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Abstract
The objective of this study is to investigate the potential covariates correlated to the weather
prediction performance in the U.S, especially to explore the spatial and time effects in the
prediction accuracy. We performed the functional principal component analysis (FPCA)
and time series clustering techniques to divide 50 U.S. states into clusters. Cluster-specific
characteristics of weather prediction performance were visually detected and cluster-to-
cluster differences were quantified in order to identify this most and least predictable U.S.
states. Then we conducted a functional analysis to capture the main pattern of variance in
the prediction error over time and further investigate how other weather-related variables
correlate with the prediction accuracy.

Key Words: Weather Prediction, Functional Data Analysis, Functional Principal Compo-
nent Analysis (FPCA), Functional Linear Regression, Time-series Clustering

1. Introduction

1.1 Background

Various human being activities, such as agricultural, fishery, industrial production
or daily traveling, are affected greatly by the climate events and weather variations
(Adams et al. [1990]). Teisberg et al. commented that the consumption of the
U.S. electricity is significantly correlated with the local temperature (Teisberg et al.
[2005]). Accurate weather forecasts usually provide a tremendous help and instruc-
tion to the preparations of the weather-sensitive industries and activities. Modern
climatology and weather forecast techniques focus on predicting upcoming weather
conditions based on current climate measures, such as temperature, humidity and air
pressures, etc. Despite advances in meteorology and satellite technologies, there are
still significant uncertainties in weather forecasts. Bauer and Thorpe (Bauer et al.
[2015]) suggested that the understanding of the climatic process and the input of
statistical expertise are equally important to reduce these uncertainties. Then a big
question arises to statisticians is how to improve the accuracy of weather forecasts
based on a comprehensive statistical analysis and modeling.

During the past decades, different statistical models were developed to achieve
higher resolution of spatio-temporal predictions with higher accuracy. In the 20th
century, two popular temperature forecast models were parametric SARIMA model
(Box and Jenkins [1976]) and non-parametric kernel predictor (Collomb [1983]
Györfi et al. [1989] Bosq [1996]). In 2000, a functional autoregressive (FAR) model
with functional predictors was implemented by Besse, Cardot and Stephenson (Besse
et al. [2000]), which could produce an entire annual temperature trend one year
ahead with a substantial reduction in mean square error (MSE) compared to the
traditional SARIMA model. In addition, with the growth of the popularity of
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machine learning, some nonparametric techniques such as support vector machine
(SVM) and neural network were also applied to weather forecasting and have demon-
strated moderate performance (Radhika and Shashi [2009]). Another widely used
technique on weather prediction is the spatio-temporal model. Spatio-temporal
model is a type of statistical methodology that can estimate or predict the value of
response variable at an unobserved location and a future time (Hengl et al. [2012]),
which helps us to incorporate both time and spatial factors at the same time.

However, there are challenges still remain unsolved. A big challenge facing scien-
tists today is how to improve the prediction accuracy of the regions with extreme
weather and wide annual temperature gap. Hengl et al. [2012] discovered that com-
pared to the Mediterranean region with mild climate, the weather prediction of the
mountainous part in Croatia is less accurate with more variations. This challenge
motivated us to investigate the relationship between prediction performance and
weather stability. In other words, we aimed to determine a set of weather-related
variables (i.e. time, geographical location and other weather measures) that can
represent the weather stability, and explore their effects on the prediction perfor-
mance.

Figure 1: Marginal experimental variograms for residuals

Another big challenge exists in most of the statistical analysis is that the forecast
is less accurate when we try to predict more days ahead, and the improvement of
long-term weather prediction is in a slow process as it takes ten years to increase
weather forecast skills by only one day (i.e. 4-day forecast in today is as accurate
as 3-day forecast a decade ago) (Bauer et al. [2015]). Figure 1 (Hengl et al. [2012])
demonstrates the problem of worse prediction due to increasing time span. Scientists
have expressed their lack of confidence on weather forecasts when time span gets
larger, saying that 47% of the respondents to the weather forecast survey do not
believe the forecast result for 7 to 14 days later (Lazo et al. [2009]). Since people
are most interested in short-term weather forecasts as it provides direct guidance
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on planning day-to-day activities (Lazo et al. [2009]), we only evaluated the overall
accuracy of 1-day forecast in this study.

1.2 Datasets

Our data contain 3-year weather forecast and historical measurements records across
113 U.S. cities from September 2014 to August 2017. Historical weather records
comprise different weather measures in each city, such as temperature, humidity
and sea level pressure, etc. The forecast weather records consist different measures
of weather that were forecast over the 3-year period, including minimum tempera-
ture, maximum temperature, and the probability of precipitation, and specify the
date that was forecast and the date that the forecast was made on. The geographi-
cal information of the cities for which the forecast was made is also available. Each
city is documented with its corresponding state, geographical coordinates (i.e. lon-
gitude and latitude) and airport code (AirPtCd). AirPtCd provides information
regarding the airport closets to the origin of the city, where is the place that the
historical data was measured. We also accessed the external data source to get the
geographical coordinates of the airport in order to calculate the empirical distance
from the airport to city. Details of variables were summarized in Table 1.

To evaluate the prediction performance, we defined our response variable as the
absolute value of the prediction error for the minimum temperature:

εt = |T real
t − T fore

t |,

where T real
t and T fore

t are the real and forecast temperatures at time point t, re-
spectively.

1.3 Objectives

Based on our motivations, the goals of our analysis are to focus on:

1. Exploring variations in weather forecast accuracy across different geographical
locations in the U.S., and identifying the most and least predictable regions.

2. Explaining how prediction performance changes over time.

3. Investigating how the prediction performance is affected by or correlated to
different weather measures, such as sea level pressure, precipitation or humid-
ity, etc.
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2. Exploratory Data Analysis

In order to get the sense of data before moving forward, we first performed ex-
ploratory data analysis (EDA), which helps to empirically detect trends in data
and plays as a foundation of our further studies. The following sections explore the
variation of prediction error from four different aspects based on our intuition and
basic knowledge on weather forecasts, supported by data summary statistics and
plots. These explorations motivated us to find potential methods to explain and
model the discovered phenomena in data.

2.1 Geographical Pattern

To investigate our first objective, we generated following graph to compare the
forecast accuracy of different geographical locations across the U.S. We consider the
prediction is accurate if εt < 4 (i.e. the prediction error is within 4 Fahrenheit), and
the accuracy was evaluated as the percentage of prediction satisfying this condition
within each state. More blue represents regions with higher prediction accuracy
and less blue represents regions with lower prediction accuracy.

Figure 2: Prediction accuracy of minimum temperature (F) for each state

In general, neighboring states tend to have similar prediction performance. However,
for those states which are not close to each other, such as Washington, California,
Hawaii and Florida, they also have similar prediction accuracy because they share
the similar weather conditions. Therefore, states are not only clustered by their
geographical locations, but also by the similarity of climate conditions. For example,
coastal states with mild climate are more likely to be clustered together and have
better forecast performance than the inland states with more extreme weather. We
referred this as the ”spatio-climate effect”, a term we created to address the joint
effect of geographical location and climate in weather forecasts. To illustrate this
spatio-climate effect, we utilized clustering methods to divide the U.S. into different
regions based on weather prediction performance, and then identified the most and
least predictable U.S. states.
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2.2 Seasonal Pattern

Season plays an important role in determining future climate expectations. Intu-
itively speaking, the cold season will cause significant uncertainty in forecast guid-
ance, and is expected to be less predictable than the warm season. This is well
illustrated in Figure 3, which shows that the performance of weather prediction
varies over time from September 2014 to August 2017. The red and blue regions
represent winter (December to February) and summer (June to August) period,
respectively. The variation of εt shows periodicity within each year; specifically,
the prediction is more variable in winter compared to summer.

Figure 3: Absolute prediction error (F)
vs Forecast date

Figure 4: Real mean temperature (F) vs
Mean Absolute prediction error, where
the dot represents the mean absolute
prediction error and the line corresponds
to its 95% Confidence Interval

Figure 4 shows the relationship between the real minimum temperature and predic-
tion error εt, demonstrating an increasing trend in εt with larger variability when
the real minimum temperature decreases from summer to winter.

For the analysis of data with time-dependent variable, we applied a functional anal-
ysis to incorporate time factor into models by treating our response as a function of
time, which helps us to explore how the prediction performance changes over time.

2.3 Other Weather-related Variables

In addition, the absolute prediction errors are suspected to have a significant cor-
relation with some weather-related variables, such as local mean temperature, hu-
midity level, sea level pressure and visible miles, etc. As an example, the following
two graphs show that the minimum temperature is one of the potential covariates
that will affect the prediction performance.
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Figure 5: Average minimum temperature across 50 U.S. states

Moreover, in Figure 5, the average real minimum temperature across the U.S. shows
an approximately opposite pattern as Figure 2, indicating that the real minimum
temperature is negatively correlated with the prediction error. Regression model,
such as random forest, was used to explore the significant covariates correlated
with weather prediction accuracy, and candidate covariates were selected from the
historical weather information dataset (see Table 1).

3. Methods & Results

3.1 Clustering

To explore the pattern of variations within minimum temperature prediction ac-
curacy, the time series curves of εt for each state were first parameterized and
smoothed by B-spline. Then, two different unsupervised clustering methods were
applied on those 50 smoothed curves.

3.1.1 Parameterization and Smoothing on Time Series Data

In the original data, the absolute prediction error was observed over time in each
state. Thus, to study the patterns of absolute prediction error for each state over
time, the time series data can be considered as a function of time ϵ(t).

To reduce the noise and capture the main pattern of the time series data, we fitted
the data in each state to a smoothed curve as a linear combination of several spline
functions. The idea of data-to-curve transformation is almost the same as the linear
regression. Consider the time t ∈ [a,b] with M distinct interior points ξ1, ξ2, ..., ξM
that partition the [a,b] as a(ξ0) < ξ1 < ξ2... < ξM < b(ξM+1); then the spline
function with a degree d will be fitted on each interval [ξi, ξi+1] with d−1 continuous
derivatives on the open interval (a, b), where i = 0, 1, ...,M . In this case, we used
B-spline, a type of spline function, to approximate the functional data s(t). With
a degree d and M interior points ξ1, ξ2, ..., ξM , M + d + 1 Schoenbergs B-spline
basis functions (B1, B2, ..., BM+d+1) forms the linear space, and the s(t) will be
approximated as a linear combination of the basis functions as
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s(t) = s(t, β) =

M+d+1∑
l=1

βlBl(t), (1)

where the β = (β1, β2, ...βM+d+1)
′ is the coefficients of the corresponding basis func-

tions (Curry and Schoenberg, 1966). Similar to the coefficient estimation in linear
regression, to estimate the β, we first transferred the observed time point t1, t2, ...., tn
to a n× (M+d+1) matrix B with row vector Bi = (B1(ti), ..., BM+d+1(ti)). Under
the assumption that the B′B is non-singular, the β is estimated using least squared
error as

β̂ = argminβ
1

n

n∑
i=1

(yi − s(ti, β))
2 = [B′B]−1By, (2)

where y = (y1, y2, ..., yn) is the observation of the response variable on time (t1, t2, ...., tn).

For the distinct interior points setting, we used 17 distinct interior points to divide
the 3-year period into 18 time intervals with the same data amount, so that each
time interval contains 2 months of data. After obtaining the smoothed curves of
ϵi(t), i = 1, ..., 50 for 50 U.S. states, we utilized two unsupervised clustering methods
to group states which show similar performance on ϵi(t).

3.1.2 Time Series Clustering

Clustering is a method to group a set of objects that are similar in the same group
(cluster). Provided the time-dependence feature of time series data, the conven-
tional clustering techniques are not suitable to identify meaningful clusters. Clus-
tering time-series data has been widely used in different applications, such as stock
market data and medical data (Aghabozorgi et al. [2015], Aggarwal and Reddy
[2013]). In time series clustering, dynamic time warping (DTW) is one of the met-
rics for measuring the similarity between two time series. DTW is calculated using
a dynamic programming algorithm that tries to find the optimum warping path
between two series under certain restrictions (Aghabozorgi et al. [2015]).

Our first step was to smooth the raw data as described in section 3.1.1. After curve
parameterization and smoothing, we obtained 50 smoothed time series curves and
our goal was to group similar curves into a few clusters. The dtwclust package,
developed for the R statistical software, provides implementations for a range of
time-series clustering algorithms (Sardá-Espinosa [2017]). We fitted the time series
clustering using dtwclust package with DTW as the distance function to cluster 50
time series into k clusters. Note that the number of clusters k must be specified in
advance. The algorithm intends to find the medoids that are centrally located in
clusters, where each centroid is a time series. A range of k values, from 3 to 10, were
tested and evaluated using Dunn index, Davies-Bouldin index and Silhouette index
in the table below where a higher value of Dunn index and Silhouette index are
preferred and a lower value of Davies-Bouldin index is preferred (Sardá-Espinosa
[2017]). From Table 2, these three indexes suggest to pick k = 6. However, we
noticed that there is a cluster with only one time series (Arizona) in it. We combined
it with another cluster, resulting in a k = 5 clusters in the final model.
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Table 2: Table of different clustering evaluation metrics for each number of cluster,
k

Index k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Dunn index 0.10 0.10 0.06 0.15 0.08 0.11 0.10 0.14
Davies-Bouldin index 2.07 1.67 1.95 1.04 1.55 1.38 1.51 0.87
Silhouette index 0.33 0.27 0.19 0.22 0.15 0.16 0.15 0.24

As seen in Figure 6 below, five clusters with its centroid and individual series were
plotted where the dotted lines indicate the centroid and the solid lines indicate the
individual series. From the figure, we can also see 5 different patterns for each
cluster. A common pattern across all clusters is that the absolute prediction errors,
εt, tend to be higher in the winter and lower in the summer. Cluster 1, on average,
has lower and more stable absolute prediction errors over the span of 3 years. The
prediction errors for Cluster 2 and Cluster 4 tend to increase over the years, whereas
the prediction errors for Cluster 3 tend to decrease over time. Last but not the least,
the pattern of prediction errors for Cluster 5 is similar from year to year.

Figure 6: Time-series clustering with k=5 clusters based on absolute prediction
errors

Another way to assess the goodness-of-clustering is to map the states in each cluster
on the actual U.S map. As discussed in the earlier section, states that are close to
each other are expected to have a similar weather. Moreover, some states are not
neighbours but have similar climate effects, such as Hawaii and Florida. We hope
that our clustering method is able to capture these two characteristics. From Figure
7, we can observe that most of the states within the same clusters are geographically
close to each other. For cluster 1, California, Florida and Hawaii, which are the
hotter states compared to the others in the US, are clustered into the same group.
This is consistent with our hypothesis where states with similar climate should be
in the same group.
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Figure 7: Time-series clustering with 5 clusters plotted on the U.S map

3.1.3 K-means Clustering on Functional Principal Component (FPC) Scores

Instead of clustering the states on time series data, we proposed another clustering
method on functional data. The second clustering method focuses on applying the
K-means clustering method on FPC scores. The key steps are:

1. Conduct the principal component analysis (PCA) into the curves
2. Obtain the principal component (PC) scores of the curves from the first few

PCs who can explain more than 90% of the variation of the curves
3. Use the K-means method to cluster the obtained PC scores

The motivation of this clustering method comes from a clustering method created
by Abraham et al. [2003]. This method clusters the curves by involving the K-means
clustering method to the coefficients of B-splines which approximate the smoothing
curves. The key steps are

1. Given n group of time series data where ni observations in the th group, i
= 1 ... n. In th group for any i in 1 to n , we approximate the observations
{(yj , tj)|j = 1..ni} to a smooth curve yi(t) as a linear combination of B-spline.

2. Cluster the data into k groups by using K-means clustering the estimated
B-spline coefficients {β̂i|i = 1...n} into K groups.

To classify {β̂i|i = 1...n}, the estimated coefficients of n s(t), into k groups, the
procedure of k-means clustering is to search for k partitions, {C1, C2, ..., Ck} with
center vectors {c1, c2, ..., ck} which minimize

1

n

k∑
j=1

∑
β̂i∈Cj

∥β̂i − cj∥2 (3)

where the ∥ · ∥ is defined as the Euclidean norm (Hartigan and Wong [1979]). A
strong consistency property has been proved in this method, which is that the cal-
culated center {c1, c2, ..., ck} has strong consistency to a unique center {c∗1, c∗2, ..., c∗k}
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, which indicate that by finding an appropriate function basis space to approximate
the data to curves, the procedure and the result of algorithm will be stable when get-
ting more time series data; then the calculated center of the clusters, {c1, c2, ..., ck},
will converge to the unique {c∗1, c∗2, ..., c∗k} (Abraham et al. [2003]).

Instead of conducting the K-means methods on B-spline coefficients, we clustered
the curves refer to the largest variation direction, which was applying the K-means
method to the FPC scores. Functional principal component analysis (FPCA) is
an extension of PCA to the functional data x(t), where t is a continuous variable
(Ramsay et al. [2009]). Given a set of functional data with N smoothing curves,
{xi(t)|i = 1...N, t ∈ [a, b]}, the first step of FPCA is to estimate the covariance
function as

v(s, t) =
1

N − 1

∑
i

[xi(s)− x̄(t)][xi(t)− x̄(t)], (4)

where the s and t share the same domain [a, b]. Using the Karhunen-Loeve decom-
position (Fukunaga and Koontz [1970]), the v(s, t) can be decomposed as

v(s, t) =
∞∑
j=1

djξj(s)ξj(t), (5)

where the ξj(t) is the eigenfunction and usually with the restricted condition as∫
ξ2(t)dt = 1, and the dj is the eigenvalue of ξj(t). Similar to PCA in multivariate,

the dj is proportional to the percentage of variation that the ξj(t) explains. Finally,
the jth PC score of the functional data xi(t) can be calculated as

ρij =

∫
ξj(t)[xi(t)− x̄(t)]. (6)

We can reorder the eigenfunctions following the size of their eigenvalues from largest
to the smallest, and gain the first p PCs with largest eigenvalues that can explain
most of the variation (i.e. >90%) in the curves. Then, each xi(t) can be rewritten
and approximated as

xi(t) = x̄(t) +
∞∑
j=1

ρijξj(t) (7)

≈ x̄(t) +

p∑
j=1

ρijξj(t) (8)

In other words, FPCA provides a new group of basis functions {x̄(t), ξ1(t), ..., ξP (t)},
and reform the functional data into a linear combination of the basis functions,
where the coefficient of x̄(t) is always 1 and the coefficient of the ξp(t) is the score
of the pth PC of the corresponding curve.

Similar to the clustering B-spline coefficients using K-means, this clustering method
is applying the K-means clustering on the coefficients of the eigenfunctions. There-
fore, this method may also have the consistency property, as the strong consistency
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property stands for all kinds of basis functions (Abraham et al. [2003]), and the
x̄(t) should not affect the clustering because it exists in all the curves with the same
coefficients 1.

We plotted the result of clustering on FPC scores in Figure 8 by labeling the clusters
in different colours.

Figure 8: Functional Data Clustering with k=5 Clusters

Key features we found in Figure 8 are:

• cluster 1 groups the northwest inland states in the U.S.;

• cluster 3 groups west coast states, including Washington, California and Ari-
zona, and states with mild climate, such as Hawaii and Florida;

• cluster 5 groups most of the middle inland states in the U.S;

• Northeast states are mostly grouped together.

To investigate the patterns in each cluster, we plotted both the original smoothed
curves and their mean curves with 95% confidence interval in Figure 9. Starting
from the left of the figure, the clusters were plotted in order from 1 to 5. In Fig-
ure 9, the five plots in the first panel are the smoothed curves of each state in the
corresponding cluster, and the five plots in the second panel are the mean curves of
respective clusters with 95% confidence interval indicated by red dotted lines.
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Figure 9: Functional Data Clustering: K-means on FPC Scores with k=5 Clusters

In Figure 9, we observed that all clusters have a higher prediction error and wider
confidence interval during the winter, which implies the extrapolation problem of
minimum temperature prediction in a cold environment. Moreover, Some special
characteristics exist in each cluster,

• Cluster 1 and 5 shows an increasing trend of prediction error over time,
whereas cluster 1 has larger fluctuation.

• Cluster 3 has visually lower and more stable absolute prediction error than
the other clusters;

• Cluster 2 and 4 are similar to each other, and both of them have larger fluc-
tuation than the other 3 clusters with a little stepwise pattern from the end
of 2014 to the start of 2015.

To quantify cluster-to-cluster difference in prediction accuracy, we integrated the
mean curves of each cluster and ordered the 5 clusters by the magnitude of inte-
gration (area under curves), allowing us to identify the most and least predictable
states in U.S. The ranking results show that cluster 3 has the best prediction perfor-
mance with the smallest integral value, while cluster 2, which contains Connecticut,
Maine, Massachusetts, New Jersey, New York and Vermont has the worst prediction
performance with the largest integral value.

Table 3: Cluster integration ranking results

Cluster Rank Overall Integral Representative States
CL3 1 3397.3 California, Florida
CL5 2 4284.2 Alaska, Texas
CL4 3 5247.7 Michigan, Pennsylvania
CL1 4 5248.2 Nevada, North Dakota
CL2 5 6155.2 New York, Massachusetts

3.2 Concurrent Functional Linear Model

To investigate the correlations between different weather measures and εt, the con-
current functional linear model was conducted. The concurrent functional linear
model is a simple extension of linear regression to the functional data.
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3.2.1 Model Description

Unlike simple linear regression that both the response variables and predictors are
single values, in the concurrent functional linear model, we aimed to regress mul-
tivariate covariates on the functional responses on the basis that all the responses
and covariates will be considered as objects with a function of time(Ramsay et al.
[2009]). This means that given N observed objects with q covariates, we observe
that the values of all response variables and the covariates are continuous functions
of variable t. Let {yi(t)|i = 1...N} be the functional value of response variable for
the ith observation, and let {xij(t)|i = 1...N, j = 1...p} be the functional value of
the jth covariate for the ith observation. Let Z(t) be the Nq matrix that contains
all the xij(t) functions, then the concurrent functional is defined as

y(t) = Z(t)β(t) + ϵ(t), (9)

where the β(t) is the coefficient function vector of the covariates. To deal with the
multicollinearity problem between the corvariates, the β(t) is estimated by mini-
mizing sum squared error with the weighted regularized criterion as

LMSSE(β) =
∫
[y(t)− Z(t)β(t))]′[y(t)− Z(t)β(t))] +

p∑
j

λj

∫
[Ljβj(t)]

2dt (10)

3.2.2 Results

According to the LMSSE form, the concurrent functional linear model can be under-
stood as an extension of the ridge regression model (Ramsay et al. [2009]); therefore,
we implemented a point-wise ridge regression model on every observed date with a
common penalty λ in all covariates over time. In the model, the response variable
was the absolute prediction error εt in each state, and our interest covariates were
the mean sea level pressure, dew point, humidity, wind speed and visibility miles.

The first step in our model construction was to choose the penalty term λ. We
first conducted the cross-validation to choose the optimal λ with the smallest mean
squared error on each observed date, and then used the median of the all the λs as
the final λ. Then we estimated the coefficient of each covariate over time, as shown
in Figure 10.

According to Figure 10, the dew point and visibility miles were negatively correlated
to the absolute prediction error in most of the past three years, and the effect of sea
level pressure and wind speed were positive in most of the time. Moreover, some
periodic pattern may exist in the effect of dew point and humidity. The negative
effect of the dew point may be relatively stronger in winter than in summer. Be-
sides, the effect of the humidity has a relatively large positive effect in fall, but has
a relatively large negative effect in spring and summer.
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Figure 10: Estimated coefficients of covariates in concurrent functional linear model

4. Conclusion

By comparing the results of the clustering methods based on time series curves and
FPC scores, we are able to identify some interesting similarities. Figure 11 shows
the U.S. map of time-series clustering (the left panel) and FPCA clustering (the
right panel). We observed that all of the two clustering methods group Hawaii,
Washington, California, Arizona and Florida into the same cluster (Cluster 1 in
both methods coloured in red in Figure 11), showing that these 5 states share some
distinct characteristics from others, where the absolute prediction errors are more
stable throughout the years compared to other clusters. This can be further verified
by the time series plots in Figure 6 and 9 as well as Table 3.

Figure 11: Clusters in Time Series Data V.S. Cluster in Functional Data

Moreover, both methods show that the states highlighted in circle in Figure 10 are
grouped into the same cluster. This provides us with more confidence that these
states are different from the rest of the states. One plausible reason may be that
these states have extreme weather during winter and summer, which makes it more
difficult to predict.

The concurrent functional linear model provides us with more information about
how the prediction errors are associated with other covariates. The result of the
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estimated coefficients suggests that the effect of the covariates change over time.
In Figure 10, some interesting jumps of the estimated coefficients were observed,
which might be related to the missing values or some special weather events existed
in the corresponding time. For instance, the most obvious jumps in the estimated
coefficients of sea level pressure, dew point and visibility miles were observed at the
beginning of 2015 in Figure 10.

5. Discussion

There are some limitations in our study. As we defined in the earlier section,
prediction error is the absolute value of the difference between the real minimum
temperature and the forecast temperature, so by taking the absolute value on the
prediction error, we lose some information regarding the problem of directional bias;
for example, the overestimation and underestimation of the prediction errors are not
well addressed in this study. In addition, the concurrent functional linear model
only considers the same-day effect of covariates on the response variable but does
not include the information from the past up to the point. This model can be
further improved by using the general functional regression model (Ramsay et al.
[2009]).

To involve the spatial correlation, future studies can focus on implementing the
spatio-temporal model described in (Hengl et al. [2012]) to incorporate both tempo-
ral and spatial components simultaneously. In this case, we can further investigate
how other weather-related variables, such as humidity, wind speed and sea level
pressure, will affect the prediction performance over time as well as space.
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