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Abstract
In this the era of big(ger) data, the all-time relevant question of how to detect the features which

are truly relevant for an outcome of interest becomes paramount. As the amount of variables in data
increases, the degree to which field knowledge is incorporated in the analysis decreases. As more
and more automatized machine learning methods for handling and extracting information from data
become easily accessible, an overview of the qualities and potential pitfalls of the contemporary and
excessively used methods is pertinent.

Here we present the results of a simulation study assessing the performance of different methods
for ’blindfolded’ or ’field knowledge free’ feature selection. We have considered Lasso, Forward
selection, Elastic Net, Simplified Relaxed Lasso and two ad hoc methods.

The question of good performance and how to assess it is discussed and the methods are com-
pared on a variety of different assessment measures both new and existing.

Key Words: Feature selection, Forward selection, Lasso, Relaxed Lasso, Simulation study, Vari-
able selection

1. Introduction

The need to reduce the number of covariates in the linear model is a common problem
in applied statistics. Classical methods like Forward and Best Subset Selection have been
supplemented by penalized methods such as Lasso and Elastic Net, as the amount of data
has grown larger and wider.

The main driver for this work is a hope that we can build an intuition about the different
variable selection methods, and which method to prefer in which situations.

Quantifying a method calls for a good assessment metric. We will discuss the idea of
good performance and use several measures, both new and existing to compare the meth-
ods. Data are simulated from a linear regression model using different combinations of
width and hight (n, p) and different correlations.

Lastly we reflect upon the more philosophical and statistically theoretical considera-
tions when talking about variable selection in general.

2. Models

In recent work by Bertsimas et al, the authors present an optimization method to solve the
classical best subset selection problem of choosing k out of p features in linear regression
given n observations [2] within a reasonable timeframe. Best Subset Selection has long
been considered the best but unfeasible way to do sparse regression modelling; however,
in a following article Extended Comparison of Best Subset Selection, Forward Stepwise
Selection, and the Lasso [5] by Hastie et al. the authors apply Bertsimas new method to
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simulated data and conclude, that in their setup, Best Subset Selection is not the best per-
forming method of those they consider, and further, that it performs pretty much on par with
Forward Selection. The models, assessment measures, and data structure in this work is in-
tended to supplement their simulation study. We follow their choice regarding the Signal
to Noise Ratio and values of the raw correlation ρ, but deviate in our choice of covariance
structure. Where Hastie et al. look at an autocorrelation-type structure, we consider a block
matrix correlation structure with a flat with-in block correlation. Regarding the choice of
assesment we include most of the measures used by Hastie et al. which in turn are inher-
ited from Bertsimas [2] but we also propose a new measure hoping to assess each model’s
capability to select the correct (or in some way almost correct) features. We have compared
six methods for variable selection. Lasso, Relaxed Lasso and Forward Selection are all
recycled from Hastie et al. but here in company of three alternatives.

Shortly on notation, we consider X to be a stochastic variable, and x to be a realization
of this. Data consist of an outcome Y ′ with y′ ∈ Rn. The predictor matrix X ′ has x′ ∈
Rn×p. We will consider a centered version of the outcome hereafter referred to as Y and
y, and the standardized version of the predictor named X and x. Standardization and
centering is just done for technical reasons as some of the methods work best on this type
of data. Ultimately it has no impact and the parameters will usually be transformed back to
the original scale.

Forward selection (FS)

Forward selection is an intuitively sensible and simple idea, but it has some obvious draw-
backs and a history of being misinterpreted or even misused. It is prone to over-fitting, has
somewhat poor predictive accuarcy, and the model resulting from a FS-regression has more
often than not been solely reported without making it perfectly clear, that a selection has
taken place, and that all results should be considered relative to this selection. As a variety
of new and fancier methods have emerged throughout the past decades, it is no longer the
go-to method for feature selection. It is however interesting to investigate how it actually
performs as it is a method everybody knows. We evaluate Forward Selection using the
implementation of the method from the bestsubset [4] package for R [9] developed by
Hastie et al. in relation to their work in [5]: At step k, the set of indices for the covari-
ates {1, . . . , p} is split up into A(k−1) (the (k − 1) variables in the model at that point in
time) and A{

(k−1) (the rest). Each potential variable (Xj)j∈A{
k−1

is assessed by the absolute
correlation between the residual of the current model and the predictor Xj regressed on
(Xi)i∈Ak−1

. The predictor yielding the maximal absolute correlation is added to the model.

Lasso

Before Lasso was introduced, Forward Selection was often used if interpretablity was the
main goal of the analysis. FS does not excel in prediction accuracy and Ridge Regression
was found to be a reasonable alternative. By shrinking all parameters towards 0, these
models achieved high accuracy but were on the other hand completely un-interpretable on
larger (wider) amounts of data. Lasso was introduced as a compromise that would both
shrink and select. The Lasso model is the solution to the least squares estimating equation
supplemented with an l1 penalty term:

β̂lasso(λ) = argminβ{‖Y −Xβ‖22 + λ‖β‖1}

where λ > 0 is a hyperparameter to be tuned. In non-degenerated cases, the solution does
not have a closed form. A popular implementation of Lasso is the glmnet package [3] in
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R [9]. Here the Lasso model is fitted using coordinate decent to efficiently obtain numerical
solutions. Other algorithmic approaches also exist. Note that we assume the data is scaled
and the outcome is centralized. This way we avoid arbitrarily regularizing the intercept and
assure equal weight of all covariates when penalizing.

Elastic Net (EN)

Elastic net was introduced in 2005 by Zou et al [10] to bring together the best of Ridge
Regression and Lasso. Lasso tends to select only few variables from a group of highly
correlated variables which is not always desirable. Further, it is limited to only selecting at
most p variables. Elastic Net was designed to overcome these two limitations while keeping
interpretability a priority. The Elastic Net solution combines the Ridge and Lasso penalty:

β̂EN (λ, α) = argminβ{‖Y −Xβ‖22 + λ
[
(1− α)||β||22/2 + α||β||1

]
}

where λ > 0 and α ∈ [0, 1] are hyperparameters to be tuned - often by cross-validation.
Note that for α = 0 the solution is purely that of the Ridge Regression while α = 1 yields
the pure Lasso solution. Again we assume the data is scaled and the outcome is centralized.

Relaxed Lasso

In 2006 Meinshausen introduced the Relaxed Lasso to improve convergence of the Lasso
for sparse high dimensional data [7]. The original two-step procedure assigns two different
parameters to deal with first selection and then shrinkage. Hastie et al. consider a simplified
version in [5]. This version combines the Lasso solution and the Least Squares solution
restricted to the active set chosen by the Lasso:

β̂Relaxo(λ, γ) = argminβ,γ{γβ̂Lasso(λ) + (1− γ)β̂LS(λ)}

where β̂LS(λ) denotes the Least Squares solution restricted to the active set given by λ in
the Lasso (note that 0’s are filled in where needed to match dimension afterwards) and γ ∈
[0, 1] weighs together the two solutions. As in the original Lasso, λ will do both selection
and shrinkage however γ will now re-inflate the parameters towards the LS solution.

Ad hoc models

We also considered two two-step ad hoc estimators. First we rank the importance of all vari-
ables and secondly we fit a LS model to the variables more important than some threshold.
To decide on the threshold, we add 5 dummy-variables with no information and variance
equal to the average empirical variation found in the data. The threshold is set to be the
value of the highest ranking dummy-variable plus one standard deviation of all 5. Visual
inspection of the variable importance plot looking for an elbow is also a very nice way to
decide on a threshold, but as it is difficult to automatize, we chose the simpler approach.

Random Forest OLS

Importance ranking is chosen to be the mean decrease in accuracy based on a forest of 500
trees.
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Naive Bootstrap Lasso

The Naive Bootstap Lasso is inspired by the Bolasso introduced by Bach et al in [1]. Given
a dataset (X,Y ) we consider m bootstrap replications: (X,Y )i∗ for i∗ ∈ {1, . . . ,m}.
Fitting the Lasso model to each replication yields m sets of support A∗i , where
A∗i = {j|β̂i

∗,Lasso
j 6= 1}. Fitting an LS estimator to the support given by the intersection

over all replications Â =
⋂
i∗∈{1,..,m}A

∗
i yields the Bolasso solution.

The Naive Bootstrap Lasso is less harsh. Instead of intersecting the supports, it ranks
the importance of the covariates by the ratio of bootstrap data sets where the Lasso fit
picked the covariate, that is rank(Xj) = 1

m

∑m
i∗=1 1j∈A∗

i
.

”The truth” as a baseline

To have a sensible performance baseline to relate to, we fit an OLS estimate to the true set
of variables.

3. Data

Data is simulated from a linear regression model with normally distributed noise and a
block covariance structure in the explanatory variables, that is:

Y = Xβ + ε, where ε ∼ N(0, σ2I).

X ∈ Rn×p, with E(X) = 0 andCov(X) = diag(Σ1, ...,Σk)

Σi =


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

. . .
...

ρ . . . ρ 1 ρ
ρ . . . ρ ρ 1


Due to limitations in time we only consider k = 2. To match the covariance structure, we
consider the coefficient regime:

β =
(
b1, ..., bp0

2
,

(p−p0)
2︷ ︸︸ ︷

0, ..., 0, bp
2 +1

, ..., b (p+p0)
2

,

(p−p0)
2︷ ︸︸ ︷

0, ..., 0
)

where p is the total number of variables in the data, p0 is the number of active variables and
coefficients bi are given by bi = 1 ∀i. We consider all combinations of the following data
configurations:

p ∈ {12, 50, 100, 1000},
p0 ∈ {6, 12},
n ∈ {100, 1000}

and

ρ ∈ {0, 0.3, 0.7}.

In [5], the correlation structure was given by Cov(Xi, Xj) = ρ|i−j| and they consid-
ered four different coefficient regimes. We choose to look at the block structure, as it is a
quite common assumption to make about real life data. In the special case of uncorrelated
coefficients we overlap the setup of [5].
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Upon deciding the size of σ2, we cite a discussion of fair signal to noise from ratio
leading to a function for σ2 from Hastie et al. [5]:

Consider the conditional expectation of Y given X , f(X) = E(Y |X), and define
the signal-to-noise ratio SNR := V ar(f(X))

V ar(ε) . In our model we then have σ2 given as a

function of SNR and the covariance matrix: SNR = V ar(f(X))
V ar(ε) = V ar(βX)

σ2 = βT Σβ
σ2

hence σ2 = βT Σβ
SNR . The proportion of variance explained (PV E) by a given estimating

function g is given by PV E(g) = 1 − E[[Y−g(X)]2]
V ar(Y ) . By design f maximizes PV E and

PV E(f) = SNR
1+SNR is therefore an upper limit for PV E. Hastie et al.’s experience with

PV E in real observational data is, that you rarely come across observational data with a
PVE above 0.5, and a value of 0.86 is considered extreme. Following [5] we therefore
restrict ourselves to looking at SNRs equidistantly spaced on a logarithmic scale between
0.05 and 6 corresponding to an upper limit of PV E ranging between 0.04761 and 0.8571.

4. Assessment measures

When is a method good? What is it actually we want, when we talk about variable selection.
Usually we analyse data with two goals, and it might not be the same model or method
that we should use to answer to both needs. On the one hand we want a model which
predicts well on future observations, on the other hand, we want a model which explains
the (key) dynamics that generated the data. We need assessment measures that reflect our
interest in both performance, and the more fluffy quality ’interpretability’ of the model.
How well does the model actually uncover the true signals in the data, and to what degree
are superfluous variables removed. We have applied the following measures to address
these questions:

Relative test error (RTE)

The relative test error is the amount of variation in the data explained by the fitted model
(xβ̂), relative to the irreducible error:

RTE(β̂) = E[Y−Xβ̂]2

σ2 = (β−β̂)TE[XTX](β−β̂)+E[εT ε]
σ2 = (β−β̂)T Σ(β−β̂)+σ2

σ2 .

A perfect model fit, that is β̂ = β, corresponds to RTE(β) = 1. The null model, that
is β̂ = 0 yields RTE(0) = SNR+ 1.

Proportion of variance explained (PVE)

As described in section 3 the proportion of variance explained is defined by:

PV E(β̂) = 1− E[[Y−Xβ̂]2]
V ar(Y ) = 1− (β−β̂)T Σ(β−β̂)+σ2

βT Σβ+σ2 .

We recall the perfect score being SNR
1+SNR , the null score is PV E(0) = 0.

Proportion of selected variables (PSV)

We count the number of variables in the fitted model relative to the correct number from
the data-generating-model.

PSV (β̂) =

∑
i 1β̂i 6=0∑
i 1βi 6=0

.

The optimal score is 1, the null score is 0.
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Proportion of selected correct variables (PSCV)

We count the number of variables in the fitted model that coincide with the variables in the
data-generating-model relative to the total number from the data-generating-model.

PSCV (β̂) =

∑
i 1βi 6=0∧β̂i 6=0∑

i 1βi 6=0
.

The optimal score is 1, the null score is 0.

Naive measure of proxyness in the model (NP)

The idea behind both PSV and especially PSCV is based on the premise, that we should
find the right variables in order to perform well. With highly correlated variables, this
seems to some extent an unfair premise. We will return to this discussion. For now, we
propose a naive measure which assigns some goodwill to a model that finds a variable that
is not ’correct’, but at least somewhat close. Given a model fit, for each variable found,
we assign the value 1 if the variable was actually in the data-generating-model. If not it
will get the maximum of covariance between the chosen variable and all variables in the
data-generating-model (recall that as V ar(X) = 1, the correlation and covariance are just
the same). For each variable not found which was not suppose to be there we assign the
value 1. These ’scores’ are summed and seen relative to the total number of variables in the
data-generating-model.

NP (β̂) = 1
p

∑
i

1βi 6=0∧β̂i 6=0 + 1βi=0∧β̂i=0 + 1βi=0∧β̂i 6=0 ·max
j
{Cov(Xi, Xj) · 1βj 6=0}

The optimal score is 1, the null score is 1− p0
p .

Prediction accuracy

We calculate the prediction accuracy of the model fit on an independent test data set gen-
erated by the same data-generating-model. For consistency we set n = 1000 regardless of
how many observations the model fit is based on.

5. Simulations and tuning

All simulations, model fits and assessments calculations were done in R [9]. Lasso and
Elastic Net were fitted in the glmnet [3] package and tuned over the default hyperparam-
eter set for λ. For Elastic Net we used 20 equidistant values of α ∈ [0, 1] (both endpoints
included). Forward Selection was fitted using the function fs from the bestsubset [4]
package. It is implemented as described above, and we use a default of min{n, p, 2000}
steps. Relaxed Lasso was fitted using lasso from the bestsubset package. The func-
tion is a wrapper for glmnet with a parameter nrelax corresponding to γ in the descrip-
tion of Relaxed Lasso above. We used 10 values of γ equidistantly distributed from 0 to
1 both included. In total for each dataset we fitted 100 × 10 Relaxed Lasso models. For
the Random Forest OLS we used the function randomForest from the package of the
same name [6] using the default of 500 trees. Further we set the option importance =
TRUE to asses the importance measures of the predictors. In the Naive Bootstrap Lasso we
bootstrap m = 10 datasets.

Computation time of each simulation applying all methods and all measures, ranged
from 1 to 25 minutes depending on the setting. Simulations were run on an HP probook,
32GB RAM, Intel core i7-7500u cpu @ 2.70GHz.
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Figure 1: All documents registered on Google Scholar holding the phrase ”Relaxed Lasso”
in any field (keywords, title, text etc.)

6. Results

We have included a small selection of the results in the appendix: For all three values of
ρ ∈ {0, 0.35, 0.7}we consider simulated data from a data-generating-model with p0 = 6 in
a low (p = 12), medium (p = 100) and high (p = 1000) setting. For the low and medium
setting we consider both n = 100 and n = 1000, in the high setting only n = 100 (due to
time constraints). The results are plotted by assessment measure with all 6 models in each
plot (the true fit is included as baseline). We report the average with 1 SE bands based on
10 simulations in the plots.

No conclusions from this study are as clear cut, bright and shiny as we had hoped
for. The main takehome message is, that the simplified Relaxed Lasso introduced in [5]
deserves more attention than it is currently given in the literature: a raw Google Scholar
search on ’relaxed lasso’ yielded only 369 hits in total throughout the last 13 years (Figure
1). It outperforms all other methods on all assessment measures regardless of the setting.
This is in agreement with the main conclusions from Hastie et al. in [5]. The seemingly
superiority of the method is thus not affected by the change in correlation structure and
evaluation by additional assessments measures. Neither of the additional methods we look
at are fair all-round competitors to the Relaxed Lasso. Lasso and Elastic Net behave some-
what similar. They manage quite well on the traditional assessment measures (PVE, RTE
and MSE), but seem to do that by being very greedy in the sense that they include far too
many features. They seem unaffected by the magnitude of the correlation. The Forward
Selection also does a fair job on these measures. Compared with the Relaxed Lasso it is a
little more reluctant to include features - which in turn makes it the lowest scoring when it
comes to finding exactly the right features. This is on the other hand the reason for its good
performance on the Naive Beta measure, as it gets a lot of credit for not including irrelevant
features.

The two ad hoc measures Random Forest OLS and Bootstrap Lasso do not impress
in their current state. The Random Forest OLS is surprisingly poor performing in all set-
ups. This is probably due to the fact that the data actually has a linear structure which the
Random Forest is quite ill suited to fit. The Random Forest is much celebrated when the
structure is non-linear or unknown, but it seems to backfire using it when a linear structure is
truly present in the data. The Bootstrap Lasso might on the other hand have some potential.
In short the general performance decreases very much when the data widens (p grows).
Larger nwill soften the fall but not enough. On top of that, the predicting power is definitely
the worst of all methods (regardless of p and n). However the explainability measures and
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PVE and RTE are all competitive even to the Relaxed Lasso in the low setting. The poor
performance on the fat data seems to be due to a unfortunate choice of cut-off after the
ranking process. Only using 5 dummy variables no matter the size of data simply will
not do the job. As p grows the probability that the dummy variables will ever be selected
decreases which in turn results in all variables ever picked out in any bootstrap data set
being included in the final model. Simple adjustments should be imposed on the cut-off
method to correct for this. A humble suggestion is to include r = p

3 dummy variables.
Increasing the number of bootstrap datasets might also help. This is a subject for further
simulations.

Regarding the Naive measure of proxyness (NP) we note, that on this data it never
really gets a fair chance to differentiate between different choices of ’wrong’ variables. As
all variables within a block are equally correlated, choosing a ’wrong’ variable will always
contribute with ρ instead of 1 to the nominator - hence all ’wrong’ variables are equally
’wrong’. Whether the measure is useful in addressing the question of not only selecting the
right variables but also those ”looking like” the right variables remains to be investigated.
We note however, based on this experience, that the measure seems to be in need of some
tuning. We suggest two possible refinements which will draw the measure in two different
directions:

1 Based on a ’better safe that sorry’ approach the reward for picking a true variable
should be somewhat higher than that for not choosing a wrong one.

2 Incorporation of the estimated effect size of the variable in question into the measure.
The rationale being that, it might be ’wrong’ but as the coefficient is neglectable - we
will not really look at it anyway - so it doesn’t matter so much and we will punish it
less.

Further, for the sake of completeness, one should probably consider involving the absolute
value of the correlation instead (as we only considered weakly positive correlations this
was not necessary). These thoughts tap back into a more philosophical discussion of what
is it we are actually looking for and what is good.

7. A reflection at the end

How does the idea of finding the right variables make sense? Does it make sense? When
true and non true variables are highly correlated, is it then wrong to pick the non true, which
undoubtedly has the same signal as the true? Does this set-up even exist in real data? Is it
not more likely, that if the correlation is certain, the observed variables are, to some extent,
driven by (some of) the same latent forces. Maybe it would be a fairer comparison, if the
models were applied to data generated from a latent model, and the assessment reflected
the degree to which the latent structure is excavated. Variable selection is a very difficult
craft, it’s easy to do wrong, but is it even possible to do well? The need for giving data
a diet becomes more and more inevitable as the amounts of data grow in both directions -
especially when data becomes fat or even obese. The initial selection is already performed
before we start working with the data by a combination of nature and choice. Some things
are unmeasureable, then we might try with proxies sometimes good some times bad. Other
things might be expensive or time consuming and hence we leave them out - but that is also
selection. Good field knowledge might give you reason to eliminate specific variables, but if
your data holds information on thousands of things incorporating this knowledge becomes
very difficult. This work has been a reminder of the humility which is fundamental when
analytic results are being presented. It is of enormous importance that the whole story is
told - not just the result.
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Result plots
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Low setting
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Low setting
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Low setting
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Low setting
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Low setting

ρ = 0.7, n = 1000, p = 12 and p0 = 6
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Medimum setting

ρ = 0, n = 100, p = 100 and p0 = 6
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Medium setting

ρ = 0, n = 1000, p = 100 and p0 = 6

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

Relative test error

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

Non zeros

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

Proportion of variance explained

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

True beta

0

50

100

150

1 2 3 4 5 6

MSE

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

Naive beta

method elasticNet
fs

lasso
naiveBootLasso

randomForestOLS
relaxo

theTruth

 
1513



Medimum setting

ρ = 0.35, n = 100, p = 10 and p0 = 6

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

Relative test error

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

Non zeros

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

Proportion of variance explained

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

True beta

0

50

100

150

1 2 3 4 5 6

MSE

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

Naive beta

method elasticNet
fs

lasso
naiveBootLasso

randomForestOLS
relaxo

theTruth

 
1514



Medium setting

ρ = 0.35, n = 1000, p = 100 and p0 = 6
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Medimum setting

ρ = 0.7, n = 100, p = 100 and p0 = 6
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Medium setting

ρ = 0.7, n = 1000, p = 100 and p0 = 6
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High setting

ρ = 0, n = 100, p = 1000 and p0 = 6
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High setting

ρ = 0.35, n = 100, p = 1000 and p0 = 6

10

20

30

40

50

1 2 3 4 5 6

Relative test error

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6

Non zeros

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

Proportion of variance explained

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

True beta

0

50

100

150

1 2 3 4 5 6

MSE

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

Naive beta

method elasticNet
fs

lasso
naiveBootLasso

randomForestOLS
relaxo

theTruth

 
1519



High setting

ρ = 0.7, n = 100, p = 1000 and p0 = 6
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