
Using the SAS® Hash Object for Sample Allocation

Procedures with Large Datasets/Big Data

Julia Batishev, Michael Yang
NORC at the University of Chicago, 4350 East-West Highway, Bethesda, MD 20814

Abstract

Sample allocation procedures for complex sample designs are usually implemented in

multiple steps. For example, we may need to allocate the sample by strata to meet precision

targets by analysis domains, where the domains may be defined in a hierarchical manner.

In addition, higher level domains may not be defined for all the data in the frame, or we

may choose not to target them. We may want to repeat the allocation procedure many times

to adjust the conditions and simulate the results based on different allocation schemes and

sample size levels. To allocate the sample under many restrictions is a challenging task by

itself. When we need to apply the allocation procedures to big data, such as U.S. household

frames or Medicaid beneficiary files, we also face problems associated with elapsed time,

CPU and Memory usage. In this paper, we compare the use of the Hash Object (SAS), the

traditional SAS DATA step processing mode, and PROC SQL in SAS for complex sample

allocation tasks and present the advantages and tradeoffs of using the Hash Object.

Key Words: SAS Hash Object, Sample Allocation, Sample Size, Domains, DOW-Loop

SAS, SAS Macro, Big Data

1. Introduction

We often encounter issues with computational resources when working with large datasets.

In some cases we need to upgrade computer hardware, but sometimes we can simply

change the implementation to make better use of existing computational resources.

To study the efficiency of different implementations of a sample allocation task, we carried

out the same sample allocation task in SAS in three ways: traditional SAS DATA step,

SAS PROC SQL, and SAS Hash Object. We evaluated computational resource use in terms

of memory usage, elapsed (real) time, and CPU (Central Processing Unit) time.

We examined each implementation with simulated frame files of different sizes: ten

thousand, one million, five million, and ten million records. For each frame size we ran

each program fifty times on the same computer and recorded resulting computational

resource usage measures.

We then compare the performance of each method based on the observed data and discuss

the implications for selecting an implementation depending on data size and computational

resources are available.

2. Sample Allocation Example

1691

Consider the sample allocation task as a two-steps process where we need to meet precision

requirements for the strata and improve representation of the sample for target domains.

The domains are defined as collections of strata. When we allocate additional cases to meet

the domain level precision, we need to add samples to strata by some rules, considering

that the total sample sizes in strata may not exceed the population sizes in these strata.

In this example we consider the following task:

For simplicity, in step one, at the strata level, we allocate the same number of cases to each

stratum. This step will allocate about two thirds of the total sample size. In step two we

allocate the rest of the sample in such a way that the full sample would be distributed as

close to the frame distribution per domain as possible.

We calculate the sample sizes for domain level proportionally based on the full sample and

take into account the number of cases already allocated in step one per stratum for each

domain. If we exceed the necessary sample size per domain for some domains in the first

step we don’t add any additional cases in step two for those domains. Finally, we readjust

the sample size calculated initially per domain and redistribute samples to strata within

each domain to get the final sample sizes for each stratum.

We divided the sample allocation algorithm in our example into the following parts:

1. Calculate totals per strata, domain, and overall total based on the frame file

2. Calculate proportions for domains within frame and strata within domain for each

domain

3. Calculate the sample size for each stratum in step one

4. Calculate the sample size for each domain in step two

5. Redistribute the cases allocated in step two to each stratum within each domain

Each part of the algorithm is described in detailed using pseudocode (See Appendix 1.)

We used the same variable names in the examples of the SAS programs (See Appendix 2).

We included the SAS programs to show the differences in coding and their impact on the

computational resources.

In the programs we used the following features and procedures:

- for traditional SAS DATA step code: PROC MEANS/SUMMARY, PROC SORT,

DOW-Loop (SAS), SAS Macro, regular data step with calculations, and merging

- for SAS PROC SQL program: Inline queries/subqueries, used calculated variables

in the select statement for expressions/formulas, summarized groups of data,

joined multiple tables, performed advanced queries, combined data horizontally

and vertically

- for SAS Hash Object sample allocation program: Used lookup functionalities of

hash object, updated/modified contents of hash object, used merging techniques

with hash object, used iterators/(‘hiter’) object, summarized hierarchically related

data and also with the hash iterator object, updated data values and orders

observations with hash object, and created data sets from hash objects.

3. Simulation and Measures

1692

We obtained computational performance based on simulated frame files. We created frame

files with different sizes: ten thousand, one million, five million, and ten million

observations. For each frame size we simulated fifty frame files with the same structure.

For each implementation and for each frame file we obtained computational performances

for memory usage and CPU time usage.

The computational statistics were recorded by using FULLSTIMER option and collected

with the LOGPARSE SAS Macro.

For each individual process we recorded maximum values for the Memory and OS Memory

as well as totals for the User CPU time, System CPU Time, and Real Time values.

3.1 Real Time and CPU time

The User CPU time and the System CPU time are mutually exclusive. When processor

executes the user written code – it records the CPU time as a User CPU time, and when

processor executes the operating system tasks to support the user written code – it records

the CPU time as a System CPU time.

We plot the averages of the distribution of the User CPU time and the System CPU time

based on fifty replicates for each frame size and for each method. The User CPU time and

System CPU time increases with the size of the frame file. The SAS Hash Object sample

allocation program uses less System CPU time compared with the other implementations

for the same frame size and it allocates more User CPU time.

Table 1: Description of FULLSTIMER Statistics from SAS® documentations

Statistics Description

Real Time The amount of time spent to process the SAS job. Real time is

also referred to as elapsed time

User CPU Time The CPU time spent to execute SAS code

System CPU Time The CPU time spent to perform operating system tasks (system

overhead tasks) that support the execution of SAS code

Memory The amount of memory required to run a step

OS Memory The maximum amount of memory that a step requested from the

System

1693

Figure 1: Averages of the User and System CPU Times for each implementation by frame

size.

We also compared the distribution of the total CPU time, which is the sum of the User CPU

and the System CPU, by frame size for each method. The larger the size of the frame file

the more visible the difference in the usage of the CPU resources between the methods.

The traditional SAS DATA step process uses less CPU time than other methods for larger

frame files and there are almost no differences between methods for smaller frame sizes

i.e. one million records and less.

1694

Figure 2: Distribution of the CPU Time for each implementation by frame size.

Figure 3 shows the distribution of the elapsed time (Real time) by frame size for each

method. There are large difference between the methods by frame size. The larger the size

of the frame file the larger the differences between the methods. The traditional SAS

DATA step processing mode performs faster for all sizes of the frame files. The distribution

of the values of the Real time for the SAS Hash Object implementation method is the same

as the distribution of the CPU time for this method.

Figure 3: Distribution of the Real Time for each implementation by frame size.

Some SAS procedures automatically use available parallel processing resources and

redistribute the job over available CPU cores (We used PC with four cores for the

simulations). The SAS Hash Object program folds up to one data step, therefore it uses

1695

only one CPU core, while the traditional SAS DATA step program and the SAS PROC

SQL program use all available CPU cores for some steps.

We plot the median values of the distributions of the CPU time and Real time for frame

files with sizes of one million, five million, and ten million by each implementation method

side by side.

Figure 4: Median values of the distributions of the CPU time and Real time for sizes one,

five, and ten million by implementation method.

Figure 5: The distribution of the differences between CPU time and Real time.

1696

We also analyzed the distribution of the differences between CPU time and Real time for

each implementation to understand which method takes more advantage of distributed

computing.

The largest difference between CPU time and Real time is for SAS PROC SQL

implementation, which means that SAS PROC SQL takes better advantage of multiple

cores. The difference between CPU time and Real time is close to zero and negative for

SAS Hash Object implementation. It means that SAS Hash Object implementation uses

only one CPU with the default settings within the data step. The traditional SAS DATA

step processing mode uses multiple cores with the default settings, but not as much as SAS

PROC SQL.

3.2 Memory Usage

We collected two measures for memory usage for each process:

- Memory - the amount of memory that is allocated for the sample allocation process

which does not include the memory that needed for SAS as overhead to manage

and execute the task.

- OS Memory – the total amount of memory that includes the amount of memory

allocated for the sample allocation process and overhead.

We plot the averages over fifty simulations of the amount of memory per implementation

and frame size in Log scale. The results show that the SAS Hash Object is more memory-

efficient for large datasets than the traditional SAS DATA step and the SAS PROC SQL

techniques. The amount of memory needed by the SAS Hash Object program does not

appreciably change for different sizes of input data. The traditional SAS DATA step

program needs more memory, but has the same pattern. For the SAS PROC SQL

implementations the usage of the memory is increasing as the size of the frame file is

increasing.

Figure 6: The average amount of memory per implementation and frame size in Log scale.

1697

The overhead of the memory that needed for SAS to manage and execute the sample

allocation processes does not change considerably for different sizes of frame files and

different methods. It is in the 9MB -12MB range for all three implementation methods and

for different sizes of the input data.

Figure 7: Median values of the distributions of the OS memory overhead used to perform

tasks.

4. Conclusions

Each implementation approach has their advantages and tradeoffs. The SAS Hash Object

technique is very useful when we need to work with very large data and may face a memory

overflow issue.

The SAS PROC SQL approach is the easiest way to program this task and it also takes

better advantage of multiple cores to reduce elapsed time with large datasets.

The traditional SAS DATA step style program executes the task faster and also does not

use much OS memory.

Acknowledgements

We would like to thank Y. Sverchkov for his diligent proofreading of this paper. Special

thanks to Edward Mulrow, Nola du Toit, and B. Boex for their help with the preparation

of the JSM poster.

Appendix 1

Table 1 Appendix 1: Detailed algorithm (pseudocode) for the example of the sample

allocation program

1. Calculate totals per strata, domain, and overall total based on the frame file

 UNT – number of observations in the frame

 UD1_K – number of observations in domain K (calculate for each domain)

1698

Appendix 2

A2.1 Example of the sample allocation implementation using traditional SAS DATA

step programming techniques

The code in traditional SAS DATA step techniques is divided into five parts that

corresponds Table 1 Appendix 1.

1. Calculation of totals per strata, domain, and overall total based on the frame file:

 UNT_S – number of observations in stratum S (calculate for each strata)

2. Calculate proportions for domains within frame and strata within domain

 UPD_K = UD1_K/UNT – proportion of domain K in the frame (for each domain)

 UPS_wD1_S = UNT_S /UD1_K – proportion of stratum S in Domain K (for each

 stratum)

3. Calculate the sample size for each stratum in step one

 LN – Sample size

 WS1_LN_S = (LN×2/3)/Str – calculated sample size for stratum S

 ACTS1_LN_S = min (WS1_LN_S, UNT_S) – actual sample size for stratum S,

 which is minimum of calculated sample size for stratum S and frame size for stratum

 S (for each stratum)

4. Calculate the sample size for each domain in step two

 WS2_LD_K = LN×UPD_K – calculated sample size for domain K

 ACTS1_LD_K = sum (ACTS1_LN_S) by S within domain K – allocated sample

 size for domain K in step one

 ACTS1_LD = sum (ACTS1_LN_S) by S – sample size allocated in step one

 NEEDS2_LD_K =max (0, WS2_LD_K - ACTS1_LD_K) – need to allocate for

 domain K

 NEEDS2_LD = sum (NEEDS2_LD_K) by K – additional cases that need to

 allocate in step two

 ADJS2_LD_K= max (0, LN- ACTS1_LD)* NEEDS2_LD_K/ NEEDS2_LD –

 adjusted sample for domain K (calculate for each domain)

5. Redistribute the cases allocated in step two to each stratum within each domain

 ADDS2_LN_S = ADJS2_LD_K × UPS_wD1_S – cases that we need to add to

 stratum S

 CALCS2_LN_S = ACTS1_LN_S + ADDS2_LN_S – sum of allocated cases in

 step one and two for stratum S

 R_CALCS2_LN_S = round (min (UNT_S, CALCS2_LN_S)) - adjusted and

 rounded sample size for stratum S (calculate for each stratum)

1699

2. Calculation of proportions for domains within frame and strata within domain for each

domain:

3. Calculation of the sample size for each stratum in step one:

4. Calculation of the sample size for each domain in step two:

1700

5. Calculation of the cases allocated in step two to each stratum within each domain:

A2.2 Example of the sample allocation implementation using SAS PROC SQL

programming techniques

The PROC SQL (SAS) program is divided into five parts that corresponds Table 1

Appendix 1.

1. Calculation of totals per strata, domain, and overall total based on the frame file:

1701

2. Calculation of proportions for domains within frame and strata within domain for each

domain:

3. Calculation of the sample size for each stratum in step one:

4. Calculation of the sample size for each domain in step two:

1702

5. Calculation of the cases allocated in step two to each stratum within each domain:

A2.3 Example of the sample allocation implementation using Hash Object SAS

programming techniques

Below is the Hash Object SAS Code for the full program divided into six parts.

First we initialized the Hash and Hiter (Iterator) objests and then follow the algorithm that

described in the the Table 1 Appendix 1.

Initialization of the Hash Objects and Iterator Objects

1703

1. Calculation of totals per strata, domain, and overall total based on the frame file:

2. Calculation of proportions for domains within frame and strata within domain for each

domain:

1704

3. Calculation of the sample size for each stratum in step one:

4. Calculation of the sample size for each domain in step two:

1705

5. Calculation of the cases allocated in step two to each stratum within each domain:

References

1706

SAS Institute Inc. 2016. SAS® 9.4 Companion for Windows, Fifth Edition. Cary, NC:

SAS Institute Inc

SAS Institute Inc. 2017. Base SAS® 9.4 Procedures Guide, Seventh Edition. Cary, NC:

SAS Institute Inc.

P.Dorfman, D.Henderson. Data Aggregation Using the SAS Hash Object. SAS Global

Forum, Dallas, TX, 2015.

http://support.sas.com/resources/papers/proceedings15/2000-2015.pdf

P.Dorfman, D.Henderson. Beyond Table Lookup: The Versatile SAS® Hash Object. SAS

Global Forum, Orlando, FL, 2017. http://beoptimized.be/pdf/Paper_821-2017.pdf

P.Dorfman. Table Lookup by Direct Addressing: Key-Indexing, Bitmapping, Hashing.

SUGI 26, Long Beach, CA, 2001. SUGI 26: Table Look-Up by Direct Addressing:

Key-Indexing

Li, Arthur. 2014. Understanding and Applying the Logic of the DOW-Loop. Proceedings

of the PharmaSUG 2014 Conference. San Diego, CA.

Allen, Richard Read. 2010. Practical Uses of the DOW Loop. Proceedings of the WUSS

2010 Conference. San Diego, CA.

Keintz, Mark. 2016. From Stocks to Flows: Using SAS® HASH objects for FIFO, LIFO,

and other FO’s. MWSUG 2016.

https://www.mwsug.org/proceedings/2016/BB/MWSUG-2016-BB22.pdf

Eberhardt, Peter. 2014. The SAS® Hash Object: It’s Time To .find() Your Way Around.

SAS Global Forum, Washington, DC, 2014.

http://support.sas.com/resources/papers/proceedings14/1482-2014.pdf

Raithel, Michael A. 2005. Programmatically Measure SAS® Application Performance On

Any Computer Platform With the New LOGPARSE SAS Macro, SUGI 30,

Philadelphia, Pennsylvania, 2005. http://www2.sas.com/proceedings/sugi30/219-

30.pdf.

1707

