∣∣∣∣
θ=θ̂ML

(?). So, to calculate MLEs for θ, one can choose a sufficiently large value for k (some

guidelines are given in ?); the value for which the posterior is degenerate around is the

MLE. Further, standard errors for the MLE can be calculated using
1

k
I(θ̂ML)−1.

The data cloning procedure also provides a way to assess whether the MLE is unique

(?). If the variance of the kth marginal posterior πk(θi|x) does not converge to zero, then

θi is inestimable. Further as k gets large, πk(θi|x) converges to a truncated prior distribu-

tion, truncated over the space of MLEs. These results suggest that, in addition to providing

MLEs, data cloning can also be used as a diagnostic tool for assessing parameter inestima-

bility.

2.1 Clarifications on identifiability and estimability

Here, we provide several examples to help clarify the definitions for identifiability and

estimability given in Section ??. Data cloning makes direct claims about estimability and

not necessarily identifiability; however, if the goal of the practitioner is to find evidence

that the likelihood in question has multiple maxima—which can occur because of non-

identifiability or inestimability—then data cloning is a useful tool and the distinction is of

less importance. For each of the following examples, we let i ∈ {1, 2, ..., n}.

1. Let Xi ∼ N(θ, 1). The unknown parameter θ is both identifiable and estimable.

2. Let Xi ∼ U(θ, θ + 1). The unknown parameter θ is identifiable. However, θ is

inestimable because any value in the interval
[

max{x}−1,min{x}
]

maximizes the

model’s likelihood function.

3. Let Yi ∼ N(θ1θ2, 1). Neither θ1 nor θ2 is identifiable or estimable; however, the

product θ1 θ2 is both identifiable and estimable.

4. Let Xi ∼ N(|θ|, 1). The unknown parameter θ is not identifiable because for θ1 =

−θ2, L(θ2, σ
2|x) = L(θ1, σ

2|x). θ is inestimable because both θ̂ML and −θ̂ML

maximize the likelihood function.
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Models with a non-identifiable parameter admit multiple values for that parameter that

explain the data equally well. Without independent a priori knowledge about the problem

under investigation, there is no way of knowing which value of the parameter actually gen-

erated the data. Attempting to estimate an inestimable model parameter may yield disagree-

ments between different optimization methods using the same data. Non-identifiability and

inestimability may have important practical and philosophical implications.

2.2 Data cloning—a robust application

Data cloning has been used as a diagnostic tool in a number of robust applications. To illus-

trate the fact that data cloning can provide evidence of multimodal likelihoods in complex

models, we present an application in modeling the performance of a photovoltaic (PV)

device, which converts solar energy into electricity. For other examples of data cloning

applications, see ?, ?, and ?.

One method for determining the performance of a PV device is to measure current (I),

voltage (V ), and operating conditions temperature (T ), and “effective” irradiance (E), and

use these measurements in a model to estimate important performance parameters. These

parameters include a device’s short circuit current (ISC), diode reverse saturation current

(IS), ideality factor (n), series resistance (RS), parallel resistance (RP), open circuit voltage

(VOC), and maximum power output (Pmax). These parameters have physical importance.

For example, ISC represents the largest current that can be drawn from the PV cell. For

a large number of PV devices, the single-diode model describes the relationship between

the measured data (I , V , E) and parameters, and is thought to strike a good compromise

between accuracy and simplicity for modeling PV performance (?). The authors of ? and

? show that for parameter estimation purposes, at a fixed temperature of T = T0 = 25◦C,

and for values of E near 1000 W/m2, the nonlinear and implicitly defined single-diode PV

performance model can be expressed asE = gE(I, V ;θ) where θ = (ISC, IS, n,RS, RP) is

a vector of parameters to be estimated from measurements of I , V , and E. The parameters

VOC and Pmax are functions of θ.

Under the (often reasonable) assumption that measurements of I and V contain negli-

gible error, and that the measurement error in E is log-normal, we get that, for N measure-

ments and i ∈ {1, ..., N}, the observable Ei is modeled by the random variable

Ei ∼ lognormal
(

log(gE(Ii, Vi;θ)), σ2E

)
.

The parameter θ may be estimated by maximum likelihood, but given the complexity

of gE , it is unclear whether the likelihood has a unique maximum. Data cloning has been
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Figure 1: The variance of the marginal posterior distribution for θ and the corresponding

key performance parameters PMAX = PMAX(θ) and VOC = VOC(θ).

used to understand this problem.

For several synthetically generated datasets—i.e., data generated using pre-determined

values of θ from different regions of the parameter space—data cloning was performed for

diagnostic purposes (for more details on the generation of the synthetic datasets and im-

plementation of data cloning, see ?). It was shown that, in some regions of the parameter

space—specifically, for some values of RP—there is evidence that likelihood function has

multiple maxima. Figure 1 shows the standardized variance of the marginal posterior dis-

tribution for θ and the corresponding key performance parameters PMAX = PMAX(θ) and

VOC = VOC(θ). The variance of πk(RP|E) does not decay at rate 1/k, providing evidence

that the likelihood function has multiple maxima.

3. Choosing a Prior for Detecting Inestimability

In principle, any proper prior can be used to detect multiple maxima, because the variance

of the posterior distribution will not converge to 0 when the likelihood has multiple maxima.

In practice, however, if the prior mass around one maximum is considerably larger than the

masses around the others, the number of clones required to detect lack of convergence of

the posterior variance may be impractically large.

To see this, let X1, ..., Xn be jointly distributed with likelihood function L(θ |x) of a

single parameter θ. Assume there are two equal maxima, at at m1 and m2. Let π(θ) be any

continuous prior. For a large number k of clones, the posterior distribution will be approx-

imately equal to a mixture of distributions with means m1 and m2, and variances σ21/nk
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and σ21/nk for constants σ1 and σ2. The weights on the two distributions are proportional

to π(m1) and π(m2). Let p = π(m1)/[π(m1) + π(m2)]. The variance of the posterior

distribution is approximated by

V (θ |x(k)) =
pσ21
nk

+
(1− p)σ22

nk
+ p(1− p)(m1 −m2)

2. (1)

By analogy with analysis of variance, we may refer to the the sum of the first two terms

as the within groups variance and the last term as the between groups variance. As k →∞,

the posterior variance converges to the between groups variance, rather than 0. If the ratio

π(m1)/π(m2) is very large or very small, the between groups variance may be for practical

purposes indistinguishable from 0.

For a specific example, let X1, ..., Xn be i.i.d. N(|θ|, 1), and assume we observe X̄ =

4. This model is clearly nonidentifiable, because the distributions specified by θ and −θ

are the same. The likelihood has equal maxima at ±4. Figure 2 presents the likelihood

function for n = 10. Now consider the prior π(θ) = N(5, 1). The prior masses at the

maxima are π(4) = e−1/2/
√

2π and π(−4) = e−81/2/
√

2π. Figure 3 presents the posterior

distribution. The mode at −4 is undetectable.
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For a reasonably large number k of clones, the posterior variance is well approximated

by

V (k) =
1

nk
+ 2.7× 10−16.

The authors of ? suggest plotting V (k)/V (1) against k and comparing it with a plot of 1/k

to detect inestimability. Figure 4 presents such a plot. The curves are indistinguishable.

This problem can be avoided in any of several ways. One can use a uniform prior over

a region that one feels is certain to contain all maxima of the likelihood function. Another

possibility is to use a diffuse normal prior. Finally, as suggested by ?, one may repeat the

process with several priors concentrated on different regions of the parameter space. We

present results for the previous example, with the N(5, 1) prior replaced with a uniform
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prior on (−1000, 1000). The posterior variance is now approximately equal to 1/nk + 16.

Figure 5 presents the plot of V (k)/V (1) superimposed on a plot of 1/k, for n = 10. Fail-

ure of the posterior variance to converge to 0 is clear.
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4. Choosing an MCMC Algorithm for Detecting Inestimability

In most applications of data cloning, the kth posterior distribution is estimated using Monte

Carlo Markov Chains (MCMC). In some cases, the tuning of the MCMC algorithm affects

the data cloning diagnostic results. One of the most common MCMC algorithms used

to estimate a posterior distribution, π(θ|x), is the Metropolis-Hastings (MH) algorithm.

MH produces a Markov chain whose stationary distribution is the desired (target) posterior

distribution by the following algorithm:

1. set t = 1 and choose an initial state of the chain, θ(0) ;

2. randomly choose a new state of the chain, θ∗, from a proposal distribution, q(θ∗|θ(t−1));

3. calculate the acceptance probability

α = min

{
1,

π(θ∗|x)q(θ(t−1)|θ∗)
π(θ(t−1)|x)q(θ∗|θ(t−1))

}
;

4. draw u ∼ U(0, 1);

5. if u ≤ α, then set θ(t) = θ∗; otherwise, set θ(t) = θ(t−1);

6. set t = t+ 1 and repeat steps 2–6 until t = T .
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If T is large enough, the resulting chain, after some “burn in” period, say, θ(s),θ(s+1), ...,θ(T ),

will be a sample from the posterior distribution.

To gain some intuition about MH, suppose that the proposal distribution is symmetric

around the value of a parameter (e.g., normal). Then, q(θ(t−1)|θ∗) = q(θ∗|θ(t−1)) and

α = min

{
1,

π(θ∗|x)

π(θ(t−1)|x)

}
.

If π(θ∗|x) ≥ π(θ(t−1)|x), then α = 1 and the proposed step is accepted as part of the

chain. If π(θ∗|x) < π(θ(t−1)|x) then 0 ≤ α < 1 and the proposed step is accepted

sometimes and rejected others; this ensures that the full density can be explored.

MH requires that one choose the initial state of the chain, θ(0), and that one “tune” the

proposal distribution such that the chain converges to the posterior in a reasonable amount

of time. If the proposal distribution is normal, then tuning amounts to choosing a reasonable

proposal variance-covariance matrix. If the proposal variance is set too large or small, the

Markov chain will not converge to the posterior in a reasonable amount of time.

In practice, especially in high-dimensional problems, tuning the MH algorithm can be

difficult. In particular, for certain multimodal target distributions and certain tunings of

MH, the number of simulations needed for MH to discover multiple modes of πk(θ|x)

may be impractically large. If, for each clone k, the Markov chain produced by MH only

detects one mode of πk(θ|x), the data cloning procedure would incorrectly conclude that

the likelihood is unimodal.
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For a specific example, consider again X1, ..., Xn i.i.d. from N(|θ|, 1), and assume we

observe X̄ = 4. Now consider the prior π(θ) = N(0, 5) and proposal variance 1. Figure 6

presents the true posterior distribution and histogram from the MH simulations for k = 1

and k = 40. Note that only one peak is explored by the Markov chain. Figure 7 presents

the plot of the standardized variance of πk(θ|x) and the curve 1/k against k. The curves

are indistinguishable.
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To fix this issue, one can choose the proposal variance in a way that sufficiently explores

the target posterior distribution. To sufficiently explore a multimodal posterior distribution,

such as the one from the example in the previous paragraph, the proposal variance should

be large enough to make jumps between modes. When adjusting the proposal variance of

5 in this example, we see that data cloning does detect both modes, as in Figure 8. In this

case, data cloning correctly diagnoses multimodality (as seen in the variance plot in Figure

9).
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Another set of commonly used MCMC algorithms adapt the proposal variance-covariance

matrix at certain steps in the chain. One such algorithm, adaptive metropolis (AM), is an

attempt to optimize the rate of convergence of MH to the target posterior distribution by

adapting the variance-covariance matrix of the proposal distribution based on the history of

the chain. At step t of the chain, the normal proposal distribution is set so its mean is the

current position of the chain, θ(t), and its covariance is set to be

C(t) = sdCov(θ0, θ1, ..., θt−1) + sdεId,

where sd is a parameter that depends on the dimension of the state space1, Id is the d-

dimensional identity matrix, and ε > 0 is a constant chosen to be very small (ε ensures

that Ct does not become singular). Although the AM modification of MH can be helpful in

tuning MH, adaptations of MH are often not well-equipped to explore multimodal posterior

distributions. The authors of ? claim that

the use of a multivariate normal proposal distribution with covariance ma-

trix adaptation works well for Gaussian-shaped target distributions, but can-

not sample adequately multimodal distributions with long tails...it is relatively

easy for a single chain to become stuck in a local mode and common diag-

nostics would not detect that the chain has not explored adequately the full

posterior model.

As with MH, we recommend that practitioners use a large initial proposal variance-

covariance for AM or similar adaptive algorithms. Large, of course, depends on the given
1the authors of ? show that sd = 2.42/d is often optimal.
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application. Thus, we also recommend normalizing the parameter space before implement-

ing data cloning—e.g., performing a transformation so that each parameter lies in the in-

terval [−1, 1]. Further, we note that some MCMC algorithms are well-suited to estimating

multimodal posterior distributions. For example, the Differential Evolution Markov Chain

(DREAM) algorithm has been shown to perform well for Bayesian inference problems

where the posterior distribution is multimodal.

5. Concluding Remarks

The method of data cloning can be a useful tool for calculating MLEs and diagnosing

certain model inadequacies. In this paper, we have shown that data cloning can be a useful

diagnostic tool for detecting whether a likelihood function has more than one maximum,

but because of practical constraints on implementation, in some cases data cloning can

lead practitioners astray. In particular, certain prior distributions and MCMC algorithms

map a multimodal likelihood to a posterior distribution that is, for all practical purposes,

unimodal. In such cases, inferences made about the uniqueness of the MLE that are based

on properties of the posterior distribution, such as those made through data cloning, can be

misleading.

Because there are cases in which data cloning may yield misleading results, we recom-

mend that practitioners think carefully about their choice of priors and MCMC algorithm.

In particular, priors with large variances centered at values near an MLE will work best.

Further, with respect to the choice of MCMC algorithm, we recommend using a larger pro-

posal variance for MH, or a larger initial proposal variance for adaptive methods. Large,

of course, depends on the given application, and so we also recommend normalizing the

parameter space before implementing data cloning

Finally, we also suggest being cautious with the language used in describing the results

of data cloning. As our methodological investigations in Section ?? and Section ?? indicate,

the conclusions based on data cloning may be mistaken. So, we suggest the following:

1. Degeneracy of the kth posterior distribution in the data cloning procedure does not

entail that the model in question has estimable (or identifiable) parameters. Follow-

ing the language of hypothesis testing, we suggest that, in the case of degeneracy,

the proper conclusion is that there is “no evidence of inestimability” of the model

parameter in question.

2. Similarly, non-degeneracy of the kth posterior distribution in the data cloning proce-

dure does not entail that the model in question has inestimable (or non-identifiable)
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parameters. It only provides evidence of inestimability.
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