JSM 2018 - Section for Statistical Programmers and Analysts

Using the SAS® Hash Object for Sample Allocation
Procedures with Large Datasets/Big Data

Julia Batishev, Michael Yang
NORC at the University of Chicago, 4350 East-West Highway, Bethesda, MD 20814

Abstract

Sample allocation procedures for complex sample designs are usually implemented in
multiple steps. For example, we may need to allocate the sample by strata to meet precision
targets by analysis domains, where the domains may be defined in a hierarchical manner.
In addition, higher level domains may not be defined for all the data in the frame, or we
may choose not to target them. We may want to repeat the allocation procedure many times
to adjust the conditions and simulate the results based on different allocation schemes and
sample size levels. To allocate the sample under many restrictions is a challenging task by
itself. When we need to apply the allocation procedures to big data, such as U.S. household
frames or Medicaid beneficiary files, we also face problems associated with elapsed time,
CPU and Memory usage. In this paper, we compare the use of the Hash Object (SAS), the
traditional SAS DATA step processing mode, and PROC SQL in SAS for complex sample
allocation tasks and present the advantages and tradeoffs of using the Hash Object.

Key Words: SAS Hash Object, Sample Allocation, Sample Size, Domains, DOW-Loop
SAS, SAS Macro, Big Data

1. Introduction

We often encounter issues with computational resources when working with large datasets.
In some cases we need to upgrade computer hardware, but sometimes we can simply
change the implementation to make better use of existing computational resources.

To study the efficiency of different implementations of a sample allocation task, we carried
out the same sample allocation task in SAS in three ways: traditional SAS DATA step,
SAS PROC SQL, and SAS Hash Object. We evaluated computational resource use in terms
of memory usage, elapsed (real) time, and CPU (Central Processing Unit) time.

We examined each implementation with simulated frame files of different sizes: ten
thousand, one million, five million, and ten million records. For each frame size we ran
each program fifty times on the same computer and recorded resulting computational
resource usage measures.

We then compare the performance of each method based on the observed data and discuss
the implications for selecting an implementation depending on data size and computational

resources are available.

2. Sample Allocation Example

1691

JSM 2018 - Section for Statistical Programmers and Analysts

Consider the sample allocation task as a two-steps process where we need to meet precision
requirements for the strata and improve representation of the sample for target domains.
The domains are defined as collections of strata. When we allocate additional cases to meet
the domain level precision, we need to add samples to strata by some rules, considering
that the total sample sizes in strata may not exceed the population sizes in these strata.

In this example we consider the following task:

For simplicity, in step one, at the strata level, we allocate the same number of cases to each
stratum. This step will allocate about two thirds of the total sample size. In step two we
allocate the rest of the sample in such a way that the full sample would be distributed as
close to the frame distribution per domain as possible.

We calculate the sample sizes for domain level proportionally based on the full sample and
take into account the number of cases already allocated in step one per stratum for each
domain. If we exceed the necessary sample size per domain for some domains in the first
step we don’t add any additional cases in step two for those domains. Finally, we readjust
the sample size calculated initially per domain and redistribute samples to strata within
each domain to get the final sample sizes for each stratum.

We divided the sample allocation algorithm in our example into the following parts:

1. Calculate totals per strata, domain, and overall total based on the frame file

2. Calculate proportions for domains within frame and strata within domain for each
domain

3. Calculate the sample size for each stratum in step one

4. Calculate the sample size for each domain in step two

5. Redistribute the cases allocated in step two to each stratum within each domain

Each part of the algorithm is described in detailed using pseudocode (See Appendix 1.)

We used the same variable names in the examples of the SAS programs (See Appendix 2).
We included the SAS programs to show the differences in coding and their impact on the
computational resources.

In the programs we used the following features and procedures:

- fortraditional SAS DATA step code: PROC MEANS/SUMMARY, PROC SORT,
DOW-Loop (SAS), SAS Macro, regular data step with calculations, and merging

- for SAS PROC SQL program: Inline queries/subqueries, used calculated variables
in the select statement for expressions/formulas, summarized groups of data,
joined multiple tables, performed advanced queries, combined data horizontally
and vertically

- for SAS Hash Object sample allocation program: Used lookup functionalities of
hash object, updated/modified contents of hash object, used merging techniques
with hash object, used iterators/(‘hiter’) object, summarized hierarchically related
data and also with the hash iterator object, updated data values and orders
observations with hash object, and created data sets from hash objects.

3. Simulation and Measures

1692

JSM 2018 - Section for Statistical Programmers and Analysts

We obtained computational performance based on simulated frame files. We created frame
files with different sizes: ten thousand, one million, five million, and ten million
observations. For each frame size we simulated fifty frame files with the same structure.
For each implementation and for each frame file we obtained computational performances
for memory usage and CPU time usage.

The computational statistics were recorded by using FULLSTIMER option and collected
with the LOGPARSE SAS Macro.

For each individual process we recorded maximum values for the Memory and OS Memory
as well as totals for the User CPU time, System CPU Time, and Real Time values.

Table 1: Description of FULLSTIMER Statistics from SAS® documentations

Statistics Description

Real Time The amount of time spent to process the SAS job. Real time is
also referred to as elapsed time

User CPU Time The CPU time spent to execute SAS code

System CPU Time | The CPU time spent to perform operating system tasks (system
overhead tasks) that support the execution of SAS code

Memory The amount of memory required to run a step
OS Memory The maximum amount of memory that a step requested from the
System

3.1 Real Time and CPU time

The User CPU time and the System CPU time are mutually exclusive. When processor
executes the user written code — it records the CPU time as a User CPU time, and when
processor executes the operating system tasks to support the user written code — it records
the CPU time as a System CPU time.

We plot the averages of the distribution of the User CPU time and the System CPU time
based on fifty replicates for each frame size and for each method. The User CPU time and
System CPU time increases with the size of the frame file. The SAS Hash Object sample
allocation program uses less System CPU time compared with the other implementations
for the same frame size and it allocates more User CPU time.

1693

JSM 2018 - Section for Statistical Programmers and Analysts

CPU Time by User CPU Time and System CPU Time
12.49
10.73
|| usercpuTime
7.75
6.20
w
2 536
3
[
17
g
o 3.92
E
=
128 409
0.81
009 013 011
008 002 005 g15 010 016 AL 7 7
052 045 25 |’ iy
0.64 e o4 V)
1.24
i/zj System CPU Time
0.1x10¢ 1%108 5x108 10%10°
Number of Records in the Frame
[3 Traditional SAS DATA step [0 SAS Hash Object [SAS PROC SC&/

Figure 1: Averages of the User and System CPU Times for each implementation by frame
size.

We also compared the distribution of the total CPU time, which is the sum of the User CPU
and the System CPU, by frame size for each method. The larger the size of the frame file
the more visible the difference in the usage of the CPU resources between the methods.
The traditional SAS DATA step process uses less CPU time than other methods for larger
frame files and there are almost no differences between methods for smaller frame sizes
i.e. one million records and less.

1694

JSM 2018 - Section for Statistical Programmers and Analysts

CPU Time used to run the tasks

12.5- [
=l

10.0
4
5
o 7.5
<°3 ,
£ 0.225
@ ==
£ 01754 I % T

2.09 01254 | _

T
0.1x10¢
25
/ - ==
00 — T- — T T T
0.1x10° %108 5x10¢ 10%10°

Number of Records in the Frame

Type of the SAS program:
Ol Traditional SAS DATA step [0 SAS Hash Object B SAS PROC SQL

Figure 2: Distribution of the CPU Time for each implementation by frame size.

Figure 3 shows the distribution of the elapsed time (Real time) by frame size for each
method. There are large difference between the methods by frame size. The larger the size
of the frame file the larger the differences between the methods. The traditional SAS
DATA step processing mode performs faster for all sizes of the frame files. The distribution
of the values of the Real time for the SAS Hash Object implementation method is the same
as the distribution of the CPU time for this method.

Real Time (Elapsed Time) used to run the tasks

12,5

10.0
" :
g =
g 754
e 0.175 I
‘» 0.125- T o
£ I
= 504 0.0754

T
0.1x10° ==
25-
0.0 T ——— T T T
0.1%10° 1%10° 5%10° 10%10°

Number of Records in the Frame

Type of the SAS program:
Ol Traditional SAS DATA step [0 SAS Hash Object B SAS PROC SQL

Figure 3: Distribution of the Real Time for each implementation by frame size.
Some SAS procedures automatically use available parallel processing resources and

redistribute the job over available CPU cores (We used PC with four cores for the
simulations). The SAS Hash Object program folds up to one data step, therefore it uses

1695

JSM 2018 - Section for Statistical Programmers and Analysts

only one CPU core, while the traditional SAS DATA step program and the SAS PROC
SQL program use all available CPU cores for some steps.

We plot the median values of the distributions of the CPU time and Real time for frame
files with sizes of one million, five million, and ten million by each implementation method

side by side.
CPU Time vs Real Time
Traditional SAS DATA step SAS Hash Object SAS PROC SQL
14
/\ €PU Time /
{ 11.97 A
@ Real Time / K
/ f/
/ J:
/ f’
8 0 A / @ 867
5 : /'
73 4 e /
s 7 °:: .0
fo] / 5 0QQ /
g / 5 .,H.A/
= / L
A / ,f’ 4.69
] / /7
& / A
/ //
/ i
64 0.6 o0 1248 02
0
T T T T T T T T T
1%10° 5x10° 10x10° 1108 5%x10° 10x10° 1108 5x10° 10x10¢
Number of Records in the Frame

Figure 4: Median values of the distributions of the CPU time and Real time for sizes one,

five, and ten million by implementation method.

Difference between CPU Time and Real Time
364+ :
4
g -
O
8 #
o /
£ 218 /
~
r T -
3 ,
) e
a : :
g 12 /
g A
S i g
> _’/
a T
O 034 ==
04 e = —=— p—
-0.24 - 1
T T T
1x10% 5%108 10%108
Number of Records in the Frame
Type of the SAS program:
1 Traditional SAS DATA step 1 SAS Hash Object 1l SAS PROC SQL

Figure 5: The distribution of the differences between CPU time and Real time.

1696

JSM 2018 - Section for Statistical Programmers and Analysts

We also analyzed the distribution of the differences between CPU time and Real time for
each implementation to understand which method takes more advantage of distributed
computing.

The largest difference between CPU time and Real time is for SAS PROC SQL
implementation, which means that SAS PROC SQL takes better advantage of multiple
cores. The difference between CPU time and Real time is close to zero and negative for
SAS Hash Object implementation. It means that SAS Hash Object implementation uses
only one CPU with the default settings within the data step. The traditional SAS DATA
step processing mode uses multiple cores with the default settings, but not as much as SAS
PROC SQL.

3.2 Memory Usage

We collected two measures for memory usage for each process:

- Memory - the amount of memory that is allocated for the sample allocation process
which does not include the memory that needed for SAS as overhead to manage
and execute the task.

- OS Memory — the total amount of memory that includes the amount of memory
allocated for the sample allocation process and overhead.

We plot the averages over fifty simulations of the amount of memory per implementation
and frame size in Log scale. The results show that the SAS Hash Object is more memory-
efficient for large datasets than the traditional SAS DATA step and the SAS PROC SQL
techniques. The amount of memory needed by the SAS Hash Object program does not
appreciably change for different sizes of input data. The traditional SAS DATA step
program needs more memory, but has the same pattern. For the SAS PROC SQL
implementations the usage of the memory is increasing as the size of the frame file is
increasing.

Amount of Memory required to run the tasks
5124 e /O
 — Sy -
© e
g 200 e @
@ ot e
o~
o 128 g
g G
o 641 c
O
3 s
© 324
s /
i}
: g
g
R e O
s
= 4
2{ Yo —Pp—————— === L ¥
T T T T
0.1x10% 1x10° 5x10° 10%10°
Number of Records in the Frame
Type of the SAS program: |
@ Traditional SAS DATA step ¥ SAS Hash Object @ SAS PROC SQL

Figure 6: The average amount of memory per implementation and frame size in Log scale.

1697

JSM 2018 - Section for Statistical Programmers and Analysts

The overhead of the memory that needed for SAS to manage and execute the sample
allocation processes does not change considerably for different sizes of frame files and
different methods. It is in the 9MB -12MB range for all three implementation methods and
for different sizes of the input data.

0S Memory overhead used to perform the tasks
size = 0.1=108 size = 1x10° size = 5x10° size = 10x10°

124
O & [. 1 . ¢ 82 o
Q ¢ ® ®

Memory in MB

Type of the SAS program: @ Traditional SAS DATA step ¥ SAS Hash Object @ SAS PROC SQL

Figure 7: Median values of the distributions of the OS memory overhead used to perform
tasks.

4. Conclusions

Each implementation approach has their advantages and tradeoffs. The SAS Hash Object
technique is very useful when we need to work with very large data and may face a memory
overflow issue.

The SAS PROC SQL approach is the easiest way to program this task and it also takes
better advantage of multiple cores to reduce elapsed time with large datasets.

The traditional SAS DATA step style program executes the task faster and also does not
use much OS memory.

Acknowledgements
We would like to thank Y. Sverchkov for his diligent proofreading of this paper. Special

thanks to Edward Mulrow, Nola du Toit, and B. Boex for their help with the preparation
of the JSM poster.

Appendix 1

Table 1 Appendix 1: Detailed algorithm (pseudocode) for the example of the sample
allocation program

1. Calculate totals per strata, domain, and overall total based on the frame file
UNT — number of observations in the frame
UDI1_K —number of observations in domain K (calculate for each domain)

1698

JSM 2018 - Section for Statistical Programmers and Analysts

UNT _S — number of observations in stratum S (calculate for each strata)

2. Calculate proportions for domains within frame and strata within domain
UPD K =UDI1_K/UNT - proportion of domain K in the frame (for each domain)
UPS wD1 S=UNT_S/UD1 K — proportion of stratum S in Domain K (for each
stratum)

3. Calculate the sample size for each stratum in step one
LN — Sample size
WS1 LN_S = (LNx2/3)/Str — calculated sample size for stratum S
ACTS1_LN S=min (WS1_LN_S, UNT_S) — actual sample size for stratum S,
which is minimum of calculated sample size for stratum S and frame size for stratum
S (for each stratum)

4. Calculate the sample size for each domain in step two
WS2 LD K =LNxUPD K - calculated sample size for domain K
ACTS1 LD K=sum (ACTS1_LN_S) by S within domain K — allocated sample
size for domain K in step one
ACTS1 LD =sum (ACTS1 LN S) by S — sample size allocated in step one
NEEDS2 LD K =max (0, WS2 LD K - ACTS1 LD K) - need to allocate for
domain K
NEEDS2 LD =sum (NEEDS2 LD K) by K — additional cases that need to
allocate in step two
ADJS2 LD K=max (0, LN- ACTS1 LD)* NEEDS2 LD K/NEEDS2 LD —
adjusted sample for domain K (calculate for each domain)

5. Redistribute the cases allocated in step two to each stratum within each domain
ADDS2 LN S=ADJS2 LD K x UPS wD1_S — cases that we need to add to
stratum S
CALCS2 LN S=ACTS1 LN S+ ADDS2 LN S — sum of allocated cases in
step one and two for stratum S
R CALCS2 LN S =round (min (UNT_S, CALCS2 LN 8S)) - adjusted and
rounded sample size for stratum S (calculate for each stratum)

Appendix 2

A2.1 Example of the sample allocation implementation using traditional SAS DATA
step programming techniques

The code in traditional SAS DATA step techniques is divided into five parts that
corresponds Table 1 Appendix 1.

1. Calculation of totals per strata, domain, and overall total based on the frame file:

1699

JSM 2018 - Section for Statistical Programmers and Analysts

proc means data=5 noprint missings
class STRATR DOMRIN 1;
var WIl;
output out=5UMMLEY r=UN Sun=MNT;
iy
data FRZME TOT(keep =UNT)
Domainl TOT (keep=DCMRATN 1 TNT rename= (INT=UD1 E))
Strata TOT (keep=S5STRATE UNT rename= (UNT=UNI_S5))
STRATR DOMATN TOT (keep =STRATZ DOMATH 1 TUNT
rensme= (UNT=UNT_5 D1 El);
set SUMMRRY;
if T¥PE =0 then cutput FREME TOT;
else if TYPE =1 then cutput Domainl TOT;
else if TYPE =2 then cutput Strata TCOT;
elae if TY¥DPE =3 then cutput STRATER DOMRIN TOT;

2. Calculation of proportions for domains within frame and strata within domain for each
domain:

data Domainl TOT;
if M =1 them aet FRIME TOT;
set Domeinl TOT end=last;
UPD EF=UD1_ E/TNT;
if last then call aymput('E DCMATN', W)7
marg
proc sort data = STRATR DOMRTN TOT; by DOMATN 1 STRATR; vum;
proc sort data = Domainl TOT; by DOMRTN 1. rnm;
S*DCH Loop *//* data with all totals and proportions */
data STRRTR DOMATHM TOT:
de N =1 by 1 until (LAST.Domain 1);
set Domainl TOT; by DOMRTN 1;
end;
do N =1l by 1 until (LAST.Domain 1);
do N =1 by 1 until (LAST _STRATR);
get STRATR DOMRTN TOT ; by DOMRTMN 1 STRATZR;
UES wDl 5=UNT S D1 E,/UD1 E;
ocutput ;
end;
end;
mary

3. Calculation of the sample size for each stratum in step one:

data NULL ;

set STRATE DOMATN TOT end=last;

if last then do;eozll symput('S STRATA', W)7
w3l In s={&sample size/ N)* (iprop of samp al¥*l);
w3l Ir-l&sample size)*|(&prop of samp sl*1);
call symput{'WS1 LN 5' wsl In s);
call gsymput('WS1 LN' wal Ln);

end;

data STRATR DOMRTN TOT; /* 51 actu=l */
set STRATR DOMATH TOT ;by DOMRTN 1 STRATA;
actsl LN S=min{{1*&I51 IN 5) ,UNT 5 D1 K);

s

4. Calculation of the sample size for each domain in step two:

1700

JSM 2018 - Section for Statistical Programmers and Analysts

proc means data = STRATA DOMRTN TOT ncoprint;
class DOMARIN 1;
var actsl IN 5;
cutput cut=Domainl totl (drop= freq _TIPE) surractsl 1D E;
s
data Domainl totl;
if W =1 then set Domainl totl (vhere={DCMATH 1=}
rename=(actal ID F=actgl ID));
do n =1 by 1 until {last.DCMRTIN 1);
set Domainl totl iwhere=(DCMATN 1 ~=.));by DOMRAIN 1 ;
end;
do n =1 by 1 until {last DCMRTH 1);
set Domainl tot ;by DOMRIN 1 ;
WsZ2 1D k=(l*&sample size) *UFD E;
WsZ2 ID=1*&sarple size;
needsZ ID k=mex (0, (WsZ ID k-actsl ID E));
remained after sl=WlsZ LD - actsl LD;
end;
manys
proc means data =Domainl totl sum min max n noprint;
var mneedsZ LD k;
cutput cut —meedsZ 1D (keep—meedsi 1D surrneedsZ LD;
mang
f* adjust count— calculate the mmber per domain per */
data Domainl totl;
if N =1 then set needsZ ILD;
set Domeinl totl;
ad]j EE_I.D_}FJ:_EJL (0, (WaZ_ID-actgl ID))* needal ID k/needsZ ID;
muns

5. Calculation of the cases allocated in step two to each stratum within each domain:

proc means data=5 noprint missing;
class STRATA DOMRTN 1;
wvar WIl;
output out=5UMMREY =N Sun=INT;
Tary
data FRAIME TOT(keep =UNT)
Domeinl TOT (keep=DCRMRAIN 1 TNT rename= (UNT=UD1 E))
Strata TOT (keep=S5TRATR UNT rensme=(INT=ONI 5})
STRATR DOMRTH TOT (keep =S5TRATE DOMATH 1 UNT
rename= (UNT=UNT 5 D1 E));
set SIMMRRY;
if TYPE =0 then cutput FREME TOT;
gelse if TYPE =1 then cutput Domainl TOT;
else if TYPE =2 then cutput Strata TCT;
else if TY¥PE =3 then cutput STRATLZ DOMRIN TOT:

A2.2 Example of the sample allocation implementation using SAS PROC SQL
programming techniques

The PROC SQL (SAS) program is divided into five parts that corresponds Table 1
Appendix 1.

1. Calculation of totals per strata, domain, and overall total based on the frame file:

1701

JSM 2018 - Section for Statistical Programmers and Analysts

proc S50L ;

create table STRATE DOMRTN TOT1 as

select DOMARTN 1, 5TRATA sum(WIl) =23 UNT S D1 E, count(WIl) a3 UN
from s

group by STRATR, DOMRTN 1

crder by DOMATH 1, STRAT2

create teble Domainl TOT as

select DOMATN 1, sumi(UNT S D1 E) as UD1 K

from STRATR DOMRTN TOT1

group by DCMATN 1

crder by DOMATN 1

2. Calculation of proportions for domains within frame and strata within domain for each
domain:

create teble STRRTRE DOMRTHN TOT as

select s DOMATN 1, s STRRTR,
£.UNI, 4.UDl K, s.UNT 5 D1 _E,
UDL_E/UNT =s UBD K,
UNT 5 D1 E/UDL K as UPS_wDl S5,

3. Calculation of the sample size for each stratum in step one:

/% step #1 */

counti{*) as 5 STRATR,

(&zarple size/ caloulated 5 STRATA)* (sprop of samp 31*1l) as

W51 1IN 5,

{&sarple size)* (sprop of samp 31*1l) as wsl_Ln,

min{ {caloulated WS1 IN 5) UNT 5 D1 E) a3 actsl IN 5
from
{select sumi{UDl E)} as UNT from Domainl TOT)as £,
Domainl TOT as 4 , STRATA DOMRTN TOTL as s
vwhere d.DCMATM 1= DOMRTH 1
crder by 3. .DCMAIN 1,s.5TRATR

4. Calculation of the sample size for each domain in step two:

1702

JSM 2018 - Section for Statistical Programmers and Analysts

create table Domainl totl as
select distinet s.DOMATHN 1, sumiactsl LN 5) a3 actsl ID K,
naleal actsl ID, s UDL E,
{l*&sample size)*s .UPD K as WaZ 1D k,
(l*ssample size) as WaZ 1D,
max (0, (caloulated WaZ LD k- calculated actsl ID KE)) as
needsé ID k,
calculated Ws2 ID - nslcal .actsl LD as remained after sl
from STERTR DOMATH TOT as 3 ,
{select sumiactsl IN 5) a3 actsl LD from STRATR DOMRIN TOT) as
nalcal
groagp by 3 DOMRTHN 1
crder by 3 DCOMATH 1

create table Domainl tot as

select dl.* d.needsi LD,
maai0, (dl_WsZ LD — dl _actal LD))* dl.needsZ LD k/d _needsZ 1D as
adjsZ LD k

from Domeinl totl as 41 ,
{gselect sumineedsZ ID k) a3 needsZ 1D from Domainl totl) as d

5. Calculation of the cases allocated in step two to each stratum within each domain:

create teble Strata domain totl as
select =.%, d.actsl LD, d.actsl ID k, 4.Ws2 LD k, d.Ws2 1D,
d.needsZ LD k, d.needsZ ID, d.remained after gl, d.adjsZ 1D k,
d.adjsZ LD k * s.UBS wDl 5§ as addSZ In =3,
caloulated 2ddS2 Im 5 + s.actsl IN 5 as calcSZ2 Im s,
round{ (min{s .UNI S5 D1 E calculated caleSZ In 5)),1) as
r calcSé 1n =
from STRATR DOMRATHN TOT as s,
Domainl tot as d
where = . DCMATH 1=d DOMATH 1

quit;

A2.3 Example of the sample allocation implementation using Hash Object SAS
programming techniques

Below is the Hash Object SAS Code for the full program divided into six parts.
First we initialized the Hash and Hiter (Iterator) objests and then follow the algorithm that
described in the the Table 1 Appendix 1.

Initialization of the Hash Objects and Iterator Objects

1703

JSM 2018 - Section for Statistical Programmers and Analysts

data NULL ;
retain UNT key 1;
if n =1 then do;
declare hash popTOTAL ()
popTOTRAL definekey('UNT kewy');
popTOTAL definedata ("UNIT_key', '"UNI', "actsl ID',"WsZ ID',
"remained after sl', 'meedsZ ID');
popTOTAL .de finedone () ;
declare hash Domain tmp ()7
Domzin tmp. definekey('UNT key', "DOMATH 1');
Domain tmp.definedata| "UNT key', "DOMRETIN 17, 'UD1 E');
Domain top.definedone();
declare hash Domainl (ordered: "yes');
declare hiter iterD|{|'Domainl');
Domainl definekey (" UNIT_key', "DOMRTN 17);
Domainl .definedata({'UNT key', "DOMRTN 1°, 'UD1 K, "UNT', "UED E',
'actsl ID E', "WsZ2 ID k', "'needsZ LD k', 'adjS2 LD k');
Domainl .definedone();
declare hash STRATUM Domsin tmp ()7
STRATTM Domain tmp.definekey('UNT key', "'DOMATH 1°', "STRATR') ;
STRATIM Domain tmp.definedatal 'UNI_key', 'DOMRTIN 1°, "STRATR',
'"UNT_5 D1 E');
STRATTM Domsin tmp.definedone();
declare hash STRATUM Domzin tot (ordered: "yes');
declare hiter iterST D{'SIRATUM Domain tot');
STRATTM Domain tot.definekey({'UNT key', "DOMATH 1°', "STRATA') ;
STRATUM Domain tot.definedatal 'UNT_key', 'DOMRIN 1', "STRRTR',
'"UNT_5 D1 E', 'UPS wDl_S5', "UDl E', "ONI','UOED K', 'actsl IN 5°,
'edd5Z In s', 'ezleSZ2 Lo 3', 'r caleS5Z2 In o s') 5
STRATTM Domain tot.definedone();
end;

1. Calculation of totals per strata, domain, and overall total based on the frame file:

do until (ECQF) ;
set § end=ECF;
if popTCTRAL _find{) ne 0 then czll missing(UNT) ;
TNT=sum{NT ,WIl) -
popTOTAL replace ()
if Domain tmp.find{) ne 0 then call missing(UDl E) ;
U0l _EFE=sum({UD1 K, WTl);
Domain tmp.replace() ;
Domainl. replace() ;
if STRATUM Domein tmp.findi{) me 0 then
call missing (ONT 5 D1 E)
UNT 5 D1 F=sum(UWI S D1 K, WTl);
STRATUM Domain tmp. replacel) ;
STRATIM Domain tot.replace() ;
end ;

2. Calculation of proportions for domains within frame and strata within domain for each
domain:

1704

JSM 2018 - Section for Statistical Programmers and Analysts

red = iterD first();
do while (red = 0);
if popTOTAL.find()=0 and Dom=in tmp.find{)=0 then do;
UED E=0D1 E/UNI;
re2=Domainl . replace() ;
end;
rod = iterD . mext();
end;
reST d = iterST D.first i)
do while (reST d = 0);
if popTOTEL.find{)=0 and Domeinl. find{)=0 and
STRATUM Domain tmp. £find{)=0 then do;
TUES will 5=UNT 5 [l _E/UD1 E;
STERATIM Domain tot.replace()
end;
reST d = iterST Donext () ;
end; - -

3. Calculation of the sample size for each stratum in step one:

5 STRATE=STRATUM Dom=in tot.NUM TTEMS;
wsl ILn s=(&sarple size/S5 STRATR)*(&prop of samp sl*1);
w3l Lre(&sample size) *(sprop of samp sl1+*1);

4. Calculation of the sample size for each domain in step two:

1705

JSM 2018 - Section for Statistical Programmers and Analysts

reST d = iterST D.firat();
do while (reS5T d = 0);
if popTCOTRAL. £find()=0 then do;
if Domainl.find()=0 then do;
if STRATM Domain tmp.find ()=0 then do;
actsl IN S=min({1*WS51_IN S5) ,UNT 5 D1 E);
STRATIM Domain tot.replace() ;
end;
actal LD E= sumiactsl LD K, actsl LN 5);
W2 LD k=({l*ssample size)*UFD E;
needsZ ID k=max (0, (Ws2 ID k-actsl ID KE));
redfz=Domainl . replace () ;
end;
actsl I sum{actsl ID, act3l LM 5);
WsZ_LE=1*&sanple_siEe; -7
remained after sl=WsZ 1D — actgl ID;
rep2—poplUTAL. replace () ;
end;
reST d = iterST Donexti);
end;
rod = iterD.first () ;
do while (red = 057
if popTOTRAL. find({)=0 and Domainl find({)=0 then do;
needsZ ID=sum{nsedaZ LD needsZ ID k);
end;
rod = iterDonext() ;
reZz=popTOTAL. replace() ;
end;
roed = iterD.first () ;
do while (red = 0)7
if popTCTAL.find{)=0 and Domainl find({)=0 then do;
adjs2 IO k=
mae (0, (WaZ_ID-actsl LD})* needsaZ ID k/needaZz ID;
ref=lomainl .replace () ;
end;
rod = iterDonext();
end;

5. Calculation of the cases allocated in step two to each stratum within each domain:

reST d = iterST Dofirsti);
do while {(reST d = 0);
if popTCTAL. find()=0 and Domsinl.find({)=0 and
STRATUM Domain tmp.find()=0 then do;
add5Z In s=adj5Z ID k*UP5 wDl 57
caleSZ In 5= addSZ Ln 3 + actal LN S5;
r calcSZ In ==
round{ (min{UNT 5 D1 K,calcSZ In =) ,1) 7
STRATUM Domein tot.replace() ;
end;
rcST d = iterST D.onexti);
end;
popTOTAL cutput (dataset: 'popTOTAL');
Domainl output (dataset: "sDomain tot");
STRATUM Domein tot.cutput (dataset: "&Strata domsin tot");
Itop;
many

References

1706

JSM 2018 - Section for Statistical Programmers and Analysts

SAS Institute Inc. 2016. SAS® 9.4 Companion for Windows, Fifth Edition. Cary, NC:
SAS Institute Inc

SAS Institute Inc. 2017. Base SAS® 9.4 Procedures Guide, Seventh Edition. Cary, NC:
SAS Institute Inc.

P.Dorfman, D.Henderson. Data Aggregation Using the SAS Hash Object. SAS Global
Forum, Dallas, TX, 2015.
http://support.sas.com/resources/papers/proceedings15/2000-2015.pdf

P.Dorfman, D.Henderson. Beyond Table Lookup: The Versatile SAS® Hash Object. SAS
Global Forum, Orlando, FL, 2017. http://beoptimized.be/pdf/Paper 821-2017.pdf

P.Dorfman. Table Lookup by Direct Addressing: Key-Indexing, Bitmapping, Hashing.
SUGI 26, Long Beach, CA, 2001. SUGI 26: Table Look-Up by Direct Addressing:
Key-Indexing

Li, Arthur. 2014. Understanding and Applying the Logic of the DOW-Loop. Proceedings
of the PharmaSUG 2014 Conference. San Diego, CA.

Allen, Richard Read. 2010. Practical Uses of the DOW Loop. Proceedings of the WUSS
2010 Conference. San Diego, CA.

Keintz, Mark. 2016. From Stocks to Flows: Using SAS® HASH objects for FIFO, LIFO,
and other FO’s. MWSUG 2016.
https://www.mwsug.org/proceedings/2016/BB/MWSUG-2016-BB22.pdf

Eberhardt, Peter. 2014. The SAS® Hash Object: It’s Time To .find() Your Way Around.
SAS Global Forum, Washington, DC, 2014.
http://support.sas.com/resources/papers/proceedings14/1482-2014.pdf

Raithel, Michael A. 2005. Programmatically Measure SAS® Application Performance On
Any Computer Platform With the New LOGPARSE SAS Macro, SUGI 30,
Philadelphia, Pennsylvania, 2005. http://www?2.sas.com/proceedings/sugi30/219-
30.pdf.

1707

