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Abstract 
With the increasing globalization of drug development, it has become important that data 
from multi-regional clinical trials (MRCTs) can be accepted by regulatory agencies across 
regions as the primary source of evidence to support marketing approval of drugs. The 
Japanese MRCT guidance presented two criteria for evaluating consistency, which were 
generalized and evaluated using unconditional, conditional or joint approaches with the 
overall significant test. For using the three approaches to evaluate regional consistency 
requirements, we propose a unify method in sample size and assurance probability 
calculation. The method involves simulating sufficient test statistic vectors across regions 
and its outputs are accurate in comparison with results from several published papers using 
complex analytical derivation and numerical integration. The method can be conveniently 
implemented by a statistical practitioner and applicable to more general consistency criteria 
across regions in statistical planning of MRCT.  
 

Key Words: Multi-regional clinical trial, MRCT, Consistency criterion, Sample size, 
Assurance probability 
 

1. Introduction 

 
As specified in ICH E17 guideline, it has become important that data from multi-regional 
clinical trials (MRCTs) can be accepted by regulatory agencies across regions as the 
primary source of evidence to support marketing approval of drugs (International 
Conference on Harmonization 2017). The guideline presented general recommendations 
in the planning and design of MRCTs, including sample size allocation and statistical 
analysis principles. The primary objective of an MRCT generally corresponds to an 
evaluation of the treatment effect averaged across all regions. The overall sample-size is 
determined to ensure that this objective can be met. The MRCT should be planned to 
include an evaluation of the consistency of treatment effects among regions. 
 
In order to solve Japanese “drug lag” problem, MHLW (Ministry of Health, Labour and 
Welfare) Published a guidance in 2007: Basic Principles on Global Clinical Trials. The 
guidance is in question-and-answer form with 12 questions and answers, and a flow chart 
to determine when to use global confirmatory trials (MRCTs) and when to have an 
additional domestic (ie, Japan) study. For using MRCTs, the guideline proposed two 
methods (Method 1 and Method 2) for Japanese sample size requirement in order to 
obtain consistent result.  
 
After the MHLW (2007) publication, many authors further evaluated and generalized the 
consistency criteria. Kawai et al (2008) provided formula and numerical example for 
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Method 2. Ikeda & Bretz (2010) and Quan et al. (2009) provided an approximate formula 
for Method 1. Uesaka (2009) proposed 4 criteria as generalization of Method 2, and 
calculated the assurance probability jointly with the overall significance effect. Ko et al 
(2010) used the same 4 criteria, and calculated the assurance probability conditionally on 
the overall significance. Quan et al (2010) gave 6 definitions for consistency across all 
regions, with Li et al. (2012) for calculation using R. Tsong et al (2012) proposed testing 
across all regions at different level 𝛼𝑘 , either unconditional or conditional on overall 
significance. 
 
In designing MRCT, the specific region(s) need to have sufficient number of subjects in 
order to achieve the desired assurance probability. The assurance probabilities can be 
defined in different ways in relationship with overall test statistic: (i) unconditional 
approach; (ii) conditional approach; (iii) joint approach. The calculation is usually via 
rather complicated analytical derivation and numerical integration, which may put extra 
burden for practical statisticians. 
 
In this article, we propose to use simulation of sufficient test statistic vectors for 
calculations in MRCT designs. For continuous endpoints, the overall standard test statistic 
can be conveniently expressed as a weight summation of test statistic vectors on different 
regions. Under the alternative hypothesis, the statistic vectors over the regions can be 
expressed using standard normal random vectors and constants involving sample size or 
power. By simulating a large number of independent standard normal random vectors, we 
can easily estimate regional sample sizes and assurance probabilities. This method can be 
easily adapted to satisfying different requirements. Similar approaches were used in Bang 
et al (2005) for multiple-testing designs and Zhang (2012, 2017) for co-primary designs. 
 
In Section 2, we present notation for six consistency criteria and three approaches in 
evaluating assurance probabilities. Section 3 presents statistical settings for MRCT with 
continuous endpoints and steps in calculating the assurance probabilities. In Section 4, 5 
and 6, we present assurance probability calculation using the unconditional, conditional 
and joint approaches and compare with outputs from other papers. Section 6 also presents 
outputs of conditional assurance probability for cases with different regional effects, 
relationship with sample size changes, and consistency for multiple regions. Section 7 
shows the method can be used for calculating power and sample size for testing regional 
effects. Section 8 has a discussion and three SAS programs are presented in the appendices.  
 

2. Consistency Criteria for Multi-regional Clinical Trials 

 
For a multi-regional clinical trial, let 𝑘 = 1, ⋯ , 𝐾 denote different regions. Furthermore, 
let 𝑠 denote a specific region and 𝑠𝑐 denote the combined regions other than region 𝑠. Let 
the observed treatment effect be 𝐷 for the whole study; 𝐷𝑘  for region 𝑘 = 1, ⋯ , 𝐾; 𝐷𝑠 and 
𝐷𝑠𝑐 for region 𝑠 and 𝑠𝑐. For constant 0 < 𝜌 < 1,  the following six consistency criteria are 
specified as: 
 

A1: 𝐷𝑠 𝐷𝑠𝑐⁄ ≥ 𝜌,  
A2: 𝐷𝑠 𝐷⁄ ≥ 𝜌, 
A3: 𝜌 ≤ 𝐷𝑠 𝐷𝑠𝑐⁄ ≤ 1 𝜌⁄ ,  
A4: 𝜌 ≤ 𝐷𝑠 𝐷⁄ ≤ 1 𝜌⁄ , 
A5: 𝐷𝑘 𝐷⁄ ≥ 𝜌, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝐾′ ≤ 𝐾,  
A6: 𝜌 ≤ 𝐷𝑘 𝐷⁄ ≤ 1 𝜌⁄ , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝐾′ ≤ 𝐾.  
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A7: 𝑍𝑘 ≥ 𝑧𝛼𝑘
, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝐾′ ≤ 𝐾.  

 
Criteria A2 corresponds to Method 1 of Ministry of Health, Labor, and Welfare of Japan 
(MHLW 2007). Criteria A1 to A4 correspond to Criteria E1, E2, C1, and C2 in Uesaka 
(2009) and Criteria (i) to (iv) in Ko et al (2010). Criteria A5 and A6 generalize criteria A2 
and A4 to consistency requirements in more than one region. Criteria A7 generalizes Tsong 
et al (2012), where they proposed testing across all 𝐾 regions at level 𝛼𝑘 for 𝑘 = 1, ⋯ , 𝐾. 
 
We use a one-sided level α test for claiming the overall statistical significance with the 
critical region as (𝑍 > 𝑧𝛼). The assurance probabilities are evaluated under the alternative 
hypothesis 𝐻1 with pre-specified treatment effects of the 𝐾 regions for the overall study 
power (1 − 𝛽). The constant 0 < 𝜌 < 1 is the ratio of treatment effect for the specific 
region(s) to retain. There are three approaches in evaluating assurance probability for 
Criteria 𝐴𝑚, 𝑚 = 1, ⋯ , 6:  
 

(i) The unconditional approach in MHLW (2007) defined as  
 

𝑃𝑢(𝐴𝑚) = 𝑃𝐻1(𝐴𝑚), 
 

(ii) The joint approach in Uesaka (2009) defined as  
 

𝑃𝑗(𝐴𝑚) = 𝑃𝐻1(𝐴𝑚 ∩ (𝑍 > 𝑧𝛼)), 
 

(iii) The conditional approach in Ko et al (2010) defined as  
 

𝑃𝑐(𝐴𝑚) = 𝑃𝐻1(𝐴𝑚|𝑍 > 𝑧𝛼) = 𝑃𝐻1(𝐴𝑚 ∩ (𝑍 > 𝑧𝛼))/𝑃𝐻1(𝑍 > 𝑧𝛼). 
 
For example, the assurance probabilities for Criteria 𝐴2 can be explicitly written as:  
 

𝑃𝑢(𝐴2) = 𝑃𝐻1(𝐷𝑠 𝐷⁄ ≥ 𝜌),  
𝑃𝑗(𝐴2) = 𝑃𝐻1(𝐷𝑠 𝐷⁄ ≥ 𝜌, 𝑍 > 𝑧𝛼), 
𝑃𝑐(𝐴2) = 𝑃𝐻1(𝐷𝑠 𝐷⁄ ≥ 𝜌|𝑍 > 𝑧𝛼). 

 
In order to evaluate the assurance probabilities using numerical integration, one has to 
derive tediously analytical expressions for each of the criteria. In the following, we present 
an uniform approach using simulation of sufficient test statistic vectors across regions. The 
simulation method is straightforward to carry out using SAS programming and its outputs 
are in general accurate when comparing with numerical integration methods.  
 

3. Multi-regional Clinical Trials Using Continuous Endpoint 

 
In this section, we present statistical settings for MRCT with continuous endpoints. We 
express the overall standard test statistic as a weighted summation of independent regional 
test statistics, and propose a general approach for estimating sample sizes and assurance 
probabilities by simulating regional test statistic vectors.  
 

3.1 Statistical Settings 
 
Let 𝑖 = 𝐴 or 𝐶 denote the test and control arms. The trial randomizes 𝑛 subjects, with 𝑛𝐴 =
𝑄𝐴𝑛 subjects in arm 𝐴 and 𝑛𝐶 = 𝑄𝐶𝑛 = (1 − 𝑄𝐴)𝑛 subjects in arm 𝐶, respectively. Let 𝑓𝑘 
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denote the fraction of subjects from region 𝑘, where 𝑘 = 1, ⋯ , 𝐾 and 𝑓1 + ⋯ + 𝑓𝐾 = 1. 
then region 𝑘 enrolls 𝑛𝑘 = 𝑓𝑘𝑛 subjects for both arms, and 𝑛𝐴𝑘 = 𝑄𝐴𝑛𝑘 = 𝑄𝐴𝑓𝑘𝑛 subjects 
for arm 𝐴 and 𝑛𝐶𝑘 = 𝑄𝐶𝑛𝑘 = (1 − 𝑄𝐴)𝑓𝑘𝑛 subjects for arm 𝐶, respectively. 
 
For subject 𝑗 in arm 𝑖, region 𝑘, the response follows normal distribution with a known 
common variance, ie, 

𝑌𝑖𝑘,𝑗~𝑁(𝜇𝑖𝑘 , 𝜎2).   
 
For region 𝑘 = 1, ⋯ , 𝐾 , the mean difference is ∆𝑘= 𝜇𝐴𝑘 − 𝜇𝐶𝑘 .  The overall mean 
difference for the study can be expressed as a weight average of regional mean differences 
as ∆= Σfk∆𝑘= Σfk(𝜇𝐴𝑘 − 𝜇𝐶𝑘).  We assume ∆ > 0  indicating benefit of the test arm 𝐴 
over the control arm 𝐶. The study is designed to reject the overall null hypothesis versus 
the alternative hypothesis 
 

𝐻0: ∆≤ 0 𝑣𝑠. 𝐻1: ∆> 0. 
 
For the one-sided level 𝛼 test with power (1 − 𝛽) at the overall difference 𝛿 = ∑ 𝑓𝑘 𝛿𝑘, 
where 𝛿𝑘 > 0 denote the expected difference for region 𝑘 under the alternative hypothesis 
𝐻1. The overall study sample size 𝑛 satisfying the following equation: 
 

𝑛𝑄𝐴(1 − 𝑄𝐴)(𝛿 𝜎⁄ )2 = (𝑧𝛼 + 𝑧𝛽)2. 
 
For regions 𝑘 = 1, … , 𝐾 or 𝑘 = 𝑠, 𝑠𝑐, the observed mean difference can be expressed as   

𝐷𝑘 = Y̅Ak· − Y̅Bk·~N [∆𝑘 ,
𝜎2

𝑄𝐴(1 − 𝑄𝐴)𝑛𝑘
], 

and standard test statistic can be expressed as 
 

𝑍𝑘 =
𝐷𝑘

𝜎 √𝑄𝐴(1 − 𝑄𝐴)𝑛𝑘⁄
 ~N [

∆𝑘

𝜎
√𝑄𝐴(1 − 𝑄𝐴)𝑛𝑘, 1], 

 
The overall observed mean difference can be expressed as   

𝐷 = Y̅A· − Y̅B· = ∑ fkDk
k

~N [𝛥,
𝜎2

𝑄𝐴(1 − 𝑄𝐴)𝑛
] 

and the overall standard test statistic can be expressed as 

𝑍 =
𝐷

𝜎 √𝑄𝐴(1 − 𝑄𝐴)𝑛⁄
= ∑ √fkZk

𝑘
~N [

𝛥

𝜎
√𝑄𝐴(1 − 𝑄𝐴)𝑛, 1]. 

 
Under the alternative hypothesis 𝐻1 with ∆𝑘=  𝛿𝑘 , for 𝑘 = 1, … , 𝐾, or 𝑘 = 𝑠, 𝑠𝑐, the test 
statistics can be expressed as  

𝑍𝑘 = 𝑊𝑘 + 𝐵𝑘√𝑛 = 𝑊𝑘 + 𝐶𝑘,𝛼,𝛽, 
 

where 𝑊𝑘 distributes as a standard normal variable with mean 0 and variance 1, and the 
constant 𝐵𝑘 = √𝑓𝑘𝑄𝐴(1 − 𝑄𝐴) (𝛿𝑘 𝜎⁄ ) and 𝐶𝑘,𝛼,𝛽 = √𝑓𝑘 (𝑧𝛼 + 𝑧𝛽)(𝛿𝑘 𝛿⁄ ).  
 
For regions 𝑘 = 1, … , 𝐾,  or 𝑘 = 𝑠, 𝑠𝑐 , let 𝑒𝑘 = 𝛿𝑘 𝜎⁄  denote the standardized regional 
effect size. The ratio of the regional effect and overall effect is expressed as 𝛿𝑘 𝛿⁄ =
 𝑒𝑘/(∑ 𝑓𝑘 𝑒𝑘), which equals constant 1 if all regions have the same effect sizes. 
 

 
297



The treatment effect ratios used in Condition (A1) to (A6) can be expressed using 𝑍 scores 
as: 

 𝐷𝑠 𝐷𝑠𝑐⁄ = √𝑓𝑠𝑐/𝑓𝑠 (𝑍𝑠 𝑍𝑠𝑐⁄ ),  
and 

𝐷𝑘 𝐷⁄ = √1/𝑓𝑘 (𝑍𝑘 𝑍⁄ ) , 𝑘 = 1, … , 𝐾 or 𝑘 = 𝑠, 𝑠𝑐. 
 

3.2 Steps for Calculating Assurance Probabilities 
 
Using the above formulas, we can calculate the assurance probabilities for the six 
consistency criteria using either conditional, unconditional, or joint approaches as specified 
in Section 2. First, we simulate a large number of independent standard normal random 
vectors (𝑊1, … , 𝑊𝐾) or (𝑊𝑠, 𝑊𝑠𝑐). Each of the random vectors corresponds to one clinical 
trial. Then, we translate the vectors to (𝑍1, … , 𝑍𝐾)  or (𝑍𝑠, 𝑍𝑠𝑐) using constants 𝐵𝑘  or 
𝐶𝑘,𝛼,𝛽 , where 𝑘 = 1, … , 𝐾, or 𝑘 = 𝑠, 𝑠𝑐. The overall test statistic 𝑍 is derived as a weighted 
average of the components in vector (𝑍1, … , 𝑍𝐾)  or (𝑍𝑠, 𝑍𝑠𝑐)  under the alternative 
hypothesis 𝐻1. At last, the assurance probabilities are estimated as proportions of random 
vectors satisfying corresponding conditions. 
 
In the following, we list steps for estimating the conditional assurance probability for 
Criteria A2, ie, 𝑃𝑐(𝐴2) = 𝑃𝐻1(𝐷𝑠 𝐷⁄ ≥ 𝜌|𝑍 > 𝑧𝛼):   
 

(1) Let the number of the simulated trials be 𝑀 (we use 𝑀 = 50000 in all examples). 
Generate 𝑀 independent 𝐾-dimensional random vectors (𝑊1, … , 𝑊𝐾). For each 
vector, the components 𝑊1, … , 𝑊𝐾 are independent random numbers from normal 
distribution with mean 0 and variance 1.  
 

(2) Transform the vectors (𝑊1, … , 𝑊𝐾) to the test statistical vector (𝑍1, … , 𝑍𝐾) under 
the alternative hypotheses 𝐻1 using either formula 

 
𝑍𝑘 = 𝑊𝑘 + 𝐵𝑘√𝑛, 𝑘 = 1, … , 𝐾, 

 
or formula 
 

𝑍𝑘 = 𝑊𝑘 + 𝐶𝑘,𝛼,𝛽 , 𝑘 = 1, … , 𝐾. 
 

(3) Calculate the overall test statistic as the weighted average 
 

 𝑍 = ∑ √fkZk𝑘 .  
 

(4) Among the 𝑀  vectors, count the number of vectors satisfying both conditions 
𝐷𝑠 𝐷⁄ = √1/𝑓𝑠 (𝑍𝑠 𝑍⁄ ) ≥ 𝜌 and 𝑍 > 𝑧𝛼 ,  and count the number of vectors 
satisfying condition 𝑍 > 𝑧𝛼 . The assurance probability is estimated as the quotient.  
 

In calculating the assurance probabilities for the specific region 𝑠 as in Criteria A1 to A4, 
we can also combine all other regions to form a region 𝑠𝑐 and simulate 2-dimensional 
random vectors (𝑊𝑠, 𝑊𝑠𝑐).The same approach can be applied to estimate unconditional, 
conditional or joint assurance probabilities (power) for all seven criteria A1 to A7.  
 

4. Unconditional Assurance Probabilities  
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The easiest approach is to understand MHLW (2007) literally and calculate the assurance 
probabilities without consideration of the overall efficacy test. We simulated 𝑀 = 50000 
independent normal random vectors for calculation using the SAS program in Appendix 1. 
The outputs for Criteria A2 (Method 2 in MHLW) are similar to those using approach of 
Ikeda and Bretz (2010).  
 
Table 4.1: The unconditional assurance probabilities for observing Criteria (A1) to (A4) 

given 𝛼 = 0.025, 𝜌 = 0.50 and power 80% or 90% (𝛽 = 0.10, 𝑜𝑟 0.20) 
 

Proportion 
in Region s  

 𝛽 = 0.10  𝛽 = 0.20 
Assurance Probability  Assurance Probability 

𝑓𝑠 A1 A2 A3 A4 A1 A2 A3 A4 
         

0.10 0.66 0.67 0.44 0.49 0.69 0.70 0.49 0.55 
0.20 0.72 0.75 0.54 0.65 0.75 0.78 0.60 0.71 
0.30 0.75 0.80 0.59 0.74 0.79 0.84 0.66 0.80 
0.40 0.78 0.85 0.61 0.82 0.82 0.89 0.69 0.87 
0.50 0.79 0.89 0.62 0.87 0.83 0.93 0.69 0.92 

 
5. Joint Assurance Probabilities  

 
Uesaka (2009) evaluated assurance probabilities for Criteria A1 to A4 jointly with the 
overall significant output. He derived integral formulas and presented numerical 
examples for: (1) Equal allocation to each region (AR1), (2) Total sample size 
minimization rule (AR2), and (3) Minimum sample size rule for the region of interest 
(AR3). In this section, we use the simulation method as specified in Section 3 to calculate 
sample sizes for rule AR1 and present outputs in Table 5.1 for effect size 𝛿 𝜎⁄ =
0.40 across all regions with joint assurance probability 𝛾 = 0.8 or 0.9. We also compare 
with sample sizes in Table 1 in Uesaka (2009). The differences between the two methods 
in overall sample size are within ±1.4%. A SAS program is presented in Appendix 2.  
 

Table 5.1: Total sample size and the sample size of the specific region in the case of 
equal allocation rule: 𝛼 = 0.025, 𝛽 ≤ 0.2, 𝜌 = 0.50, 1:1 randomization, uniform effect 

size 𝛿 𝜎⁄ = 0.40, equal allocation among regions 
 

 Sample size 𝑛𝑠 𝑛⁄  
Criterion Joint assurance probability 𝛾 = 0.8 Joint assurance probability𝛾 = 0.9 

 50% 33.3% 25% 50% 33.3% 25% 
       

A1 144/287 109/326 93/371 223/445 189/568 180/721 
A2 115/229 91/274 80/321 158/316 138/415 137/548 
A3 211/422 154/463 133/534 339/677 251/754 223/891 
A4 115/230 95/286 88/351 160/319 144/431 146/582 

 
Note: Criteria A1, A2, A3 and A4 correspond to Criteria E1, E2, C1 and C2 in Uesaka 
(2009). The allocation percentage 50%, 33.3% and 25% correspond to trials with 2, 3 and 
4 regions with equal allocation among regions. The trials are designed to have at least 80% 
power.  
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The joint assurance probability will be below the study power. Table 5.2 presented 
assurance probabilities for a study with 80% and 90% power with allocation ratio to the 
specified region ranging from 0.10 to 0.50 calculated using a SAS program in 
Appendix 1.  
 

Table 5.2: The joint assurance probabilities for observing Criteria (A1) to (A4) given 
𝛼 = 0.025, 𝛽 = 0.10, 0.20 and 𝜌 = 0.50 with uniform effects among regions  

 
Proportion 
in Region s  

 𝛽 = 0.10  𝛽 = 0.20 
Assurance Probability  Assurance Probability 

𝑓𝑠 A1 A2 A3 A4 A1 A2 A3 A4 
         

0.10 0.55 0.56 0.39 0.43 0.63 0.64 0.47 0.52 
0.20 0.60 0.62 0.48 0.57 0.69 0.71 0.57 0.67 
0.30 0.63 0.67 0.52 0.65 0.73 0.77 0.62 0.75 
0.40 0.66 0.71 0.54 0.70 0.76 0.82 0.65 0.81 
0.50 0.67 0.74 0.55 0.74 0.77 0.85 0.66 0.85 

 

6. Conditional Assurance Probabilities  
 
For cases with uniform true effect size across regions, Ko et al (2010) calculated the 
assurance probabilities for Criteria A1 to A4 conditionally on overall significance using 
rather complicated analytical derivation and numerical integration. In this section, we show 
the assurance probability can also be estimated accurately using the simulation approach 
from Section 3. We also apply the simulation approach to more general cases.  
 
6.1 Cases with Uniform Regional Effects 

 
Ko et al (2010) presented assurance probabilities conditionally on overall significance for 
a specified region 𝑠 . We use 𝑀 = 50000 simulated trials to estimate those assurance 
probabilities. For allocation ratio between 0.10 to 0.50, Table 4.1 presents the conditional 
assurance probabilities from Table 2 in Ko et al (2010) and from the simulation approach 
using the SAS program in Appendix 1. The differences between the two approaches 
are within ±0.01.  
 

Table 6.1: The conditional assurance probabilities for observing Criteria 
(A1) to (A4) given 𝛼 = 0.025, 𝛽 = 0.20 and 𝜌 = 0.50  

 

 

Proportion 
in Region s  

Assurance Probability from 
Table 2 in Ko at al. (2010) 

Assurance Probability Using 
Simulation 

𝑓𝑠 A1 A2 A3 A4 A1 A2 A3 A4 
         

0.10 0.69 0.70 0.49 0.55 0.68 0.69 0.48 0.54 
0.20 0.75 0.78 0.60 0.71 0.75 0.78 0.60 0.71 
0.30 0.80 0.84 0.66 0.81 0.80 0.84  0.65 0.81 
0.40 0.83 0.89 0.68 0.88 0.82 0.89 0.68 0.88 
0.50 0.85 0.93 0.69 0.93 0.84 0.93 0.69 0.93 
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In the following figure, the assurance probabilities from the simulation approach were 
plotted.  

 
Figure 6.1: Conditional assurance probabilities with allocation ratio of the specific region 
𝑓𝑠, for Criteria (A1) to (A4) given 𝛼 = 0.025, 𝛽 = 0.20 and 𝜌 = 0.80 
 
6.2 Cases with Different Regional Effects 

 
In design of MRCT, there may have cases where the assurance probabilities need 
to be evaluated with different effect sizes among the regions. In such cases, it will 
be tedious in calculating the assurance probabilities using numerical integration. Ko 
et al (2010) mentioned the issue and would hope to address it in the future. Uesaka (2009) 
presented some numerical example. Using the simulation approach as specified in 
Section 3, the assurance probabilities can be easily estimated. In the next table, we 
present the conditional assurance probabilities for cases having different regional 
effects using the SAS program in Appendix 1, where the sample sizes are 
determined using the overall averaged effect size to achieve the specified power. 
 
Table 6.2: The assurance probability and sample size for observing Criteria (A1) to (A4)  

given 𝛼 = 0.025, 𝛽 = 0.20 and 𝜌 = 0.50, 1:1 randomization 
 

Effect Size  Proportion 
in Region s  

Sample 
Size  

Conditional Assurance 
Probability  Region s Region sc Overall 

𝛿𝑠 𝜎⁄  𝛿𝑠𝑐 𝜎⁄  𝛿 𝜎⁄  𝑓𝑠 𝑛 A1 A2 A3 A4 
         

0.20 0.30 0.28 0.2 404 0.61 0.65 0.54 0.62 
  0.27 0.3 434 0.64 0.70 0.58 0.69 
  0.26 0.4 468 0.66 0.76 0.61 0.76 
  0.25 0.5 506 0.68 0.83 0.62 0.83 

0.30 0.20 0.22 0.2 652 0.88 0.90 0.58 0.74 
  0.23 0.3 596 0.92 0.94 0.62 0.85 
  0.24 0.4 548 0.93 0.96 0.63 0.92 
  0.25 0.5 506 0.93 0.98 0.62 0.96 
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6.3 Relationship with Sample Size Changes 
 
In clinical practice, the actual sample sizes can deviate from the planned sample 
size. For Criteria A2, the following figure shows that the conditional assurance 
probabilities increase slowly with sample size when the allocation proportion to the 
specified region  𝑓𝑠 is fixed. The SAS program in Appendix 2 is used for calculation. 

 
Figure 6.2: Conditional assurance probabilities against the sample size for Criteria A2 by 
proportion of the specific region, 𝑓𝑠, given 𝛼 = 0.025 and 𝜌 = 0.50, and the effect size 
𝛿 𝜎⁄ = 𝛿𝑠 𝜎⁄ = 𝛿𝑠𝑐 𝜎⁄ = 0.30 
 
The following table presents conditional assurance probabilities when the overall sample 
size changes and the sample size in the specified region fixed. The conditional assurance 
probabilities decrease slowly when the overall sample sizes increase. 
 

Table 6.3: Assurance probabilities for observing Criteria (A1) to (A4) given 
 𝛼 = 0.025, 𝜌 = 0.50, 1:1 randomization, uniform effect size 𝛿 𝜎⁄ = 0.30,  

and fixed sample size 𝑛𝑠 = 84 for the specified region  
 

Sample Size  Overall 
Power 

Conditional Assurance 
Probability  Region 𝑠 Overall 

𝑛𝑠 𝑛 % A1 A2 A3 A4 
       

84 250 66 0.79 0.84 0.63 0.82 
 290 72 0.78 0.82 0.63 0.79 
 330 78 0.78 0.81 0.63 0.77 
 370 82 0.77 0.80 0.62 0.75 
 410 86 0.76 0.79 0.62 0.73 

 
6.4 Consistency for Multiple Regions 
 
For MCRT requires consistency in multiple regions, we can still use the simulation 
approach in Section 3 to calculate the assurance probabilities. In the following, we 
present results for Criteria A5 and A6 with three region and all of them required to 
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be consistent, ie, 𝐾′ = 𝐾 = 3. Since the expected regional effects are the same, it is no 
surprise that the equal allocation among regions has the highest assurance probabilities. 
The study should be powered over 95% in order for the assurance probability exceed 0.80 
for all three regions retaining 40% of the overall effect. A SAS program is present in 
Appendix 3.  
 
Table 6.4: The conditional assurance probabilities for observing Criteria (A5) and (A6) 

given 𝛼 = 0.025, 𝜌 = 0.40, 𝐾′ = 𝐾 = 3, and uniform regional effects 
 

Type II 
Error 

Regional 
Proportions 

Assurance Probability 
For Consistency in all 

Three Regions 

Assurance Probability 
For Consistency in 

Region 1 
𝛽 (𝑓1, 𝑓2, 𝑓3)  A5  A6 A2 A4 
      

0.20 (1/3, 1/3, 1/3) 0.70 0.70 0.90 0.89 
0.10 (0.1, 0.1, 0.8) 0.55 0.48 0.75 0.69 

 (0.1, 0.3, 0.6) 0.65 0.62 0.75 0.69 
 (0.2, 0.3, 0.5) 0.72 0.71 0.84 0.83 
 (1/3, 1/3, 1/3) 0.75 0.75 0.91 0.91 

0.05 (1/3, 1/3, 1/3) 0.79 0.79 0.93 0.93 
 

7. Power and Sample Size for Testing Regional Effects 

 
For MRCT with 𝑘 = 1, ⋯ , 𝐾 regions, Tsong et al (2012) proposed testing across all 𝐾 
regions at level 𝛼𝑘 , either unconditional or conditional on overall significance. For 
unconditional approach, they derived formulas for power and sample size. For conditional 
approach, they derived a rather complicated analytical formula for power and sample size 
using multiple integration and provided numerical examples. In this section, we show the 
same simulation approach in Section 3 can also apply to the testing approach.  
 
Using the same notation as Section 3, let the regional tests be one-sided level 𝛼𝑘 and the 
overall test be one-sided level α. For a subset of regions 1 ≤ 𝐾′ ≤ 𝐾, the conditional power 
can be expressed as  
 

𝑃𝐻1(𝑍𝑘 ≥ 𝑧𝛼𝑘
,  𝑘 = 1, ⋯ , 𝐾′|𝑍 > 𝑧𝛼). 

 
We use this formula as a basis for evaluating power with different sample size. A SAS 
program is presented in Appendix 4 which applies to any combinations of regional tests 
with the same or differeent regional levels and treatment effects. The following graph 
provided overall power and  conditional power for regional tests for an MRCT with four 
regions.  
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Figure 7.1: Power for testing regional effects conditional on overall significance with 
equal regional allocation for  𝐾 = 4 regions, using 1:1 randomization, equal regional effect 
size 𝛿 𝜎 =⁄ 0.40, overall 1-sided test with 𝛼 = 0.025,  and 1-sided tests for 1, 2, 3 or all 4 
regions at level 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0.20.  
 

8. Discussion and Conclusion 

 
For design of MRCT, we show that the assurance probabilities can be accurately and 
efficiently calculated through simulation of sufficient test statistic vectors. The method 
involves simulation of independent test scores from individual regions and represents the 
overall test score as a weighted summation of the regional scores and represents ratio of 
treatment effects using the standard test scores. It avoids complex derivation of analytic 
formula and correlation coefficients. The same SAS program can provide calculation for 
the unconditional, conditional and joint assurance probability for different consistency 
criteria. The method can also be adapted to other approaches for MRCT designs.  
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Appendix 1 

 
A SAS program for calculation of unconditional, conditional or joint assurance 
probabilities with overall significant test in Table 4.1, 5.2, 6.1 and Figure 6.1 
 

*input design parameters for sample size estimation; 
%let alpha=0.025;  * One-sided significant level; 
%let beta=0.10;  * Type 2 error (power=1-beta); 
%let rho =0.50;    * Regional consistent constant; 
%let eff1=0.35;  * Treatment effect size (delta/sigma): region 1 (s); 
%let eff2=0.35;  * Treatment effect size (delta/sigma): region 2 (sc); 
%let f1min=0.1;      * Low bound of allocation ratio in Region 1 (s); 
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%let f1max=0.5;     * Upper bound of allocation ratio in Region 1 (s); 
%let f1by=0.10;      * Increase step for allocation ratio in Region 1 (s); 
%let ntrial=50000;   * Total number of simualted trials; 
%let seed=778899;    * Seed for generating random numbers; 
 
data d0; 
  alpha=&alpha; z1_alpha=-probit(alpha); 
  beta=&beta; z1_beta=-probit(beta); 
  rho=&rho; eff1=&eff1; eff2=&eff2; ntrial=&ntrial;     
run;   
 
proc iml; 
  Mean = {0, 0}; Cov = {1 0, 0 1}; 
  call randseed(&seed); 
  W = RandNormal(&ntrial, Mean, Cov);  
  varNames = "W1":"W2"; 
  create sd0 from W[colname=varNames];  
  append from W;  
  close sd0; 
quit;   
 
data sd1; if _n_=1 then set d0; set sd0; run;   
 
data sd2; 
  set sd1; 
  do f1=&f1min to &f1max by &f1by; 
    f2 = 1-f1; 
 eff = f1*eff1 + f2*eff2; 
 c1 = sqrt(f1)*(z1_alpha + z1_beta)*(eff1/eff); 
 c2 = sqrt(f2)*(z1_alpha + z1_beta)*(eff2/eff); 
    Z1 = W1 + c1; 
    Z2 = W2 + c2; 
 Z = Z1*sqrt(f1) + Z2*sqrt(f2); 
 ratio1_2 = (Z1/Z2)*sqrt(f2/f1); 
     ratio1_12 = (Z1/Z)*sqrt(1/f1); 
 output; 
  end; 
run;   
 
proc sort data=sd2 out=sd3; by f1; run; 
 
data sd4; 
  set sd3; 
  by f1; 
  retain Zcnt uncA1 uncA2 uncA3 uncA4 jntA1 jntA2 jntA3 jntA4; 
  if first.f1 then do;  
 Zcnt=0;  
 uncA1=0; uncA2=0; uncA3=0; uncA4=0;  
 jntA1=0; jntA2=0; jntA3=0; jntA4=0;  
  end; 
  Zcnt = Zcnt + (Z>z1_alpha); 
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  uncA1 = uncA1 + (ratio1_2>=rho); 
  uncA2 = uncA2 + (ratio1_12>=rho); 
  uncA3 = uncA3 + (ratio1_2>=rho)*(ratio1_2=<1/rho); 
  uncA4 = uncA4 + (ratio1_12>=rho)*(ratio1_12=<1/rho); 
  jntA1 = jntA1 + (ratio1_2>=rho)*(Z>z1_alpha); 
  jntA2 = jntA2 + (ratio1_12 >=rho)*(Z>z1_alpha); 
  jntA3 = jntA3 + (ratio1_2>=rho)*(ratio1_2=<1/rho)*(Z>z1_alpha); 
  jntA4 = jntA4 + (ratio1_12>=rho)*(ratio1_12=<1/rho) 

*(Z>z1_alpha); 
  format uncPA1 uncPA2 uncPA3 uncPA4 jntPA1 jntPA2  
 jntPA3 jntPA4 conPA1 conPA2 conPA3 conPA4 4.2; 
  if last.f1 then do; 
    P_Z = Zcnt/&ntrial; 
    uncPA1 = uncA1/&ntrial;  
    uncPA2 = uncA2/&ntrial;  
    uncPA3 = uncA3/&ntrial;  
    uncPA4 = uncA4/&ntrial;  
    jntPA1 = jntA1/&ntrial;  
    jntPA2 = jntA2/&ntrial;  
    jntPA3 = jntA3/&ntrial;  
    jntPA4 = jntA4/&ntrial;  
    conPA1 = jntA1/Zcnt;  
    conPA2 = jntA2/Zcnt;  
    conPA3 = jntA3/Zcnt;  
    conPA4 = jntA4/Zcnt;  
    output; 
  end; 
run; 
 
proc print;  

var alpha z1_alpha beta z1_beta rho eff1 eff2 f1 f2 uncPA1 uncPA2 uncPA3 
uncPA4 jntPA1 jntPA2 jntPA3 jntPA4 conPA1 conPA2 conPA3 conPA4; 

run; 
 

Appendix 2 
 

A SAS program for evaluating sample size and joint assurance probabilities in Table 5.1  
 
*input design parameters; 
%let nmin = 300;      * Low bound of overall sample size n; 
%let nmax = 550;   * Upper bound of overall sample size n; 
%let nby=1;        * Increase step in sample size; 
%let f1min=0.25;     * Low bound of allocation ratio in Region 1 (s); 
%let f1max=0.25;  * Upper bound of allocation ratio in Region 1 (s); 
%let f1by=0.1;         * Increase step for allocation ratio in Region 1 (s); 
%let eff1=0.40;      * Treatment effect size (delta/sigma): region 1 (s); 
%let eff2=0.40;      * Treatment effect size (delta/sigma): region 2 (sc); 
%let alpha=0.025;  * One-sided significant level; 
%let rho = 0.50;       * Consistent constant; 
%let qa=0.50;        * Ranndomization proportion in Arm A (Qa = na/n); 
%let ntrial=50000;   * Total number of simualted trials; 
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%let seed=778899;   * Seed for generating random numbers; 
 
data d0; 
  alpha=&alpha; z1_alpha=-probit(alpha); 
  beta=&beta; z1_beta=-probit(beta); 
  rho=&rho; eff1=&eff1; eff2=&eff2; 
  qa=&qa; ntrial=&ntrial;     
run;   
 
proc iml; 
  Mean = {0, 0};        
  Cov = {1 0, 0 1}; 
  call randseed(&seed); 
  W = RandNormal(&ntrial, Mean, Cov);  
  varNames = "W1":"W2"; 
  create sd0 from W[colname=varNames];  
  append from W;  
  close sd0; 
quit;   
 
data sd1; if _n_=1 then set d0; set sd0; run;   
 
data sd2; 
  set sd1; 
  do f1=&f1min to &f1max by &f1by; 
  do n=&nmin to &nmax by &nby; 
    f2 = 1-f1; 
    b1 = sqrt(f1*&qa*(1-&qa))*&eff1; 
    b2 = sqrt(f2*&qa*(1-&qa))*&eff2; 
    Z1 = W1 + b1*sqrt(n); 
    Z2 = W2 + b2*sqrt(n); 
    Z = Z1*sqrt(f1) + Z2*sqrt(f2); 
    ratio1_2 = (Z1/Z2)*sqrt(f2/f1); 
    ratio1_12 = (Z1/Z)*sqrt(1/f1); 
    output; 
  end; 
  end; 
run;   
 
proc sort data=sd2 out=sd3; by f1 n; run; 
 
data sd4; 
  set sd3; 
  by f1 n; 
  n1=round(n*f1); 
  retain Zcnt uncA1 uncA2 uncA3 uncA4 jntA1 jntA2 jntA3 jntA4; 
  if first.n then do;  
      Zcnt=0;  
 uncA1=0; uncA2=0; uncA3=0; uncA4=0;  
 jntA1=0; jntA2=0; jntA3=0; jntA4=0;  
  end; 
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  Zcnt = Zcnt + (Z>z1_alpha); 
  uncA1 = uncA1 + (ratio1_2>=rho); 
  uncA2 = uncA2 + (ratio1_12>=rho); 
  uncA3 = uncA3 + (ratio1_2>=rho)*(ratio1_2=<1/rho); 
  uncA4 = uncA4 + (ratio1_12>=rho)*(ratio1_12=<1/rho); 
  jntA1 = jntA1 + (ratio1_2>=rho)*(Z>z1_alpha); 
  jntA2 = jntA2 + (ratio1_12 >=rho)*(Z>z1_alpha); 
  jntA3 = jntA3 + (ratio1_2>=rho)*(ratio1_2=<1/rho)*(Z>z1_alpha); 
  jntA4 = jntA4 + (ratio1_12>=rho)*(ratio1_12=<1/rho) 

*(Z>z1_alpha); 
  format uncPA1 uncPA2 uncPA3 uncPA4 jntPA1 jntPA2  
 jntPA3 jntPA4 conPA1 conPA2 conPA3 conPA4 4.2; 
 
  if last.n then do;  
    P_Z = Zcnt/&ntrial; 
    uncPA1 = uncA1/&ntrial;  
    uncPA2 = uncA2/&ntrial;  
    uncPA3 = uncA3/&ntrial;  
    uncPA4 = uncA4/&ntrial;  
    jntPA1 = jntA1/&ntrial;  
    jntPA2 = jntA2/&ntrial;  
    jntPA3 = jntA3/&ntrial;  
    jntPA4 = jntA4/&ntrial;  
    conPA1 = jntA1/Zcnt;  
    conPA2 = jntA2/Zcnt;  
    conPA3 = jntA3/Zcnt;  
    conPA4 = jntA4/Zcnt;  
    output; 
  end; 
run; 
 
proc print;  

var  alpha z1_alpha beta z1_beta rho eff1 eff2 f1 f2 n1 n uncPA1 uncPA2 
uncPA3 uncPA4 jntPA1 jntPA2 jntPA3 jntPA4 conPA1 conPA2 conPA3 
conPA4; 

run; 
 

Appendix 3 
 

A SAS program for evaluating conditional assurance probabilities for MCRT with three 
regions and requiring consistency in all three regions and in region 1 as in Table 6.4 
 
 
*Input design parameters; 
%let alpha=0.025;*One-sided significant level; 
%let beta=0.10;  *Type 2 error (probability of power=1-beta); 
%let rho =0.40;  *Consistent constant; 
%let f1min=0.10; *Low bound of allocation ratio in Region 1; 
%let f1max=0.30; *Upper bound of allocation ratio in Region 1; 
%let f1by=0.10;  *Increase step for allocation ratio in Region 1; 
%let f2min=0.10; *Low bound of allocation ratio in Region 2; 
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%let f2max=0.30; *Upper bound of allocation ratio in Region 2; 
%let f2by=0.10;  *Increase step for allocation ratio in Region 2; 
%let eff1=0.30;  *Treatment effect size (delta/sigma): region 1; 
%let eff2=0.30;  *Treatment effect size (delta/sigma): region 2; 
%let eff3=0.30;  *Treatment effect size (delta/sigma): region 3; 
%let ntrial=50000; *Total number of simualted trials; 
%let seed=778899;  *Seed for generating random numbers; 
 
data d0; 
  alpha=&alpha; z1_alpha=-probit(alpha); 
  beta=&beta; z1_beta=-probit(beta); 
  rho=&rho; eff1=&eff1; eff2=&eff2; eff3=&eff3; 
  ntrial = &ntrial;     
run;   
 
proc iml; 
  Mean = {0, 0, 0};        
  Cov = {1 0 0, 0 1 0, 0 0 1}; 
  call randseed(&seed); 
  W = RandNormal(&ntrial, Mean, Cov);  
  VarNames = "W1":"W3"; 
  create sd0 from W[colname=varNames];  
  append from W;  
  close sd0; 
quit;   
 
data sd1;  
  if _n_=1 then set d0; set sd0;  
run;   
 
data sd2; 
  set sd1; 
  do f1=&f1min to &f1max by &f1by; 
  do f2=&f2min to &f2max by &f2by; 
    f3 = 1 - f1 - f2; 
   eff = f1*eff1 + f2*eff2 + f3*eff3; 
   c1 = sqrt(f1)*(z1_alpha + z1_beta)*eff1/eff;      
   c2 = sqrt(f2)*(z1_alpha + z1_beta)*eff2/eff;   
   c3 = sqrt(f3)*(z1_alpha + z1_beta)*eff3/eff ;   
   Z1 = W1 + c1; 
   Z2 = W2 + c2; 
   Z3 = W3 + c3; 
   Z  = Z1*sqrt(f1) + Z2*sqrt(f2) + Z3*sqrt(f3); 
   ratio1_123 = (Z1/Z)*sqrt(1/f1); 
   ratio2_123 = (Z2/Z)*sqrt(1/f2); 
   ratio3_123 = (Z3/Z)*sqrt(1/f3); 
      output; 
  end; 
  end; 
run;   
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data sd3; set sd2; case = 100*f1 + 10*f2 + f3; run; 
 
proc sort data=sd3; by case; run; 
 
data sd4; 
  set sd3; 
  by case; 
  retain Zcnt CA2r1 CA4r1 CA5 CA6; 
  if first.case then do;  
 Zcnt=0; CA2r1=0; CA4r1=0; CA5=0; CA6=0;  
  end; 
  Zcnt = Zcnt + (Z>z1_alpha); 
  CA2r1 = CA2r1 + (ratio1_123 >=rho)*(Z>z1_alpha); 
  CA4r1 = CA4r1 + (ratio1_123 >=rho)*(ratio1_123 =<1/rho) 

*(Z>z1_alpha); 
  CA5 = CA5 + (ratio1_123 >=rho)*(ratio2_123 >=rho)* 

(ratio3_123 >=rho)*(Z>z1_alpha); 
  CA6 = CA6 + (ratio1_123 >=rho)*(ratio2_123 >=rho)* 

(ratio3_123 >=rho)*(ratio1_123 =<1/rho)* 
(ratio2_123 =<1/rho)*(ratio3_123 =<1/rho)*(Z>z1_alpha); 

  if last.case then do; 
    PZ = Zcnt/&ntrial; 
    conPA2r1 = CA2r1/Zcnt;  
    conPA4r1 = CA4r1/Zcnt; 
    conPA5 = CA5/Zcnt;  
    conPA6 = CA6/Zcnt;  
    output; 
  end; 
run; 
 
proc print;  

var  alpha z1_alpha beta z1_beta rho eff1 eff2 f1 f2 f3 PZ   conPA2r1 conPA4r1 
conPA5 conPA6; 

run; 
 

Appendix 4 
 

A SAS program for evaluating conditional power for regional tests for an MRCT with 
four regions in Figure 7.1 
 
*Input design parameters; 
%let alpha=0.025; * One-sided significant level; 
%let qa=0.5; * Randomization ratio to Arm A (Qa); 
%let alpha1=0.20; * One-sided significant level for region 1; 
%let alpha2=0.20; * One-sided significant level for region 2; 
%let alpha3=0.20; * One-sided significant level for region 3; 
%let alpha4=0.20; * One-sided significant level for region 4; 
%let eff1=0.40; * Treatment effect (delta/sigma): region 1; 
%let eff2=0.40; * Treatment effect (delta/sigma): region 2; 
%let eff3=0.40; * Treatment effect (delta/sigma): region 3; 
%let eff4=0.40; * Treatment effect (delta/sigma): region 4; 
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%let nmin=180;    * Low bound of sample size n; 
%let nmax=500;    * Upper bound of sample size n; 
%let nby=20; * Increase step in sample size; 
%let f1=0.25;     * Allocation ratio in Region 1; 
%let f2=0.25;     * Allocation ratio in Region 2; 
%let f3=0.25;     * Allocation ratio in Region 3; 
%let ntrial=50000;* Total number of simualted trials; 
%let seed=778899; * Seed for generating random numbers; 
 
data d0; 
  alpha=&alpha;  
  z1_alpha=-probit(alpha); 
  z1_alpha1=-probit(&alpha1); 
  z1_alpha2=-probit(&alpha2); 
  z1_alpha3=-probit(&alpha3); 
  z1_alpha4=-probit(&alpha4); 
  eff1=&eff1; eff2=&eff2; eff3=&eff3; eff4=&eff4; 
  ntrial = &ntrial;     
run;   
 
proc iml; 
  Mean = {0, 0, 0, 0};        
  Cov = {1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1}; 
  call randseed(&seed); 
  W = RandNormal(&ntrial, Mean, Cov);  
  VarNames = "W1":"W4"; 
  create sd0 from W[colname=varNames];  
  append from W;  
  close sd0; 
quit;   
 
data sd1; if _n_=1 then set d0; set sd0; run;   
 
data sd2; 
  set sd1; 
  f1=&f1; f2=&f2; f3=&f3; f4 = 1-f1-f2-f3; 
  do n=&nmin to &nmax by &nby; 
    b1 = sqrt(f1*&qa*(1-&qa))*&eff1; 
    b2 = sqrt(f2*&qa*(1-&qa))*&eff2; 
    b3 = sqrt(f3*&qa*(1-&qa))*&eff3; 
    b4 = sqrt(f4*&qa*(1-&qa))*&eff4; 
    Z1 = W1 + b1*sqrt(n); 
    Z2 = W2 + b2*sqrt(n); 
    Z3 = W3 + b3*sqrt(n); 
    Z4 = W4 + b4*sqrt(n); 
    Z  = Z1*sqrt(f1) + Z2*sqrt(f2) + Z3*sqrt(f3) + Z4*sqrt(f4); 
    output; 
  end; 
run;   
 
proc sort data=sd2 out=sd3; by f1 f2 f3 n; run; 

 
312



 
data sd4; 
  set sd3; 
  by f1 f2 f3 n; 
  retain Zcnt cdr1 cdr12 cdr123 cdr1234; 
  if first.n then do;  
 Zcnt=0; cdr1=0; cdr12=0; cdr123=0; cdr1234=0; 
  end; 
  Zcnt = Zcnt + (Z>z1_alpha); 
  cdr1 = cdr1 + (Z>z1_alpha)*(Z1>z1_alpha1); 
  cdr12 = cdr12 + (Z>z1_alpha)*(Z1>z1_alpha1)*(Z2>z1_alpha2); 
  cdr123 = cdr123 + (Z>z1_alpha)*(Z1>z1_alpha1)*(Z2>z1_alpha2)* 

(Z3>z1_alpha3); 
  cdr1234 = cdr1234 + (Z>z1_alpha)*(Z1>z1_alpha1)*(Z2>z1_alpha2)* 

(Z3>z1_alpha3)*(Z4>z1_alpha4); 
  if last.n then do; 
    pbZcnt = Zcnt/&ntrial; 
    pbcdr1 = cdr1/Zcnt;  
    pbcdr12 = cdr12/Zcnt;   
    pbcdr123 = cdr123/Zcnt;   
    pbcdr1234 = cdr1234/Zcnt;  
    output; 
  end; 
run; 
 
proc print;  

var  z1_alpha z1_alpha1 z1_alpha2 z1_alpha3 z1_alpha4 eff1 eff2 eff3 eff4 f1 f2 f3 f4 
n pbZcnt pbcdr1 pbcdr12 pbcdr123 pbcdr1234; 

run; 
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