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Abstract 

One of the most critical aspects of oil/gas pipeline operation is the ability to assess portions 
of the lines that are higher risk. Doing this on a continual and timely basis is paramount. 
The challenges are many. Recent media discussion has focused on evolving data analytics; 
however, the application of long established statistical process control techniques provides 
a solid defensible visual identification of areas of potential concern. 
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1. Introduction 

 

Risk assessment of a company’s pipelines is commonly done on dynamic segments. A 
change in any of the chosen segmentation variables (e.g., pipe coating type; in-line 
inspection tool anomaly call, high consequence area) causes a new dynamic segment to be 
created for modeling purposes. The intent is to have portions of the line that should respond 
uniformly to pipeline threats and to be in the same consequence class in the case of product 
release. It is not unusual to end up with many thousands of such dynamic segments varying 
in length. The issue is how to easily and accurately identify the segments of potential 
concern. 
 
The primary objective of a pipeline risk assessment program is to identify and manage the 
portions of the lines that are higher risk. Trusted and efficient tools are needed to meet this 
objective. One of these tools is Statistical Process Control (SPC). 
 
SPC has been a mainstream tool in the automotive industry and general manufacturing. 
The visual tools are simple to apply resulting from work by Walter A. Shewhart in the 
1920s and published in the book Economic control of quality of manufactured product 
(Shewhart, 1931 [1]). The role SPC, as applied to pipelines, is to identify those dynamic 
segments that have higher predicted threats resulting from higher probabilities of failure, 
release of product consequence, or the resultant combination risk. 
 

2. The SPC Methodology 

 
While fluctuations occur both temporally and spatially, it is important to identify the real 
signals (e.g., significant high-risk areas) from the inherent variability exhibited by the 
majority of the data. Separation of common typical variability from those unusual rarer 
events is the result of SPC. Here events are based on predicted frequencies of failure and 
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resultant consequences for dynamic segments. For the current pipeline application, SPC is 
used to only identify segments on the high end (high expected failures or consequences). 
Such segments have a higher predicted frequency of failure (or expected loss/risk that 
combines frequency and cost) relative to the line in general. This can be done on a total 
system basis, on a specific line, across all failure modes, or focused on a specific failure 
mode such as external corrosion of the pipeline. 
 

 
 
Figure 1: Example of SPC chart to identify dynamic segments of potential concern 
 
A simple example is depicted in Figure 1 with hypothetical frequency of failure data for 
ten dynamic segments. Figure 1 provides the average X̅  frequency of failure for the 
hypothetical dynamic segments as well as the upper control limit (UCL). The mathematical 
steps to compute the average line and the upper control limit (often called the three-sigma 
limit) are given below. In Figure 1 the 4th dynamic segment would be classified as a signal 
as mentioned in the prior paragraph having a high frequency of predicted failure compared 
to other dynamic segments. 
 
Some background on SPC will help put things in perspective. The most common SPC 
charts taught are based on taking around 4-5 samples at some specified time interval such 
as every 20 minutes from a production line. Each subgroup is measured for the quantity of 
interest (e.g., the amount of time to complete a transaction) and the range and average of 
the resulting subgroup values are computed and plotted over time on X̅ and Range (R) 
charts. Various criteria are applied in the steps to establish average, lower control limit 
(LCL), and upper control limit (UCL) for both charts. The control limits are typically plus 
and minus three standard deviations. These plots provide a way to separate common 
(typical) cause variation from special or assignable (unusual) cause variation. In most SPC 
analyses both the lower and upper limits are important whereas in pipeline risk 
management only the upper end is of importance. 
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For the application to pipelines, SPC is applied at the system level (e.g., all lines) as well 
as separately for individual pipelines. This allows the ability to isolate the impact of a 
common factor such as product type on a given line. It also provides a mechanism to 
examine between line characteristics such as a high flow versus low flow. In doing so it is 
possible to find the special cause variation high risk segments relative to other segments 
on that line.  
 
The SPC approach used is called I-MR charts or Individuals and Moving Range charts. 
Some call the Individuals chart an X chart where the X here represents a single value (one 
dynamic segment’s value for a particular metric); therefore I-MR is sometimes labelled 
XmR (for X and moving Range). Going back to the most commonly taught X̅ and R charts, 
one purpose of the R (range) chart is to estimate the within subgroup variability – such as 
the standard deviation. Estimation of standard deviations from a small number of samples 
(around 4-5) has stability problems and the use of the average range is common practice to 
quantify the within sample (within subgroup) standard deviation. For those used to analysis 
of variance (ANOVA) terminology, a within group variability is used to establish the 
bounds for the means or X̅ chart. When the number of samples per group is just 1 (pipeline 
case in which each dynamic segment stands on its own), it is not possible to compute a 
standard deviation. To address this aspect, a moving range using the adjacent values is used 
as explained below to quantify variability. Note that the moving aspect is only applied to 
the range. The estimated loss or frequency of failure is not averaged that represents the risk 
related value for each dynamic segment. Each dynamic segment stands on its own when 
plotted as frequency of failure or expected loss as an X value.  
 
The formulas that follow provide the basic aspects of both the Individuals and Moving 
Range charts (Breyfogle, 2003 [2]). They do not include the control limits for the Moving 
Range chart as these are not directly used in pipeline risk assessment but they can be found 
in Wheeler and Chambers (1992 [3]). There are n dynamic segments where n varies based 
on the given pipeline examined. Every dynamic segment has multiple threat frequencies 
and consequences for which SPC is applied individually on each. Each moving range MRi 
(i = 2, n) as shown in equation 1 is the difference between adjacent dynamic segments as 
xi −  xi−1 where xi, xi−1 are the threat frequency or expected loss for the given dynamic 
segment “i” and the prior dynamic segment “i-1”. Thus, xi is used for two purposes – once 
for threat frequency and once for expected loss. Expected loss is multiplication of a given 
threat frequency and the corresponding consequence cost of an incidence (leak, rupture) 
from that threat on a particular dynamic segment. Since there may be multiple releases 
from a given line the expected cost must factor in the estimated number of occurrences or 
frequency. When xi is used in equations 1-4 as an expected loss this multiplication has 
already been computed. From the notation, there are n-1 moving ranges since there is no 
MR1 as there is no 0th dynamic segment. MR̅̅̅̅̅ in equation 2 is the average of the moving 
ranges (MRi). x̅ in equation 3 is the average of all n of the dynamic segment xi. Since it is 
not an overall average of averages as would be the case for a typical X̅ plot in which each 
subgroup has multiple observations, it is common to use a lower case x̅ for the individuals 
mean. 
 

Moving Range Equations:  
 
1) MRi = |xi −  xi−1|, i = 2, n 

  
2)  MR̅̅̅̅̅ = 1

n−1
∑ MRi

n
i=2  
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The lower and upper three sigma individual chart control limits (LCL, UCL) are given in 
equation 4; similar two sigma control limits replace the 3 in the equation with 2. The 
parameter d2 (Duncan, 1965 [4]) in equation 4 is standard in SPC and has a value of 1.128 
(for subgroups of size 2) and is used to convert a range to an estimate of the standard 
deviation as a function of how many observations are used to compute the range (2 for this 
moving range). Typical SPC applications use 3 standard deviations; however, some add 2 
standard deviations for an early warning to address problems before they become more 
severe. In pipeline risk assessment, the focus from a SPC perspective is on those segments 
that exceed the upper control chart three sigma limit. 
 

Individual SPC Equations:  
 
3) x̅=1

n
∑ xi

n
1   

 
4) (LCL, UCL) =  x̅ ± 3

MR̅̅ ̅̅ ̅

d2
 

 
The moving ranges are used to estimate the variability and are converted to an estimate of 
the standard deviation, i.e., MR̅̅ ̅̅ ̅

d2
 is an estimate of the standard deviation. There are no 

moving averages for frequency of failure or expected loss. Thus, each dynamic segment is 
not averaged with an adjacent segment and stands on its own relative to its frequency of 
failure or expected loss. 
 
Figure 2 is a sample output from a risk assessment. In this application, a Moving Range 
chart is not created though the equations above are computed as they are needed in the 
Individuals (or x) chart. Two sets of means (averages) and control limits are shown. There 
are two upper control limits for each – in addition to the three-standard deviation limit there 
is a two-standard deviation limit. One set of results is based on the complete system 
(labeled ‘Global Expected Loss’ in the legend) or network. The other is based on just the 
given line (labeled ‘Pipeline Expected Loss’ in the legend) under assessment. The three-
standard deviation upper control limit has +3Sigma as part of the name in the legend. A 
two-standard deviation upper control limit (+2Sigma) is used to help differentiate dynamic 
segments that represent a second tier of segments for maintenance management planning. 
The segments falling above a given control limit have either higher relative frequencies of 
failure or higher relative expected cost. 
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FIGURE 2: Sample expected loss output – likely rename as well as replace above 
 
Providing both global and local (specific line) statistics helps management and engineers 
assess priorities. Figure 2 shows the engineer that many dynamic segments exceed the 3 
Sigma threshold (solid red line “Pipeline Expected Loss + 3Sigma”) for the given pipeline, 
but only one dynamic segment from this particular line is considered a high relative 
expected loss for the full pipeline system. 
 
This SPC based system has proven to be extremely effective in the identification of 
segments that have significantly higher expected frequencies of failure as well as higher 
relative expected loss. This allows management to effectively plan maintenance budgets 
and prepare for audits. Additionally, the full system summarizes the frequencies of failure 
predictions along with the costs to comprehensively describe each line and the total system 
in addition to the use of SPC to highlight the areas of most immediate concern line by line 
and across the total system. 
 

3. Myths about Statistical Process Control 

 
Various myths about SPC have been addressed (Balestracci 2011 [5]; Wheeler and 
Chambers, 1992 [3]; Wheeler, 2010 [6]) with the major ones listed below. In this paper, 
only the first is examined in detail. The reader is referred to the references for in-depth 
explanations on the subsequent myths and their debunking. 

1. Data must be normally distributed.  
2. SPC works because of the central limit theorem.   
3. Data must be "in control" (within ±3σ) before implementing. 
4. Three standard deviation limits are too conservative.   
5. Data must be independent, i.e., auto-correlated data will not work. 

The top myth that the data must follow the normal distribution is the most common of the 
five above myths and the key one to be dispelled. This first myth ties closely with the 
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second myth concerning the central limit theorem in which the sampling distribution of 
averages of data are well known to generally follow a normal distribution. Figure 3 is a 
normal distribution with +/- 1, 2, and 3 standard deviations marked and is discussed in 
more detail below. 
 

 
Figure 3: Plot of normal distribution with markings at +/- 1, 2, and 3 standard deviations 
 
It can by shown that the SPC methodology can be applied when data is not normally 
distributed by comparing the normal distribution percentages based on the standard 
deviation vertical lines in Figure 3 to a wide range of distributions. An assessment of how 
the proportions in the ranges about the mean µ of ±1σ, ±2σ, and ±3σ (σ is the standard 
deviation or sigma) differ across the distributions is given in Table 1 (based on Figures   4-
4 through 4-6 in Wheeler and Chambers [3].) 
 
A considerable variation for the six distributions being within ±1σ of the mean is seen in 
Table 1. However, the percentages are close to the normal distribution probabilities for 
both ±2σ and ±3σ standard deviations of the mean. This is especially so for ±3σ that is the 
basic foundation of most statistical process control charts. The risk based model focus is 
primarily on the +3σ line above the mean with a secondary early warning screening 
available at +2σ above the mean. 
 
Table 1: Percentages within a number of standard deviations about the mean 

 
 
 
 
 
 
 

Distribution ±1σ ±2σ ±3σ 
Uniform 57.7 100 100 
Right Triangular 62.9 96.2 100 
Normal 68.3 95.5 99.7 
Burr 72.6 95.2 99.1 
Chi-Square 73.8 95.3 98.6 
Exponential 86.5 95.0 98.2 
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Since the constants used in SPC are indeed based on the normal distribution (d2 as shown 
in the earlier I-MR formulas), many have felt the data must be normal to apply SPC. The 
above should address this concern. In essence practical implications on non-normality are 
minimal. In addition to the references at the start of this section, Burr (1976 [7]) examined 
this in detail for various statistical distributions. In Shewhart’s original (1931 [1]) book, he 
examined uniform distributions and right triangle distributions (both highly non-normal) 
as well as Chebyshev’s inequality. Thus, from a practical view point, this issue should no 
longer be a concern; however, many text books still mislead practitioners. The reader is 
urged to investigate the remaining SPC myths with the references provided. 
 

4. Marriage of SPC and Financial Return on Investments 

 
The identification of high risk dynamic segments is a key step in integrity management; 
however, the operation of the pipeline system must have sufficient financial return. This 
involves assessment of the economic value of the pipeline risk mitigation alternatives 
including accounting for the time value of money. Cash flows (positive and negative) using 
the organization minimum attractive rate of return aid management decisions on when and 
how to address enterprise risks. Blending the ability for identifying critical dynamic 
segments using SPC from a safety perspective with risk-informed economic analysis 
oprovides a path forward during good and poor financial times.  
 
Establishing a risk management system as further outlined in a related paper Alfano and 
Weichel (2016, [8]), utilizes this information allowing for a cost-effective safety and 
financial assessment of the enterprise. The resulting system can be used for both managing 
current assets and also for evaluating potential mergers and acquisitions. This allows an 
organization the opportunity to identify the potential additional aggregate risk which is 
transferred once they take ownership, and compare this to the potential financial return. 
 
Since early 2016 the industry continues to face tremendous financial pressures with the 
reduction in oil prices. The long-term organization survival requires economically sound 
integrity and investment management. A blend of a statistically SPC driven identification 
opportunities with solid well established economic evaluations will help both financial 
managers and engineers create a defensible organizational plan to address stakeholder 
concerns and those of the regulatory bodies. 
 

5. Summary 

 
By design, pipeline risk assessments are meant to be used to prioritize preventative and 
mitigative measures. In order to do this effectively, there needs to be a clear link between 
risk related results and the chosen controls. While this may sound simple, this process can 
be anything but trivial. The risk management process can often be complex, and it will vary 
based on company policies and systems.  
 
The use of statistical process control provides a sound way to identify the portions of the 
pipe that need more in-depth attention and possible replacement or repair. SPC is a long-
proven methodology and one that aids management and engineers in quickly and 
thoroughly assessing risk-based priorities. The graphical SPC plots provide an easy to 
understand assessment exhibiting either expected loss or frequency of failure for any or all 
failure modes for the dynamic segments of the line. Combining SPC and enterprise 
financial analysis aids the development of both short and long term sustainability of the 
organization. 
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