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Abstract

Genome wide association studies (GWAS) are used to investigate genetic

variants contributing to complex traits. Despite discovering hundreds of well

replicated loci, large proportion of traits heritability estimates remain un-

explained leading to the so called “missing heritability”. Accounting for

gene-gene interactions in disease gene mapping may help explain some of

the“missing” heritability. At the level of the gene, interaction could be

evaluated by accessing gene-gene dependence. Here, we propose a Kullback-

Leibler type statistic for the analysis of gene-gene dependence, for uncorre-

lated SNPs in two genes. The Kullback-Leibler statistics is an asymptotic

positive normal distribution under the null hypothesis of no relationship
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between the two genes (SNPs), and normal under the alternative. Kullback-

Leibler is unlike traditional parametric statistical methods such as linear

and logistic regression that use multifactor dimensionality reduction (MDR)

to address sparseness of data in high dimensions. The performance of the

proposed method is evaluated by simulation studies with promising results.

Applying proposed method to analyze real data, we identified gene-gene de-

pendences among RAB3A, MADD, and PTPRN in the context of type 2

diabetes (T2D).

Keywords: Case-control population, Kullback-Leibler statistic, hypothesis test,

gene-gene dependences, SNPs.

1. Introduction.

GWAS have been widely used to detect genetic factors influencing common

complex diseases, such as Type 2 diabetes (T2D). To date, over 100 common

genetic risk variants have been identified associated with T2D. However, the joint

effects of these variants account for less than 10% of the heritability for T2D (Morris

2012). The gene-gene interactions may help explain the “missing” heritability.

There are extensive statistical methods for identifying gene-gene interactions,

including: using false discovery rate (Onay et al. 2006), evaluating interactions

between SNPs at multiple loci (Anno et al. 2008), a principal components method

(Li et al. 2009), ensemble filtering approach (Yang et al. 2011), Cox model

with censored responses (Lee et al. 2012), machine learning (Koo et al. 2013)

for SNP-SNP interaction for cancer patients (Lin et al. 2013), a fast algorithm

(Li et al. 2014), regression method (Park and Hastie, 2008), a linear model

 
2936



(Aschard et al. 2015), gene-gene interaction for twin data (Buil et al. 2015),

least trimmed square regression method (Kim and Park 2015), logistic regression

(Kooperberg and Ruczinski, 2005)), nonparametric logistic model and use a ba-

sis function method to model gene effect curve and gene-gene interaction curve

(Zhao et al. 2016), multi-dimensional reduction method (Moore, 2004; Chung et

al., 2007), Bayesian method (Ferreira et al., 2007), Entropy method (Dong et al.,

2008), gene-gene interaction for nuclear families (Martin et al, 2006), combinato-

rial method (Lou et al., 2008), neural network method (Motsinger et al., 2006),

high order gene-gene interaction (Tsai et al., 2007), log-linear model (Lee et al,

2007), and a rare variants method (Zhu et al. 2010 and Yuan et al. 2012). Cordell

(2009) and Gilbert-Diamond and Moore (2011) gave nice reviews on methods in

this topic.

Most existing work on gene-gene interactions use a regression model, requiring

a response variable, genes and other covariates. The interaction is represented by

the gene by gene cross effects of the regression parameters. These method only

apply to a small number of SNPs at each gene, so these methods are for local

interactions. The genetic functional model, such as Fan et al. (2015) and Xu et al.

(2017) and citations there in, can handle large number of genes in a single model.

Here we consider a different framework using the SNP data from two genes to

evaluate dependence and test dependence difference between cases and controls.

Our method investigate the global dependences between two sets of SNPs from

two genes, it tells us if the two genes have dependences or independences, not

to pinpoint the specific SNPs for interaction (SNP-level interaction). Thus the

mentioned methods are not applicable to this case.
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After conducting linkage disequilibrium (LD) pruning to obtain a set of inde-

pendent SNPs within each gene, we stratify by case-control status evaluate the

dependence of SNPs in one gene with SNPs in the other gene by Kullback-Leibler

statistic. Here we construct a Kullback-Leibler statistic which is asymptotic pos-

itive normal. Its cut-off point and other related quantities can be evaluated in a

closed form, making it more practical to use. The method can be used to analyze

the global gene-gene relationship, and evaluate the gene-gene dependence struc-

ture difference between the cases and controls. The proposed method is easy to

use and can screen the genome wide level, and give a general guide for which pairs

of genes are related as a whole, which pairs are not. Thus may be used as a first

step analysis of gene-gene interactions in genome-wide level. After some pairs of

genes are identified as related, then existing local methods can be used to further

identify specific genes which are responsible for such interactions.

Simulation studies are conducted to evaluate the performance of the proposed

method and showed promising results. Then the method is applied to a real data

to evaluate dependences between variants in genes known to encode proteins that

form a complex (PTPRN, MADD and RAB3) which regulates insulin release, and

difference dependences between T2D cases and controls in the Africa America

Diabetes Mellitus (AADM) study.

In Section 2, we describe the background and the problem, and introduce the

proposed method. We considered two cases: the gene-gene dependence between

given two genes (two sets of SNPs) for one population; and the gene-gene depen-

dence difference between cases and controls. The asymptotic distributions of the

test statistics are studied. In Section 3, we conduct simulation studies to evaluate
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the performance of the proposed method; Section 4 gives the analysis of real data

using the proposed method, and Section 5 give a brief discussion.

2. The Method. Our method uses discrete trait data with genotyped SNPs

from unrelated individuals. As there are large number of SNPs in the genome such

as SNP array data, it is useful to generate a pruned subset of SNPs that are in

approximate linkage equilbrium with each other. So before the gene-gene depen-

dence analysis, linkage disequilibrium based on SNP pruning was used to select

indepedent SNPs in each gene. Let (gi1,gi2) (i = 1, ..., n) be the observed geno-

types from two genes of n unrelated individuals, gi1 is a sequence of m1 unrelated

SNPs in gene 1, gi2 a sequence of m2 unrelated SNPs in gene 2. let m = m1 +

m2 with m1 and m2 in the hundreds to thousands. Each SNP can have one of

three genotypes, we arbitrarily code them as 1,2, and 3. The position relationships

among components of gi1 and gi2 are known. As there are large numbers of SNPs

in gi1 and gi2, we can review them as functions gi1(s), s ∈ S and gi2(t), t ∈ T ,

with S and T the index set for gene 1 and gene 2 respectively. The gi1(·)’s and

gi2(·)’s are independent and identically distributed random realizations of some

(unknown) {1, 2, 3} stochastic processes g1(·) on S and g2(·) on T .

We consider two cases: the gene-gene dependence between a given pair of sets

of SNPs for one population, within this case we also distinguish two scenarios, a)

gene-gene dependences between a given pair of sets of SNPs. b) gene-gene depen-

dences among two sets of SNPs from two genes; and the difference of gene-gene

dependence patterns in cases and controls.
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2.1 Gene-gene dependence with one population. At each fixed point s ∈ S,

let pk(s) = P
(
g1(s) = k

)
be the population frequency of SNP type k at position s

for gene 1 (k = 1, 2, 3), qk(t) = P
(
g2(t) = k

)
be that at position t ∈ T for gene 2,

and Pjk(s, t) = P
(
g1(s) = j; g2(t) = k

)
be that of the composite SNP type (j, k)

at position s of gene 1 and position t of gene 2 (j, k = 1, 2, 3). These are unknown

functions to be estimated. Let I(·) be the indicator function. These quantities are

estimated by

p̂k(s) =
1

n

n∑
i=1

I(gi1(s) = k), (k = 1, 2, 3; s ∈ S),

q̂k(t) =
1

n

n∑
i=1

I(gi2(t) = k), (k = 1, 2, 3; t ∈ T ) (1)

and

P̂jk(s, t) =
1

n

n∑
i=1

I(gi1(s) = j; gi2(t) = k), (k, j = 1, 2, 3; s ∈ S; t ∈ T ).

If the two sets of unrelated SNPs have no interactions, they will be indepen-

dent across all positions, while lack of independence indicates the presence of an

interaction. The problem of whether there are gene-gene interactions in the two

sets of SNPs can be formulated, then, as a statistical test of the null hypothesis

H0 : Pjk(s, t) = pj(s)qk(t) for all (j, k = 1, 2, 3; s ∈ S; t ∈ T ) vs. the alternative

hypothesis H1 : Pjk(s, t) 6= pj(s)qk(t), for some (j, k = 1, 2, 3; s ∈ S; t ∈ T ).

Since the hypothesis involves a function of values for (j, k = 1, 2, 3; s ∈ S; t ∈

T ), typically the appropriate test statistic has an asymptotic mixture chi-squared

distribution, for which the cut-off point and other related values cannot be obtained

in closed form, and a numerical method is needed to compute them, which is

not convenient in practice. Here, we develop a special construction for the test
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statistic, so that its asymptotic distribution is positive normal, to be defined later.

All quantities of interest under this distribution have a closed form, making this

statistic more practical to use.

To test H0 vs H1, let

D = D(P ||pq) =
3∑

j=1

3∑
k=1

∫
S

∫
T

Pjk(s, t) log
Pjk(s, t)

pj(s)qk(t)
dsdt. (2)

be the Kullback-Leibler divergence between P and pq. Here we adopt the conven-

tion 0 log 0 = 0, and use integration for summation over S × T to distinguish the

summation over (j, k). It is known that D(P ||pq) ≥ 0, with D(P ||pq) = 0 if and

only if H0 holds. Thus, if there is no interaction between g1(·) and g2(·), and H0

holds, D(P ||pq) = 0. On the other hand, if g1(·) and g2(·) are perfectly correlated:

g1(s) = k if and only if g2(s) = k for k = 1, 2, 3 and S = T , then Pjk(s, t) = pj(s)

and D(P ||pq) = −
∑3

j=1

∫
pj(s) log pj(s)ds = H(p), the entropy of p.

The estimator of D(P ||p, q) is

D̂n = D̂n(P ||pq) =
3∑

j=1

3∑
k=1

∫
S

∫
T

P̂jk(s, t) log
P̂jk(s, t)

p̂j(s)q̂k(t)
dsdt. (3)

The followinng results characterize the asymptotic properties of D̂n.

Theorem 1. As n→∞, D̂n → D, a.s.

Theorem 2. As n→∞,

i) under H0,
√
nD̂n

D→ C0 +N(0, σ2
0),

 
2941



where C0 = limn

√
nEH0(D̂n) and σ2

0 is given at the end of the proof.

ii) Under H1,
√
n(D̂n −D)

D→ N(0, σ2
1),

σ2
1 is given at the end of the proof.

Let Φ−1(·) be their quantile function of N(0, 1). For given nominal level α, H0

is rejected if Tn :=
√
nσ−10 D̂n > C1 + Φ−1(1− α), with C1 = C0σ

−1
0 .

Power. The power of the test at D is

β(D) = PH1

(√
nσ−10 D̂n > C1 + Φ−1(1− α)

)
= PH1

(√
nσ−11 (D̂n −D) > σ−11 C1 + σ−11 Φ−1(1− α)−

√
nσ−11 D

)
≈ 1− Φ

(
σ−11 C1 + σ−11 Φ−1(1− α)−

√
nσ−11 D

)
.

2.2 Dependences within a set of unrelated SNPs. In the above we discussed

dependences between two sets of unrelated SNPs, here we investigate dependences

within a set of unrelated SNPs. We concentrate on the data {gi1 : i = 1, ..., n} in

a set of unrelated SNPs. In this case we denote Pjk(s, t) = P (g1(s) = j; g1(t) = k),

and

P̂jk(s, t) =
1

n

n∑
i=1

I(gi1(s) = j; gi1(t) = k).

We are interested in testing the null hypothesis H0 : Pjk(s, t) = pj(s)pk(t) for all

1 ≤ j, k ≤ 3 and (s, t) ∈ S2 with s 6= t, vs. the alternative H1 : Pjk(s, t) 6=

pj(s)pk(t) for some 1 ≤ j, k ≤ 3 and (s, t) ∈ S2 with s 6= t. As before, let

D = D(P ||pp) =
3∑

j=1

3∑
k=1

∫
S:s6=t

∫
S

Pjk(s, t) log
Pjk(s, t)

pj(s)pk(t)
dsdt (4)
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be the Kullback-Leibler divergence between P and pp. Here we adopt the conven-

tion 0 log 0 = 0. It is known that D(P ||pp) ≥ 0, with D(P ||pp) = 0 if and only if H0

holds. Thus, if there is no dependence within g1(·), and H0 holds, D(P ||pp) = 0.

However, if g1(·) is perfectly correlated: g1(s) = k if and only if g1(t) = k for k =

1, 2, 3, then Pkk(s, t) = pk(s) and D(P ||pq) = −
∑3

j=1

∫
pj(s) log pj(s)ds = H(p),

the entropy of p.

The estimator of D(P ||p, p) is

D̂n = D̂n(P ||pp) =
3∑

j=1

3∑
k=1

∫
S:s6=t

∫
S

P̂jk(s, t) log
P̂jk(s, t)

p̂j(s)p̂k(t)
dsdt. (3)

We have

Corollary. i). As n→∞, D̂n → D, a.s.

ii). As n→∞, then under H0,

√
nD̂n

D→ C0 +N(0, σ2
0),

where C0 = limn

√
nEH0(D̂n) and σ2

0 is given in the proof.

iii) As n→∞, under H1,

√
n(D̂n −D)

D→ N(0, σ2
1),

σ2
1 is given in the proof.

The rejection rule of H0 and the power computation are similar to testing in-

teractions across genes.

2.3 Gene-gene dependence difference between cases and controls.
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In practice, often we have case-control data, and it is of interest to know if the

dependences between cases and controlls are different or not. For this, suppose we

have case data n on two genes and control data m on the same genes. Let D1 and

D0 be the estimated Kullback-Leibler measure for the two populations. We can

use (3) to compute the estimated Kullback-Leibler measure D̂n and D̂m for the

two populations. We want to test H0 : D1 = D0 vs H1 : D1 6= D0. For this, let

Tn,m =

√
nm

n+m

D̂n − D̂m(
n

n+m
σ̂2
1 + m

n+m
σ̂2
0

)1/2 ,
where σ̂2

1 and σ̂2
0 are the estimated variances for D̂n and D̂m as given in Theorem

2 ii). Then as min{n,m} → ∞, under H0, Tn,m ∼ N(0, 1), and the α rejection

rule for H0 is |Tn,m| > Φ−1(1− α/2).

3. Simulation Study.

To model the dependence of the two sets of unrelated SNPs, we use a continuous

method. We take S = T = [−5, 5], for some combinations of (m1,m2), n =

5000 and N = 1000 repetitions. Set p1(s) = [1 + sin(s/10)/2]/3, p2(s) = [1 +

sin(s/10)/3]/3, p3(s) = 1 − p1(s) − p2(s); q1(s) = [1 + sin(s/20)/3]/3, q2(s) =

[1 + sin(s/20)/2]/3, q3(s) = 1 − q1(s) − q2(s). We use D0 to denote the average

value of
√
n(D̂n −D) (over repetitions), and σ̂2

0 for estimated σ2
0.

Simulation Study 1: No dependence. For each subject, at gene position (s, t),

with sample composite SNP type (j, k) and probability Pjk(s, t) = pj(s)qk(t),

(j, k = 1, 2, 3), we generated 1,000 simulations. Type 1 error rates are presented

in Table 1.
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Table 1. Type 1 errors in Simulation study Case 1 - indepdendece study

Genes (m1/m2) N No. repeat Type 1 Errors D0 σ̂2
0

10 / 10 1,000 1,000 4.60% 0.06329 0.00139

50 / 50 1,000 1,000 4.90% 0.00206 0.00142

100 / 100 1,000 1,000 4.70% 0.00197 0.00137

50 / 100 1,000 1,000 4.80% 0.00020 0.00140

50 / 200 1,000 1,000 4.90% 0.00203 0.00133

50 / 250 1,000 1,000 4.90% 0.00199 0.00134

Simulation Study 2: Dependence. For each subject, at gene position (s, t), and

sample composite SNP type (j, k) with probability

Pjk(s, t) =
pj(s)qk(t) + λpj(s)(1− qk(t))∑3

i=1

∑3
r=1(pi(s)qr(t) + λpi(s)(1− qr(t))

, (j, k = 1, 2, 3),

we perform 1,000 repetitions.

Here 0 ≤ λ ≤ 1 control the amount of dependence, λ = 0 corresponds to

independence; λ = 1 corresponds to perfect dependence with Pjk(s, t) = pj(s)/3.
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Table 2. Power calculation in Simulation study Case 2-dependence study

Genes (m1/m2) N No. repeat Power λ

10 /10 1,000 1,000 82.40% 0.0313

50 /50 1,000 1,000 80.80% 0.0022

100 /100 1,000 1,000 81.80% 0.0022

50 /100 1,000 1,000 82.20% 0.0022

50 /200 1,000 1,000 82.6% 0.0021

50 /250 1,000 1,000 82.2% 0.0021

Figure 1 presents the relationship between the total number of SNPs within

the two genes,the estimated D0 (red line) in simulation study 1 (no dependence),

and the estimated λ in simulation study 2 (with dependence).

4. Application to real data

The Africa America Diabetes Mellitus (AADM) study is a large ongoing genetic

epidemiology study of type 2 diabetes (T2D) (Rotimi et al 2001). Demographic in-

formation was collected using standardized questionnaires across the AADM study

centers in Nigeria, Ghana, and Kenya. Anthropometric and other clinical param-

eters were measured by trained study staff during a clinic visit. The diagnosis

of T2D was based on the 1999 American Diabetes Association Expert Committee

criteria (Engelgau 2000): a fasting plasma glucose concentration ≥ 126 mg/dL (7.0

mmol/L), a 2-hour post load value in the oral glucose tolerance test ≥ 200 mg/dL

(11.1 mmol/L) on more than one occasion, or taking medication for physician-

diagnosed T2D. Of the 1,808 African samples, 1,046 (57.85%) were T2D cases,
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Figure 1: Relationships between Number of SNPs and estimated values of D0 in

simulation 1 and λ in simulation 2
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and 762 (42.15%) were controls. Genotyping was performed at the Children’s

Hospital of Philadelphia core laboratory using the Affymetrix Axiom PanAFR Ar-

ray. A total of 2,217,748 SNPs were subjected to quality control filters as follows:

call rate < 90% (excluded 10,282), minor allele frequency (MAF) < 0.01 (excluded

45,562), and non-autosomal SNPs (excluded 61,087). Since no comparison gene-

gene interaction method was used in genome wide level, we did not try to evaluate

gene-gene dependences in genome wide level. To evaluate our method, we selected

3 genes that encode proteins with interrelated functions that affect pathways im-

portant to T2D risk. MADD acts as a guanosine triphosphate exchange protein for

Rab3A (Coppola 2002) and Rab27a which play critical roles in glucose-stimulated

insulin release from β-cells (Kasai 2005). MADD and Rab3A molecules are linked

to dense core secretory vesicles (DCVs) by Ptprn/2 (phogrin), a transmembrane

protein expressed in cells with stimulus-coupled peptide hormone secretion, includ-

ing pancreatic β-cells. It is localized to the membrane of insulin-containing DCVs

(Caromile 2010). Figure 2 represents the protein complex of Rab3, MADD, and

Ptprn that stimulates DCV to release insulin. Here, we used AADM genotype

data to test for pairwise gene-gene dependences among RAB3A, MADD, and PT-

PRN. SNPs within these genes was performed using human genome reference 19

(HG19). We conducted LD pruning (window size in 50 SNPs and calculate LD

between each pair of SNPs in the window; remove one of a pair of SNPs if the

LD is greater than 0.5; shift window 5 SNPs forward and repeat the procedure)

in PLINK (Purcell 2007) to produce an independent set of SNPs for each gene in

study (1,379 SNPs in PTPRN-PTPRN2, 15 SNPs in MADD, and 211 SNPs in

RAB3A). The pair-wise gene-gene dependences results are presented in Table 3.
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For comparison, we also tested for gene-gene interactions using an MDR method,

which comprised 3 steps. First, association is performed for each of the multi-locus

combinations of genotypes. Second, based on the p values and direction of β values

resulting from association testing, the multi-locus genotypes can be classified as

non-risk ( p values ≥ 0.10), high risk ( β value > 0 and p value < 0.10), or low risk

(β value < 0 and p value < 0.10). To avoid inflation of parameter estimates, the

multi-locus genotypes are combined by risk category. Finally, two new association

tests are performed using the Wald statistic: high risk vs. low risk + no risk, and

low risk vs. high risk + no risk groups. The test statistic for the epistatic effects

will be the maximum of the two tests. We used a Bonferroni p value correction,

based on the number of tests performed per gene pair, to set the threshold for

statistical significance. Results using the MDR method are presented in Table 4.

Table 3. Results of Pairwise Gene-Gene Dependences in AADM Study

Gene 1 (Num. of SNPs) Gene 2 (Num. of SNPs) Z values P values

PTPRN/2 (1,379) MADD (15) 19.53 6.70× 10−85

PTPRN/2 (1,379) RAB3A/C (211) 16.38 2.77× 10−60

RAB3A/C (211) MADD (15 ) 15.99 1.30× 10−57

For the real data, we can use the formula to compute σ̂2
0, or use bootstrape to

compute it.
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Figure 2: PTPRN and PTPRN2 are dense core vesicle (DCV) that interact with

the a complex in the pancreatic islet cells that includes MADD and RAB3A/3C.

This complex influences the exocytosis of insulin-containing DCV.
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Table 4. SNP-SNP Pairwise Gene-Gene Interactions in AADM Study using MDR method

Gene 1 (SNPs) Gene 2 (SNPs) Min. of p values Significant level

PTPRN (rs2335845) MADD (rs326217) 2.28× 10−6 2.42× 10−6

PTPRN (rs10245268) RAB3C (rs4700305) 1.04× 10−10 1.72× 10−7

RAB3C (rs292968) MADD (rs41301449) 6.57× 10−8 1.58× 10−5

5. Discussion.

Comparing with existing genetic functional methods, such as in Lee and Park

(2014), and Bochdanovits et al. (2008) and references there in, the statistic is

asymptotically either a chi-squred distribution for small number of genes, or a

chi-squred mixture distribution for large number of genes, in the latter case the

cut-off point for testing the null hypothesis is not easy to compute, often relay on

simulation methods, which is not convenient to use, we propose using Kullback-

Leibler divergence method, an asymptotic postive normal distribution, overcomes

these disadvantages, and make it more practical to use. We encourage to use in

first screen for gene-gene interactions in genome wide level.

Gene - gene interactions have been proposed to underlie some of the missing

heritability in GWAS for complex disease. Identifying gene-gene interactions in

genome-wide level remains a great challenge because of computational difficulty,

type 1 errors, multiple testing burden, and study power. Using genotype data to

focus on a few specific genomic regions, such as gene pathway or previous studies,

to detect gene-gene interactions is much more feasible, as in the real data analy-

sis implemented. Based on earlier work, it was known that the Rab3a, MADD,

and Ptprn/2 proteins form a compound that affects insulin release. Grounding
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a test of gene-gene dependences in a functionally-derived hypothesis is a reason-

able approach. The epistasis of two or more SNP-SNP interactions within genes

is often used to instead detecting gene-gene interaction, which is described as the

deviation from additivity in a linear/logistic statistical model, but this method is

more likely to identify genomic hotspots for human disease, and is not likely to

sufficiently capture gene-gene interactions (Hartwig 2013). Here, we propose an

asymptotic positive normal statistical method to detect the degree of SNP-SNP

dependence in gene-based analysis. We implemented this method in two simula-

tion studies and in the AADM study. Comparing this method with others, ours

has a reasonable computation time (the total user: 20443.25; system CPU: 4.43;

and real elapsed time: 20467.57 for 2000 samples and 1500 SNPs in a windows-

based R) and memory used 39.4mb. Given a sample size of 1000 and the degree

of dependence of ∼ 0.05, the type 1 error remains < 5% with power > 0.80 in

simulation studies. Estimated values are sensitive to the total of number of in-

cluded SNPs. From Figure 1, when the total number of SNPs is more than 100,

the estimated D0 and λ values are near stable. We suggest that if study sample

size is near 1000, the minimum total number of SNPs should be at least 100. We

recognize a few limitations of this method. First, this method is developed only

for two genes. A method to detect dependences between more than two genes is

being developed. Second, the method requires that the SNPs within a gene are

not in linkage disequilibrium, requiring a pruning step prior to implementation.

Finally, the computation time could still be improved.

In conclusion, we developed a new method to detect gene-gene dependences at

the gene level by using asymptotic positive normal distribution (Kullback-Leibler
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statistic). In a simulation study under the condition of no dependences, type 1

error rates were < 5%. In a simulation study in the presence of dependences, the

power was > 0.80. In an implementation of this method in real data, we evaluated

genes (RAB3A/3C, MADD, PTPRN/2) encoding proteins that form a complex

that affect release of insulin. We identified significant pair-wise gene-gene depen-

dences among these genes. These gene-gene interactions were also identified using

a SNP-based MDR method. For accurate estimation, a minumum 100 SNPs within

two genes is required when study sample size is ∼1000.

Acknowledgement: This work is supported in part by the National Center for

Research Resources at NIH grant 2G12RR003048, and by the Center for Research

on Genomics and Global Health (CRGGH) at NHGRI/NIH.

 
2953



Reference

Anno, S., Abe, T., Yamamoto, T. (2008). Interactions between SNP alleles at

multiple loci contribute to skin color differences between caucasoid and mon-

goloid subjects. International Journal of Biological Sciences, 4(2), 81-86.

Aschard, H., Gusev, A., Brown, R., Pasaniuc, B. (2015). Leveraging local ances-

try to detect gene-gene interactions in genome-wide data. BMC Genetics,

16:124.

Bochdanovits, Z., Sondervan, D., Perillous, S., van Beijsterveldt, T., Boomsma,

D., Heutink, P. (2008). Genomewide prediction of functional gene-gene in-

teractions inferred from patterns of genetic differentiation in mice and men.

PLoS ONE., 3:e1593.

Buil, A., Brown, A.A., Lappalainen, T., Vin̈uela, A., Davis, M.N., Zheng, H-F.,

Richards, J.B., Glass, D., Small, K.S., Durbin, R., Spector, T.D., Dermitza-

kis, E.T. (2015). Gene-gene and gene-environment interactions detected by

transcriptome sequence analysis in twins. Nature Genetics, 47, 88-91.

Caromile L.A., Oganesian A., Coats S.A., et et (2010). the Neurosecretory Vesicle

protein phogrin functions as a phosphatidylinositol phosphatase to regulate

insulin secretion. J. of Biological Chemistry,285:10487-10496

Chen G., Ramos E., Adeyemo A., Shriner D., Zhou J., Doumatey A., Huang H.,

Erdos M., Gerry N., Herbert A., Bentley A., Xu H., Charles B., Christman

M.. Rotimi N. (2011). UGT1A1 is a Major Locus Influencing Bilirubin

Levels in African Americans, European Journal of Human Genetics, 20(4):

463-468

 
2954



Chung, Y., Lee, S.Y., Elston, R.C., Park, T. (2007). Odds ratio based multifactor-

dimensionality reduction method for detecting gene-gene interactions. Bioin-

formatics. 23, 7176.

Coppola T., Perret-Menoud V., Wang J., et al. The death domain of Rab3

guanine nucleotide exchange protein in GDP/GTP exchange activity in living

cells. Biochem J., 362, 273-239

Cordell, H.J. (2009). Detecting gene-gene interactions that underlie human dis-

eases. Nat. Rev. Genet., 10(6), 392-404.

Dong, C., Chu, X., Wang, Y., Wang, Y., Jin, L., Shi, T., Huang, W., Li, Y. (2008).

Exploration of gene-gene interaction effects using entropy-based methods.

Eur J Hum Genet., 16, 229235.

Engelgau, M.M., Narayan, K.M., Kerman, W.H. (2000) Screening for type 2

diabetes. Diabetes Care,23(10), 1563-1580

Fan, R.Z., Wang, Y.F., Boehnke, M., Chen, W., Li, Y., Ren, H.B., Lobach, I.,

and Xiong, M.M. (2015) Gene level meta-analysis of quantitative traits by

functional linear models. Genetics 200 (4):1089-1104.

Ferreira, T., Donnelly, P., Marchini, J. (2007). Powerful Bayesian gene-gene

interaction analysis. Am J Hum Genet. S81:32.

Gilbert-Diamond, D., Moore, J.H. (2011). Analysis of gene-gene interactions,

Curr Protoc Hum Genet., Unit1.14. doi:10.1002/0471142905.hg0114s70.

Hartwig P.F. (2013) SNP-SNP interactions: Focusing on Variable Cording for

Complex Models of Epistasis. Genet Syndr Gene Ther,49, 189

 
2955



Kasai K., Ohare-Imaizumi M., Takahashi N., et al. (2005) Rab27a mediates the

tight docking of insulin granules onto the plasma membrane during glucose

stimulation. J Clin Invest, 115, 388-396

Kim, Y., Park, T. (2015). Robust gene-gene interaction analysis in genome wide

association studies. PLOS One, 10(8): e0135016.

Koo, C.L., Liew, M.J., Mohamad, M.S., Salleh, A.H.M. (2013). A review for

detecting gene-gene interactions using machine learning methods in genetic

epidemiology. BioMed Research International, Article ID 432375.

Kooperberg, C., Ruczinski, I. (2005). Identifying interacting SNPs using Monte

Carlo logic regression. Genet Epidemiol., 28,157170.

Lee, S.Y., Chung, Y., Elston, R.C., Kim, Y., Park, T. (2007). Log-linear model

based multifactor-dimensionality reduction method to detect gene-gene in-

teractions. Bioinformatics, 23, 25892595.

Lee, S., Kwon, M-S., Oh, J.M., Park, T. (2012). Genegene interaction analysis

for the survival phenotype based on the Cox model. Biometrics, 28(18),

582-538.

Lee, J-H and Park, C-S. (2014). Gene - Gene interactions among MCP genes

polymorphisms in asthma. Allergy Asthma Immunol Res., 6(4), 333340.

Li, J., Tang, R., Biernacka, J.M., Andrade M.d. (2009). Identification of gene-

gene interaction using principal components. BMC Proceedings, 3(Suupl

7):S78.

Li, J., Zhong, W., Li, R., Wu, R. (2014). A fast algorithm for detecting gene-

gene interactions in geneome-wide association studies. Annals of Applied

 
2956



Statistics, 8(4), 2292-2318.

Lin, H-Y., Amankwah, E.K., Tseng, T-S., Qu, X., Chen, D-T., Park, J.Y. (2013).

SNP-SNP interaction network in angiogenesis genes associated with prostate

cancer aggressiveness.PLoS ONE, 8(4): e59688. doi:10.1371/journal.pone.0059688

Lou, X.Y., Chen, G.B., Yan, L., Ma, J.Z., Mangold, J.E., Zhu, J., Elston, R.C.,

Li, M.D. (2008). A combinatorial approach to detecting gene-gene and gene-

environment interactions in family studies. Am J Hum Genet., 83, 457467.

Martin, E.R., Ritchie, M.D., Hahn, L., Kang, S., Moore, J.H. (2006). A novel

method to identify gene-gene effects in nuclear families: the MDR-PDT.

Genet Epidemiol., 30,111123.

Moore, J.H. (2004). Computational analysis of gene-gene interactions using mul-

tifactor dimensionality reduction. Expert Rev Mol Diagn. 4,795803.

Morris A.P.,, Voight B.F., Teslovich T.M., et al. (2012) Large-scale association

analysis provides insights into the genetic architecture and pathophysiology

of type 2 diabetes. Nat Genet, 44(9):981-990

Motsinger, A., Lee, S., Mellick, G., Ritchie, M. (2006). GPNN: power studies and

applications of a neural network method for detecting gene-gene interactions

in studies of human disease. BMC Bioinformatics., 7, 39.
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