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Abstract
Panic spreads like a contagious disease among people in a crowd. Any individual closely exposed

to a panic source may express his (her) feelings, alerting others of imminent danger. The more
intense these feelings are, the more likely that a neighboring individual move to panic. Thus, a
“contagion probability” exists for the panic spreading. The contagion probability plays a major
role in the overall evacuation process. We examined the evacuation dynamics in the context of the
“Social Force Model”. Our investigation shows that two possible evacuation patterns may appear,
according to the contagion probability level. Both patterns are in agreement with real life recordings
from crowded events. We were able to determine the probability threshold for the occurrence of each
evacuation pattern. We further investigated how the panic spreading gradually stops if the source of
danger ceases.
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1. Introduction

Many authors called the attention on the fact that panic is a contagious phenomenon [1, 2, 3,
4]. Panic may spread over any simple “social group” if some kind of coupling mechanism
exists between agents [1]. This coupling mechanism corresponds to social communication
appearing in the group. As a consequence, the individuals (agents) may change their anxi-
ety state from relaxed to a panic one (and back again) [1].

Panic contagion over the crowd can be attained if the coupling mechanism between
individuals is strong enough and affects many neighboring pedestrians [1]. Research on
random lattices shows that the coupling stress becomes relevant whenever the number on
neighbors is small (i.e. less than four). That is, a small connectivity number between agents
(pedestrians) requires really moving gestures [1].

Recent investigation suggests that other psychological mechanisms than social com-
munication can play an important role during the panic spreading over the crowd [2, 3, 5].
Susceptibility appear as relevant attributes that control the panic propagation [2]. Conse-
quently, diseases contagion models are usually introduced when studying the panic spread-
ing. The Susceptible-Infected-Recovered-Susceptible (SIRS) model raises as a suitable
research tool for examining the panic dynamics. The spreading model is, therefore, repre-
sented as a system of first order equations [2, 5].

According to the SIRS model implemented in Ref. [2], a dramatic contagion of panic
can be expected in those crowded situations where the individuals are not able to calm
down quickly. However, these individuals may relax after some time due to “stress decay”
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(if no emotions of fear are received by the corresponding neighbors) [3, 4]. That is, there
is actually not a probability to switch from the anxious (infected) state to the relaxed (re-
covered) state as in the SIRS model, though a natural decay occurs along time. Thus, the
increase in the “inner stress” and the “stress decay” are actually the two main phenomena
attaining for the pedestrians behavior.

Our investigation focuses on a real life situation. Our aim is to develop a model for
describing a striking situation, where many individuals may suddenly switch to an anxious
state. We will focus on the video analysis in order to obtain reliable parameters from a real
panic-contagion events, and further test these parameters on computing simulations.

2. The Social Force Model context

The Social Force Model (SFM) exploits the idea that human motion depends on the peo-
ple’s own desire to reach a certain destination, as well as other environmental factors [6].
The former is modeled by a force called the “desire force”, while the latter is represented
by social forces and “granular forces”. These forces enter the motion equation as follows

mi
dv(i)

dt
= f

(i)
d +

N∑
j=1

f (ij)s +
N∑
j=1

f (ij)g (1)

where the i, j subscripts correspond to any two pedestrians in the crowd. v(i)(t) means the
current velocity of the pedestrian (i), while fd and fs correspond to the “desired force” and
the “social force”, respectively. fg is the friction or granular force.

The fd attains the pedestrians own desire to reach a specific target position at the desired
velocity vd. But, due to environmental factors (i.e. obstacles, visibility), he (she) actually
moves at the current velocity v(i)(t). Thus, the acceleration (or deceleration) required to
reach the desired velocity vd corresponds to the aforementioned “desire force” as follows
[7]

f
(i)
d (t) = mi

v
(i)
d e

(i)
d (t)− v(i)(t)

τ
(2)

where mi is the mass of the pedestrian i and τ represents the relaxation time needed to
reach the desired velocity. ed is the unit vector pointing to the target position. Detailed
values for mi and τ can be found in Refs. [7, 8].

Besides, the “social force” fs(t) represents the socio-psychological tendency of the
pedestrians to preserve their private sphere. The spatial preservation means that a repulsive
feeling exists between two neighboring pedestrians, or, between the pedestrian and the
walls [7, 6]. This repulsive feeling becomes stronger as people get closer to each other (or
to the walls). Thus, in the context of the social force model, this tendency is expressed as

f (ij)s = Ai e
(rij−dij)/Binij (3)

where (ij) corresponds to any two pedestrians, or to the pedestrian-wall interaction. Ai
and Bi are two fixed parameters (see Ref. [9]). The distance rij = ri + rj is the sum of the
pedestrians radius, while dij is the distance between the center of mass of the pedestrians
i and j. nij means the unit vector in the ~ji direction. For the case of repulsive feelings
with the walls, dij corresponds to the shortest distance between the pedestrian and the wall,
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while rij = ri [7, 6].

It is worth mentioning that the Eq. (3) is also valid if two pedestrians are in contact
(i.e. rij > dij), but its meaning is somehow different. In this case, fs represents a body
repulsion, as explained in Ref. [10].

The granular force fg included in Eq. (1) corresponds to the sliding friction between
pedestrians in contact, or, between pedestrians in contact with the walls. The expression
for this force is

f (ij)g = κ (rij − dij) Θ(rij − dij) ∆v(ij) · tij (4)

where κ is a fixed parameter. The function Θ(rij − dij) is zero when its argument is nega-
tive (that is, rij < dij) and equals unity for any other case (Heaviside function). ∆v(ij) ·tij
represents the difference between the tangential velocities of the sliding bodies (or between
the individual and the walls).

3. The inner stress model context

Complementary to the SFM, the “inner stress” stands for the cumulative emotions that the
pedestrian receives from his (her) neighbors. This magnitude may change the pedestrian’s
behavior from a relaxed state to panic, and consequently, we propose that his (her) desired
velocity vd increases as follows [4]

vd(t) = [1−M(t)] vmin
d +M(t) vmax

d (5)

forM(t) representing the “inner stress” as a function of time. The minimum desired veloc-
ity vmin

d corresponds to the (completely) relaxed state, while the maximum desired velocity
vmax
d corresponds to the (completely) panic state.

The inner stress M(t) in Eq. (5) is assumed to be bounded between zero and unity.
Vanishing values of M(t) mean that the pedestrian is relaxed, while values approaching
unity correspond to a very anxious pedestrian (i.e. panic state).

The emotions received from the pedestrian’s surrounding are responsible for the in-
crease in his (her) inner stress M(t). But, in the absence of stressful situations, some kind
of relaxation occurs (say, the “stress decay”), attaining a decrease in M(t). Following
Ref. [11], a first order differential equation for the time evolution of M(t) can be assumed

dM

dt
= −M

τM
+ P (6)

The differential ratio on the left of Eq. (6) expresses the change in the “inner stress” with
respect to time. Whenever the pedestrian receives alerting emotions from his (her) neigh-
bors (expresses by the contagion efficiency P), the “inner stress” is expected to increase.
But, if no alerting emotions are received, his (her) stress is expected to decay according to a
fixed relaxation time τM . Thus, the first term on the right of Eq. (6) handles the settle down
process towards the relaxed state. The second term on the right, on the contrary, increases
his (her) stress towards an anxious state.
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We assume that the parameter P attains the emotions received from alerting (anxious)
neighbors within a certain radius, called the contagion radius. As described in Appendix
A, if k pedestrians among n neighbors are expressing fear, then the actual value of P is

P = J

〈
k

n

〉
(7)

where the parameter J represents an effective contagion stress (see Appendix A for details).
This parameter resembles the pedestrian susceptibility to enter in panic. For simplicity we
further assume that this parameter is the same for all the pedestrians.

The symbol 〈·〉 represents the mean value for any short time interval (see Appendix
A for details). However, for practical reasons, we will replace this mean value with the
sample value k/n at each time-step.

3.1 The stress decay model

The pedestrian “stress decay” corresponds to the individual’s natural relaxation process in
the absence of stimuli (i.e. emotions), until he (she) settles to relaxed. This behavior is
mathematically expressed through the relaxation term in Eq. (6). Thus, in the absence of
stimuli (that is, vanishing values of P), it follows from Eq. (5) and Eq. (6) that

vd(t) = vmin
d + (vmax

d − vmin
d )M(0) e−t/τM (8)

for any fixed valueM(0) at t = 0, and a vanishing value ofM(t) long time after (t� τM ).
The characteristic time τ is different from τM . Ref. [12] suggests that τM ' 50 seconds.

The characteristic time τM may be different from the suggested value according to
specific environmental factors. Eq. (8) proposes the way to handle an estimation of τ
whenever the composure desired velocity vd(tc) is known (tc being the time required to
arrive to composure). Assuming M(0) = 1, it is straight forward that

τ−1M =
1

tc
ln

(
vmax
d − vmin

d

vd(tc)− vmin
d

)
(9)

We computed an experimental value for τM within the context of the panic spreading
analyzed in Section 4. According to Eq. (9) and setting vmin

d = 0 m/s, vmax
d = 4 m/s and

vd(tc) = 0.5 m/s (tc = 20 s), this value equals approximately 10 seconds.

4. The video analysis

On June 3rd 2017, many Juventus fans were watching the Champions League final between
Juventus and Real Madrid on huge screens at Piazza San Carlo. During the second half of
the match, a stampede occurred when one (or more) individuals shouted that there was a
bomb. More than 1000 individuals were injured during the stampede, although it was a
false alarm. Fig. 1 captures two moments of the panic spreading (see caption for details).
The arrow in Fig. 1b points to the individual that caused the panic spreading. He will be
called the fake bomber throughout this investigation.
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(a) Before panic. (b) Pedestrians in panic. (c) Panic spreading.

Figure 1: (Color on-line only) (a) Snapshot of the crowd watching the football match. The
screen is on the left (out of the scene). The pedestrians on the right are actually in fear due
to the fake bomber. The (b) snapshot corresponds to the same scene as (a) but shifted to the
right (actually, the camera appearing in this image is the one that captured the (a) image).
The fake bomber appears in the scene and is indicated with a green arrow. (c) Analysis of
the panic spreading among the crowd. The blue and orange profiles represent the relaxed
and anxious pedestrians, respectively, associated to the (a) image (see text for details). In
fact, in the (b) image we can observe (on the right of the image) the camera that captured
the (a) image. The total number of contour bodies is N = 131.

The recordings from Piazza San Carlo show how the pedestrians escape away from the
“panic source”, that is, from the fake bomber. It can be seen in Fig. 1b the opening around
the panic source a few seconds after the shout. The opening exhibits a circular pattern
around the fake bomber. This pattern gradually slows down as the pedestrians realize the
alarm being false. Approximately 20 seconds after the shout, the pedestrians calm down to
the relaxed state while the opening closes.

In order to quantify the panic contagion among the crowd, we split the video into 14
images. The frame rate was 2 frames per second. Thus, the time interval between succes-
sive images was 0.5 seconds. This time interval corresponds to the acceleration time τ in
the SFM.

Fig. 1c shows the profile corresponding to the first image. Any (distinguishable) pedes-
trian in Fig. 1a is outlined in Fig. 1c as a body contour. The contour colors represent relaxed
pedestrians (i.e. blue in the on-line version) or pedestrians in panic (i.e. orange in the on-
line version). The latter correspond to the individuals that suddenly changed their motion
pattern. That is, individuals that turned back to see what happened or pedestrians that were
pushed towards the screen (on the left) due to the movement of his (her) neighbors.

The panic spreading shown in Fig. 1c occurs from right to left, until nearly all the con-
tour bodies switch to the panic state (i.e. orange in the on-line version). Notice, however,
that a few pedestrians may remain relaxed for a while, even though his (her) neighbors
have already switched to the panic state. Or, on the contrary, pedestrians in panic may be
completely surrounded by relaxed pedestrians, as appearing on the left of Fig. 1c. Both
instances are in agreement with the hypothesis that pedestrians may switch to a panic state
according to an contagion efficiency P . See Appendix A for details on the P computation
within the contagion radius.

The inspection of successive images provides information on the new anxious or pan-
icking pedestrians and the state of their current neighbors. Appendix B summarizes this
information, while detailed values for the contagion efficiency P and the contagion stress
J are reported in Table 1. Notice that the data sampling is strongly limited by the total
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Figure 2: Snapshots of the initial configuration for the Turin (Italy) simulation. The relaxed
pedestrians are represented in green circles on both images. The fake bomber is represented
in black, while his first neighbors are represented in red (see text for details). The blue line
on the left represents the wide screen.

number of outlined pedestrians (that is, 131 individuals). Thus, the reported values for
t > 4 s are not really suitable as parameter estimates because of the finite size effects. In
order to minimize the size effects, we focused on the early stage of the contagion were the
contagion stress J seems to be (almost) stationary (see Fig. 5).

The (mean) contagion stress for the Turin incident was found to be J = 0.1 ± 0.055
(within the standard deviation). This value appears to be surprisingly low according to ex-
plored values in the literature (see Ref. [11]). However, we shall see in Section 6 that this
stress is enough to reproduce real life incidents.

5. Simulations

We mimicked the Turin incident (see Section 4) by first placing 925 pedestrians inside a
21 m × 21 m square region. The pedestrians were placed in a regular square arrangement,
meaning that the occupancy density was approximately 2 people/m2. After their desire
force was set (see below), the crowd was allowed to move freely until the pedestrian’s ve-
locity vanished. This balance situation can be seen in Fig. 2 and corresponds to the initial
configuration for the panic spreading simulation.

We assumed that the pedestrians are attracted to a wide screen on the left (blue line in
Fig. 4a) in order to have a better view of the football match. Thus, a (small) desire force
pointing towards the screen was included at the beginning of the simulation. This force
equaled mvd/τ for the standing still individuals (v(0) = 0), according to Eq. (2). We fur-
ther assumed that the pedestrians were in a relaxed state at the beginning of the simulation,
and therefore, we set vd = 0.5 m/s [9]. This value accomplished a local density that did not
exceed the maximum expected for outdoor events, say, 3-4 people/m2.
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The pedestrian in black in the middle of the crowd in Fig. 4a represents the fake bomber
appearing in the video. He is responsible for triggering the panic contagion at the begin-
ning of the simulations. For simplicity, we assumed that he remained still during the panic
spreading process.

Recall that the event takes place outdoor. Piazza San Carlo, however, is surrounded by
walls (as can be seen in Fig. 4). We considered along the simulations that the crowd always
remained inside the piazza and no other pedestrian were allowed to get inside during the
process.

The video that captures the panic spreading over the crowd let us classify the pedestri-
ans into those moving relaxed or those moving anxiously. These are qualitative categories
that can be easily recognized through the pedestrian’s behavioral patterns. An accurate
value for the inner stress M seems not to be possible from the videos. Thus, we assume
that the pedestrians may be in one of two possible states: relaxed or in panic. The former
means that his (her) desired velocity does not exceed a fix threshold vlimd , or Mlim, accord-
ing to Eq. (5). The latter means that the individual surpassed this threshold.

We already mentioned that the desired velocity vd = 0.5 m/s is in correspondence with
either accepted literature values for relaxed individuals and the expected local density for
approximately 900 individuals. Hence, we set vlimd = 0.5 m/s as a reasonable limit for the
pedestrian to be considered relaxed.

For simplicity, vmin
d and vmax

d (Eq. (5)) were set to zero and 4 m/s, respectively, in all
the simulations. The maximum velocity vmax

d = 4 m/s corresponds to reasonable anxiety
situations appearing in the literature [6, 8, 13, 14].

The panic contagion process was implemented as follows. First, we associated an ef-
fective contagion stress P(i) to each relaxed individual, according to Eq. (7). That is, we
computed the fraction of neighbors in the panic state k to the total number of neighbors n
within a fix contagion radius of 2 m (from the center of mass of the corresponding relaxed
pedestrian i). Second, we randomly switched the relaxed pedestrians to the panic state,
according to the associated effective contagion stress P(i). The P(i) values were updated
at each time step (say, 0.05 s).

Notice that this contagion process may be envisaged as a Susceptible-Infected-Susceptible
(SIS) process. The Susceptible-to-Infected transit corresponds to the (immediate) increase
of vd from 0.5 m/s to 4 m/s (with effective contagion stressP(i)). The Infected-to-Susceptible
transit corresponds to the stress decay from 4 m/s back to 0.5 m/s.

We want to remark the fact that the emotions received by an individual in the panic state
were neglected, and thus, did not affect the stress decay process. This should be considered
a first order approach to the panic contagion process.

The simulations were implemented on the LAMMPS molecular dynamics simulator
[15]. LAMMPS was set to run on multiple processors. The chosen time integration scheme
was the velocity Verlet algorithm with a time step of 10−4 s. Any other parameter was the
same as in previous works (see Refs. [13, 8]).
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Figure 3: Normalized number of anxious pedestrians during the first 20 s of the escaping
process as a function of the contagion stress J for ro = 2 m, 4 m and 6 m. N is the number of
anxious pedestrians. The plot is normalized with respect to the total number of individuals
(Nind = 925). J-values of 0.01 and 0.02 are indicated in red color (and squared symbols).
Mean values were computed from 60 realizations. The error bars corresponds to ±σ (one
standard deviation).

6. Results

As a first step, we measured the mean number of anxious pedestrians during the first 20 s of
the escaping process for a wide range of contagion stresses (J). This is shown in Fig. 3. As
can be seen, the number of anxious pedestrians increases for increasing contagion stresses.
That is, as pedestrians become more susceptible to the fear emotions from his (her) neigh-
bors, panic is allowed to spreads easily among the crowd.

The fraction of pedestrians that switch to the anxious state exhibits three qualitative
categories as shown in Fig. 3. For J ranging between 0 to 0.01, no significant spreading
appears. But this scenario changes rapidly for the J (intermediate) range between 0.01 and
0.03. The slope in Fig. 3 experiences a maximum throughout this interval. However, if the
stress becomes stronger (say, above 0.03), the majority enters into panic regardless of the
precise value of J . A seemingly threshold for this is around J = 0.04.

Notice that Fig. 3 is in agreement with the experimental Turin value for the mean con-
tagion stress (J = 0.100± 0.055, see Section 4). The panic situation at Piazza San Carlo,
as observed from the videos, shows that all the pedestrians moved to the panic state. The
snapshot in Fig. 1b illustrates the situation a while after the (fake) bomber called for atten-
tion.

The panic contagion shown in Fig. 3 does not appear to change significantly for in-
creasing contagion radii. We explored situations enclosing only first neighbors (2 m) to
situations enclosing as far as 6 m. The number of pedestrians in panic always attained a
maximum slope at almost the same J value for all the investigated situations. This value
(close to 0.025) seems to be an upper limit for any weak panic spreading situation, or the
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(a) J = 0.01 (b) J = 0.02 (c) J = 0.09

Figure 4: Snapshots of different escaping processes for three values of contagion stress
in the first 15 seconds. The different colors of the circles represents the anxiety state of
each pedestrian. Relaxed and panic pedestrians are represents in green and red circles,
respectively. The fake bomber is place at the center of the region and is represented in
black circle. Relaxed pedestrians desire to reach the screen located on the left (blue line).

lower limit for any widely spreading situation. We may hypothesize that two qualitative
regimes may occur for the panic propagation in the crowd.

Following the above working hypothesis, we turned to study any morphological pat-
terns for both regimes. Fig. 4 represents three possible situations after 15 s since the (fake)
bomber shout (see caption for details).

Fig. 4a corresponds to the lowest contagion stress (J = 0.01). We can see an amor-
phous “branching” pattern for those pedestrians in panic (red circles). That is, a branch-like
configuration is present around the (fake) bomber. From the inspection of the whole pro-
cess through an animation, we further noticed that these branches could be classified into
two types (see below). The “branching” profile is also present in Fig. 4b for J = 0.02,
although this category exhibits an extended number of pedestrians in panic. The highest
contagion stress category (J = 0.09), instead, adopts a circular profile (see Fig. 4c).

In summary, low contagion stresses correspond to the (qualitative) branch-like regime,
while high contagion stress correspond to the (qualitative) circular-like regime. The snap-
shot in Fig. 1b clearly shows a circular-like regime, as expected for the obtained experi-
mental value of J .

The branching-like profile in Piazza San Carlo is not completely symmetric since the
pedestrian’s density is higher near the screen area (on the left of Fig. 4) than in the op-
posite area. The pedestrians near the screen can not move away as easily as those in the
opposite direction. Thus, the panic contagion near the screen occurs among almost static
pedestrians, while the contagion on the opposite area occurs among moving pedestrians.
Both situations, although similar in nature, produce an asymmetric branching. We labeled
as passive branching the one near the screen, and active branching the one in the opposite
direction.
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7. Conclusions

The contagion of panic offered a challenge to the emotional mechanism operating on the
pedestrians. We included the “inner stress” and “stress decay” as the main processes trig-
gered during a panic situation. Although the simplicity of this model, we attained fairly
good agreement with a real panic-contagion event.

We handled the coupling mechanism between individuals through the contagion stress
parameter J . This parameter appears to be responsible for increasing the “inner stress” of
the individuals. Our first achievement was getting a real (experimental) value for J . The
value for the Piazza San Carlo event was 0.1± 0.055.

We further noticed through computer simulations that J controls the contagion dynam-
ics. The Piazza San Carlo event illustrates the dynamic arising for high values of J , where
everyone moves away from the source of stress. However, this might not be the case for
low values of J . Our simulations, show that panic propagates weakly for low values of J .
This produces a branch-like, slow panic spreading around the source of danger (for a sim-
ple rectangular geometry). If J exceeds (approximately) 0.025 the panic contagion spreads
freely in a circular-like profile (for a simple rectangular geometry).

We want to remark that different contagion radii (between 2 m and 6 m) did not produce
significant changes on our simulations. This was unexpected, and thus, we may speculate
that “spontaneous” contagion out of the usual contagion range may not produce dramatic
changes, if the probability of “spontaneous” contagion is small.

Recall that the increase in the “inner stress” is the underneath mechanism allowing the
panic to spread among the crowd. The “emotional decay”, however, seems not to play a
relevant role in Piazza San Carlo (and in our simulations). This is because the experimental
characteristic time for the “emotional decay” is τ = 10 s, allowing anxious pedestrians to
settle back to the relaxed state after 20 s.
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A. The contagion efficiency

Any individual among the crowd may increase his (her) anxiety level if his (her) neighbors
are in panic. This is actually the propagation mechanism for panic: one or more pedestrians
express their fear, alerting the others of imminent danger. The latter may get into panic and
thus, a “probability” exists for getting into panic.

We hypothesize that the “probability to danger” (contagion efficiency) is the cumulative
effect of the alerting neighbors. That is, if k pedestrians among n neighbors are expressing
fear, then the contagion efficiency Pn of an individual is
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Pn = pn(1) + pn(2) + ...+ pn(n) (10)

where pn(k) represents the contagion efficiency of k = 1, 2, ..., n pedestrians (among n
neighbors) expressing fear. The distribution for pn(k) is a Binomial-like distribution if any
neighbor expresses panic with fixed contagion efficiency p, regardless of the feelings of
other neighbors. If the feelings of any neighbor (among n pedestrians) is not completely
independent of the other neighbors, pn(k) should be assessed as a Hypergeometric-like
distribution.

For the purpose of simplicity we assume that the Binomial-like distribution is a valid
approximation for the pn(k) computation. Consequently,

Pn =
n∑
k=1

(
n
k

)
pk(1− p)n−k = 1− (1− p)n (11)

The mean value of neighbors expressing fear 〈k〉 is np. Thus,

Pn = 1−
(

1− 〈k〉
n

)n
(12)

It is worth noting that this expression holds for a fix value of n. That is, the contagion
efficiency Pn is conditional to the amount of neighboring individuals n. The contagion
efficiency for any number of neighbors n = 1, 2, ...,M is

P =
M∑
n=1

Pn πn (13)

where πn means the contagion efficiency that there are n neighbors surrounding the anx-
ious pedestrian. Notice that the expression (13) neither includes the term for n = 0, nor
the terms above M . The situation n = 0 is not considered here since it corresponds to a
“spontaneous” contagion to danger. The situation n > M corresponds to far away individ-
uals, and thus, not really capable of alerting of danger. The limiting value M , however, is
supposed to be related to a pertaining distance and the the crowd packing density.

There is no available information on the values of πn, although it may be written as the
ratio πn = zn/M (number of current neighbors with respect to the maximum number of
neighbors).

Recalling Eq. (12), the contagion efficiency Pn may be expanded as

Pn = 1− (1− np+ ...+ pn) = p fn(p) (14)

The function fn(p) stands for the summation

fn(p) = n− n(n− 1)

2
p+ ...+ pn−1 (15)

Each contributing terms in fn(p) may be envisage as the alert to danger due to groups
of individuals of increasing size (for a fix number of neighbors n). Notice, however, that
the expression (15) holds if the feelings between neighboring pedestrians are completely
independent. Otherwise, the function fn(p) should be considered unknown.
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The overall contagion efficiency reads

P =
M∑
n=1

zn
M

〈k〉
n
fn(p) ' J

〈
k

n

〉
(16)

where J represents an effective stress for the propagation, since it expresses in some way
the efficiency of the alerting process. That is, no panic propagation will occur for vanishing
values of J , while the pedestrian susceptibility to fear emotions will become more likely as
J increases. The stress J may depend, however, on the probability p. Appendix B shows
that this dependency is weak enough to be omitted in a first order approach.

The fraction 〈k/n〉 corresponds to the mean fraction of neighbors expressing fear with
respect to the total number of neighbors. This mean fraction is computed over all the pos-
sible number of neighbors, according to Eq. (16).

B. The sampling procedure for Turin

The effective stress J may be evaluated from any real life situation. Details on the sampling
procedure for the Turin incident at Piazza San Carlo are given in Section 4.

As a first step, we identified those individuals that switched to the panic state along the
image sequence. We also identified the surrounding pedestrians for each anxious individ-
ual, and labeled them as neighboring individuals (regardless of their current anxiety state).
For simplicity, we used the same profile (shown in Fig. 1c) throughout the image sequence.

The mean fraction 〈k/n〉 was obtained straight forward from this data. Table 1 exhibits
the corresponding results (see second column).

Notice that the surrounding pedestrians actually correspond to the most inner ring of
pedestrians enclosing the anxious individual, but not the ones within a certain radius. This
radius, however, can be estimated from the (mean) packing density of the crowd.

The anxious pedestrians at the border of the examined area of Piazza San Carlo (see
Fig. 1) are not included in Table 1 since it was not possible to identify all of their surround-
ing pedestrians.

The fraction of the anxious pedestrians np to the total number of individuals N is a
suitable estimate for the overall contagion efficiency P . However, as panic propagates, the
acknowledged anxious pedestrians np diminish because the number of previously relaxed
individuals reduces inside the analyzed area. Thus, the estimate of P follows a sampling
“without replacement” procedure. That is, the fraction estimate is np/(N −Np), where Np

corresponds to the number of individuals in panic until the previous time step.

Fig. 5 shows the effective stress J computed as the ratio between P and 〈k/n〉. The
contagion efficiency P was estimated either as np/(N −Np) (i.e. without replacement) or
np/N (i.e. with replacement). It can be seen that the sampling effects can be neglected for
t ≤ 4 s.

The J estimates exhibited in Fig. 5 are not completely stationary along the interval
0.5 s ≤ t ≤ 4 s. However, the increasing slope is not relevant for a first order approach.
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Table 1: Data provided from the Turin video (see Section 4 for details). Samples were
taken at 0.5 s time intervals. The second column shows the number of pedestrians np that
switched to the panic state at the corresponding time stamp. The third column exhibits the
(mean) ratio between neighbors in panic with respect to the surrounding neighbors. The
fourth column corresponds to the contagion efficiency P computed as a “no-replacement”
procedure (see text). The last column corresponds to the contagion stress J computed from
the third and fourth columns. The total number of individuals was N = 131.

t np 〈k/n〉 np/(N −Np) J

0.5 1 0.17 0.0077 0.0453
1.0 1 0.20 0.0077 0.0385
1.5 5 0.43 0.0391 0.0909
2.0 5 0.42 0.0406 0.0967
2.5 2 0.13 0.0169 0.1300
3.0 4 0.55 0.0345 0.0627
3.5 6 0.36 0.0536 0.1489
4.0 13 0.64 0.1226 0.1916
4.5 11 0.68 0.1183 0.1740
5.0 10 0.52 0.1219 0.2344
5.5 22 0.63 0.3055 0.4849
6.0 29 0.90 0.5800 0.6444
6.5 15 0.88 0.7143 0.8117

0.0 1.5 3.0 4.5 6.0 7.5

t (s)

0.0

0.3

0.6

0.9

J

without replacement
with replacement

Figure 5: (Color on-line only) The contagion stress J as a function of time t in seconds (see
text for details). The rounded symbols (in blue color) correspond to the J values computed
from a crowd of N = 131 individuals and a sampling procedure “without replacement”
(see Table 1 for details). The squared symbols correspond to the J values computed from
the same crowd, but following a sampling procedure “with replacement”. The mean stress
for 0.5 s ≤ t ≤ 4 s is J = 0.1± 0.055.
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The mean value for the effective stress along this interval is J = 0.1± 0.055.
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