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Abstract
In sample surveys with sensitive questions, randomized response techniques, like the unrelated

question methodology, have a huge advantage in estimating population proportions by adjusting
for non-response or untruthful response. In reality, multiple sensitive proportions from small areas
could be of great interest. Therefore, we consider using the unrelated question design with multiple
sensitive questions and single random mechanism. Given combined binary response data, we can
construct a hierarchical Bayesian model with latent variables to get more accurate estimates. There
is also a computing challenge since we need to estimate parameters from all stages of the model.
Thus, Markov chain Monte Carlo methods are applied to predict the finite population proportions
of sensitive attributes. We compare the estimation error under different area size and correlation
between the two sensitive questions during the simulation study. In the end, an application on body
mass index data from the Third National Health and Nutrition Examination Survey is provided to
verify our procedures.

Key Words: Gibbs sampler, Hierarchical Bayesian, Latent variables, MCMC, Unrelated question
design

1. Introduction

In survey sampling, more curious and problematic issue is to collect information about
sensitive questions that a respondent have tendency to refuse to answer, or answer untruth-
fully. Some cases of sensitive and stigmatizing items in surveys like habitual tax evasion,
drunken driving, gambling, consuming drugs, etc. S. L. Warner(JASA, 1965) gave a stan-
dard procedure for estimating the proportion of people bearing the sensitive character A, on
adopting a suitable randomization device. This randomized response technique also called
mirror’s question design. In Warner’s design, each individual will be required to play a
random game, like throwing a die. Thus with probability p, the respondent will give his/her
answer (’Yes’ or ’No’) of the sensitive question ”Do you belong to the group A?”; with the
probability 1 − p, he/she will give the answer of the opposite question ”Do you belong to
the group AC?”. Notice here AC represent the compliment set of A. Each sample unit is
required to play the game unobserved by the interviewer and provide there responses in the
end.

In fact, when randomized response techniques are used, a respondent’s individual an-
swer is not of interest, rather inference is needed for the population. the respondent does
not provide a direct answer to the sensitive question, thus the identity of the respondent
is protected while the true answer to the sensitive question is elicited. In this approach to
survey sampling, the randomization is not only in drawing the sample but also in obtaining
the response.

An important extension of the Warner’s method is the unrelated question design, pro-
posed by Greenberg, Abu-Ela, Simmons and Horvitz in 1969. Instead of asking an opposite
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question, we ask an unrelated nonsensitive (innocuous) question. For example, each sample
unit will flip an unfair coin, and choose one of the following questions to answer according
to the result of head or tail.

Question 1: Have you ever cheated on an exam anywhere? (A)
Question 2: Are you born in Massachusetts? (U)

Circle your response. [Yes, No]
In this way the respondents should be more comfortable to answer the question because
the investigator can never know which question the respondents are answering. Instead, we
can only list the following probability relationships

λ1 = p1πA + (1− p1)πU
λ2 = p2πA + (1− p2)πU

where
λi= the probability that a ”Yes” answer will be reported in the ith sample;
pi= the probability of answering the sensitive question in the first sample;
πA = true proportion with the sensitive attribute A;
πU = true proportion with the unrelated attribute U.

One needs to strike a compromise between efficiency and response burden but respon-
dents’ protection is paramount (US Privacy Act of 1974), currently a hotly debated issue in
the US Congress especially in connection with the use of the Internet.

Direct questioning exposes a respondent’s privacy that is obviously unacceptable. Any
design, which adds noise to the response, will be less efficient than a direct questioning
design. One cannot compromise respondents’ privacy, but one can compromise respon-
dents’ burden and efficiency. However, it has been argued that socially desirable answers
and refusals are expected when sensitive questions are asked directly (e.g., see Tourangeau,
Rips and Rasinski 2000 and Tourangeau and Yan 2007). Evidently, as supported by many
psychologists, sensitive questions should not be asked directly.

We assume that respondents respond truthfully. It should be obvious that this assump-
tion is more easily attained under indirect questioning than direct question. In direct ques-
tioning, it is more likely that there will be nonresponse that may be nonignorable, and
we need to develop nonignorable nonresponse models (Nandram and Choi 2002, 2010) to
handle them. So at least on two fronts, indirect questioning is advantageous.

There is also a amount of detailed literature review of varies randomized response tech-
niques, including many extensions of the unrelated question design. The forced response
design (Fox & Tracy, 1986) is like the unrelated question design, but using the results com-
ing fro two Bernoulli trials instead. The disguised design (Kuk, 1990) is like the other way
around, the respondent need to report the results from two Bernoulli trials based on their
answer to the sensitive questions. Blair, Imai, and Zhou (2015) gave an excellent review
paper on these four method. Other nonrandomised designs like crosswise and triangular de-
signs (e.g. Tan et al., 2009) can be viewed as extensions of the unrelated question design,
which get rid of the random mechanism.

For continuous response, Greenberg et al. (1971) and Eriksson (1973) extended the
unrelated question model of Greenberg et al. (1969) to the case in which the response is
quantitative. Pollock and Bek (1976) described the additive/multiplicative models, which
involve the respondent adding/multiplying the answer to the sensitive question by a random
number from a known distribution. More recently, see Gupta et al. (2002), Gupta et al.
(2010) for optional designs for quantitative data.

However, there are some concerns for the traditional method of getting the maximum
likelihood estimation of the proportion. First, direct estimates from solving the equation
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systems cannot guarantee a reasonable solution between (0,1). Also large sample sizes are
needed to get an admissible estimate. In the unrelated question design, π̂A and π̂U can be
highly correlated, reducing the correlation by increasing the sample size will be costly. The
design-based estimator may be practically biased in small samples. Especially for small
areas, more discussion about the individual Bayesian model in Nandram and Yu, 2017.

There are not many works within the Bayesian paradigm of randomized response mod-
els. Nonetheless, attempts have been made on the Bayesian analysis of RRTs. For example,
Winkler and Franklin (1979) gave an approximate Bayesian analysis of Warner’s mirrored
design, O’Hagan (1987) derived Bayesian linear estimators for the unrelated question de-
sign, and Oh (1994) used data augmentation to introduce latent variables to Gibbs sampling
of the mirrored design, the unrelated question design and the two-stage design with binary
and polychotomous responses. van den Hout and Klugkist (2009) proposed Bayesian in-
ference that takes into account assumptions with respect to non-compliance under simple
random sampling. Also, Tian, Yuen, Tang and Tan (2009) proposed Bayesian approaches to
non-randomized response models without using random mechanisms. Avetisyan and Fox
(2012) used beta-binomial and multinomial-Dirichlet models for empirical Bayes analysis
and to a less extent Bayesian analysis for a small sample from a single population. They
considered multiple items with multiple categories. But this latter work is not within the
small area context although each person may be considered a small area. Most recently,
Song and Kim (2017) gave a Bayesian analysis of two unrelated questions with rare out-
comes (i.e., Poisson modeling rather Binomial modeling). Bayesian methods, with useful
prior information, deserve much more attention because it is easy to obtain proper esti-
mates. Of course, hierarchical Bayesian models can be used to study data arising from
sample surveys with randomized responses.

When it comes to the case of the multiple sensitive questions, lots of work focusing on
estimating the correlations, see Bellhouse (1995). Edgell et al. (1986) provides a further
statistical efficiency study about the correlation. More recent paper of Chung et al. (2018)
interest in making causal inference among the sensitive attributes through the Bayesian
RRT which compare with the multivariate analysis extension of RRT of Kwan (2010).
However, we are more interest in how the correlation between the sensitive questions will
influence the proportion estimation.

The main purpose of this paper serves as an multi-question extension to the work of
Nandram and Yu (2018). The plan of the rest of the paper is as follows. In Section 2,
we propose an hierarchical bayesian model for unrelated question design of two sensitive
questions and the computational methodology. In Section 3, we provided a simulation
study in comparison of three different models and also in area size and correlation effect.
In Section 4, we present an application on the TNHNES data to evaluate our Bayesian
model.

2. Unrelated question design for multi sensitive questions

In this section, we discuss the Bayesian methodology to analyse the binary response data
from combined sensitive questions. If there are more than one sensitive question from
small areas. For each area, at least two groups of people are sampled and required to flip
an unfair coin. Depending on different results (head or tail), which is unobserved by the
instructor, they will provide their true answer of the combined questions either sensitive or
non-sensitive. So with the probability pij (the success probability of jth group from ith
area), the respondents will get the chance to answer two sensitive questions; otherwise they
should answer the other two non-sensitive questions. In the end, the instructor will collect
the binary response data of four types: (No, No), (No, Yes), (Yes, No), (Yes, Yes), where
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y
˜
ij = (yij1, yij2, yij3, yij4) represent the counts, where i = 1..l, j = 1..gi.

Since the survey conductor cannot know the data from which branch, the respondent
will feel more comfortable to give the true response to the sensitive questions which will
lead to a more accurate estimation of the sensitive population proportion πi1˜ .
We may think of a straightforward probability relationship below:

yij1
nij

= pijπi11 + (1− pij)πi21
yij2
nij

= pijπi12 + (1− pij)πi22
yij3
nij

= pijπi13 + (1− pij)πi23
yij4
nij

= pijπi14 + (1− pij)πi24

,where nij =
∑4

k=1 yijk.
In order to estimate the population proportion for each area, instead of combining the

equation system which may not guarantee a solution, we propose a three-stage bayesian
model with latent variables. It is natural to think of the counts data from the four type
of responses for each area follows multinomial distribution with the four cell probabilities
given above. Based on that, we developed the hierarchical bayesian model to solve the
problem.

2.1 Gibbs Sampler

Step 1. Draw ωijk from Binomial distribution.

ωijk | πi1
˜
, πi2
˜
, y
˜

ind∼ Binomial{yijk,
pijπi1k

pijπi1k + (1− pij)πi2k
},

i = 1, . . . , l; j = 1, . . . , gi; k = 1, 2, 3, 4.

Step 2. Draw πi1
˜
, πi2
˜

from the Dirichlet distribution.

πi1
˜
| µ1
˜
, µ2
˜
, τ, ω

˜
, y
˜

ind∼ Dirichlet(ωi1· + µ11τ, ωi2· + µ12τ, ωi3· + µ13τ, ωi4· + (1−
3∑

k=1

µ1k)τ)

πi2
˜
| µ1
˜
, µ2
˜
, τ, ω

˜
, y
˜

ind∼ Dirichlet(yi1· − ωi1· + µ21τ, yi2· − ωi2· + µ22τ, yi3· − ωi3· + µ23τ,

yi4· − ωi4· + (1−
3∑

k=1

µ2k)τ)

where ωik· =
∑gi

j=1 ωijk, yik· =
∑gi

j=1 yijk.

The first two steps are easy to run because the conditional posterior densities are all in sim-
ple forms. However, drawing (µ1

˜
, µ2
˜
, τ ) jointly require more work using the grid method

from the joint distribution of (µ1
˜
, µ2
˜
, τ ) after integrating out πi1

˜
, πi2
˜

.
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Step 3. Draw µ1
˜
, µ2
˜
, τ using grid method.

π(µ1
˜
, µ2
˜
, τ | ω

˜
, y
˜
) ∝

l∏
i=1

(
D(ωi1· + µ11τ, ωi2· + µ12τ, ωi3· + µ13τ, ωi4· + (1−

∑3
k=1 µ1k)τ)

D(µ11τ, µ12τ, µ13τ, (1−
∑3

k=1 µ1k)τ)
·

D(yi1· − ωi1· + µ21τ, yi2· − ωi2· + µ22τ, yi3· − ωi3· + µ23τ, yi4· − ωi4· + (1−
∑3

k=1 µ2k)τ)

D(µ21τ, µ22τ, µ23τ, (1−
∑3

k=1 µ2k)τ)

)

· 1

(1 + τ)2

Then we can draw ω,πi1,πi2, and (µ1, µ2, τ) successively from the conditional density.
We run 11000 iterates and burn in the first 2000 iterates, taking every 9th and get the final
1000 gibbs sampler. We can obtain Rao-Blackwellized estimators of πi1 and πi2 because

π(πi1,πi2 | y) =
yi1∑

ωi1=0

. . .

yigi∑
ωigi

=0

π(πi1,πi2 | ω,y)π(ω | y)

=

yi1∑
ωi1=0

. . .

yigi∑
ωigi

=0

π(πi1 | ω,y)π(πi2 | ω,y)π(ω | y)

as follows. Let ω(h) = (ω
(h)
ijk), j = 1, . . . , gi, k = 1, . . . , 4, h = 1, . . . ,M , denote a

random sample of size M from the posterior density, π(ω | y), obtained from the Gibbs
sampler. Then, the Rao-Blackwellized density estimator of π(πi1,πi2 | y) is

̂π(πi1,πi2 | y) =
1

M

M∑
h=1

π(πi1 | ω(h),y)π(πi2 | ω(h),y), i = 1, . . . , `.

Then we can get the Rao-Blackawellized estimator of the sensitive proportion φi11 = πi13+
πi14 and φi12 = πi12 + πi14, i = 1...` for each area.

Next we are able to do the prediction in a finite population under simple random sam-
pling. Assume that each sample unit is drawn from an finite population of size N, let Xs

denote the total counts of yeses from sth sensitive question. Therefore,

Xs | πs
ind∼ Binomial(N, πs), s = 1, 2.

Then, the finite population proportion Ps = Xs/N, s = 1, 2, and inference about the Ps

can be made in a straightforward manner under the Bayesian model.

3. Simulation Study

In section 3.1, we preform a simulation study to assess the the performance of the combined
area model compared with individual-area model and separate question model. In section
3.2, we adjust the parameter setting to increase the area size and the correlation within the
sensitive and non-sensitive questions to see the possible gains in estimation accuracy.

3.1 Comparison of three models

In this section, we are going to test our model by using a 10 area simulated data. Based on
the 1000 simulated runs, we prepare a comparison of our combined model with separate
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question model and individual area model. Also, we try to explore whether the correlation
between the two questions will gain in estimation accuracy.

Assuming that the probability of answering ”Yes” to the first and second sensitive ques-
tions are φ11 and φ12; the probability of answering ”Yes” to the first and second sensitive
questions are φ21 and φ22. Then we simulated the correlated response data with corre-
lation ρ1= 0.2 and ρ2= 0.25 with respect to the sensitive and nonsensitive questions cor-
respondingly among 10 areas. In other words, the four type of response (”No”, ”No”),
(”No”, ”Yes”),(”Yes”, ”No”),(”Yes”, ”Yes”) for the sensitive questions are generated with
the probability (π11, π12, π13, π14), where

π11 = (1− φ11)(1− φ12) + dum

π12 = (1− φ11)φ12 − dum
π13 = φ11(1− φ12)− dum
π14 = φ11φ12 + dum

where dum = ρ1
√
φ11(1− φ11)φ12(1− φ12) with true value set as φ11 = 0.25, φ11 =

0.35. The correlated probability construction come from Yu, Bhadra, Nandram (2017).
And we can generate the response from correlated nonsensitive questions in the same way
with probability (π21, π22, π23, π24), with the true value set as φ21 = 0.35, φ22 = 0.45.
Now we want to mock the sampling process. For each individual from ith area and jth

group (i = 1..` = 10, j = 1..gi ≥ 2). At first, we generate the number of groups uniformly
from 2 to 5. For each coming individual from ith area and jth group with size ngi= (20, 25,
30, 35, 40), we choose an random mechanism with probability pij= (.25, .75, .2, .7, .3) to
answer the sensitive questions and (1-pij) to answer the nonsensitive questions. Following
the simulation process, we are able to collect the combined binary response data sourcing
from both sensitive and nonsensitive questions, without knowing which exact question the
respondent answer. Our interest is to find the finite population estimation of the probability
of answering ”Yes” to the sensitive questions φ11 = π13 + π14 and φ12 = π12 + π14.
Then we can fit the three stage bayesian model to get the Rao-Blackwellized estimates of
(π11, π12, π13, π14) first, and finally get the corresponding finite population estimation. To
compare with the individual area model and separate question model, we can construct
a 95% HPD interval from the 1000 simulations of the estimated probability φ̂11 and φ̂12
from 10 areas. In Figure 1, we can observe that within each area, the width of the 95% HPD
interval increases from the combined-area model to the separate question model, and to the
individual area model. And the case are the same for both sensitive proportions across 10
areas. Also in Table 1, for the case of area size 10,

3.2 Discussion of the area size and correlation effect

To further compare the three models and the the area size effect. We change the area size
to 25. We calculated the relative absolute bias, RAB = (PM − T )/T , and the posterior
root mean squared error, PRMSE =

√
(PM − T )2 + PSD2, where T denotes the true

proportions, φ11 or φ12 (known by simulation). We also computed their average width
(Wid) of the 95% HPD intervals and the coverage C, which is the proportion of intervals
containing the true in the 1000 simulated runs. We simulated the correlated data with
correlation ρ1 = 0.2 and ρ2 = 0.25 with respect to the sensitive and nonsensitive questions
correspondingly among 10 areas.

In Table 1, we provided the simulation results from different area sizes (` = 10, 25).
And we observed that for the combined bayesian model (cb), the average ralative absolute
bias and the root mean squared error get smaller as the area size increase from 10 to 25 for
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both π1 and π2; the average width of 95% HPD interval is 0.216, shorter than 0.283 for π1.
Even though we obtained a smaller coverage of 0.951 when the area size equal to 25, it’s
still greater than the expected 95%. Conclusions are similar for π2.

In Table 2, we showed the comparison results from different correlations 0.2 and 0.8
when area size is fixed to be 10. For the estimation of π1 from the combined model (cb),
we observed that the relative absolute bias (RAB) is 0.096 for the highly correlated data
(ρ = 0.8), which is a little bit smaller than 0.101 of the less correlated data (ρ = 0.2). The
PRMSE is .088, which is also smaller than 0.093 for the less correlated one. However, the
change is not quite significant. Even though we benefit from combining questions together,
there still need future discussion for the correlation effect based on this simulation result.

4. Application on NHANES III data

In this chapter, we apply the body mass index (BMI) and bone mineral density (BMD)
data from the third National Health and Nutrition Examination Survey (NHANES III). The
survey is a program of studies designed runned by CDC (Center of Disease Control and
Prevention) to assess the health and nutritional status of adults and children in the United
States, which is conducted during the period October 1988 through September 1994. Due
to confidentiality reasons, the final data set for this study uses only 6557 samples of the 35
largest counties with a population at least 500,000. Also, This survey contains BMI and
BMD data together with covariates of age, sex and race.

We have 4 levels of BMI (=1,2,3,4) and 3 levels of BMD (=1,2,3), where BMI= 3&4
represents the BMI value greater than 25 which can be considered as overweight; and
BMD= 2&3 means the BMD value smaller than 0.82 which indicates osteopenia or osteo-
porosis. In our case, the interest is finding out the proportion of people from the targeted
population who are overweight or have osteoporosis, which both can be considered as
sensitive. Instead of asking questions directly, we are thinking of applying randomized re-
sponse technique to obtain the sensitive proportion, even though, the designed survey is not
implemented in reality. Thus this example serves more like an evaluation of our bayesian
unrelated question model. As compared to our survey design, the two sensitive questions
would be ’Are you overweight ?’ and ’Do you have osteopenia or osteoporosis ?’. Thus to
simulate our design we need to construct other two unrelated non-sensitive questions. We
set the race and sex to be the non-sensitive question as ’Are you white? ’ and ’Are you
male?’, which are less sensitive.

In Figure 2, we provide an comparison plot of the direct estimates and the Bayesian
estimates for 35 areas. The direct estimates are calculated directly from dividing the sen-
sitive response counts by the sample size within each area. We treat direct estimates as
a close value to the true proportion since it obtained based on all the samples from each
area. We can observe that the Bayesian estimates almost follow the trend of the direct es-
timates showing that we are able to get a reasonable estimation for the overweight propor-
tion through the Bayesian random response model while applying the randomized response
technique.

5. Concluding Remarks

We provided a bayesian method to solve for the sensitive proportions though the unrelated
question design when we have more than one sensitive questions. The simulated results
shown that for data from small areas, the Bayesian combined model (cb) will give a more
accurate estimation, in both sense of relative absolute bias and posterior root mean square,
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compared to the individual area model (ind) and separate question model. It is also exam-
ined by simulate the process on the TNHNES data.

This might give us a clue of how to design the survey in the situation that more than
one sensitive question are available, and also they are likely to be correlated. It could
be the case that even if we are only interested in one sensitive question, we can include
other correlated sensitive questions into the design to get a better proportion estimation.
Of course, the same number of unrelated questions should be constructed since the answer
should have the same dimension. Even though there might be concern of the extra cost by
asking more questions, the availability of online survey tools will make the survey collector
get the response more easily.

The design can be easily generalized to multiple questions case. If there are k sensitive
questions, that means we have k dimension of cell probabilities for both sensitive and non-
senstive questions from each area. And also there will be 2k latent variables for each group
within areas. Even in our case when k = 2, we need to run at least 11000 iterates to pass
the Geweke test and other convergence diagnostics. As k get larger, the model will be more
complicated and the mixing effect will also grow when we run the gibbs sampler, which
means more iterates is needed to get the useful draws in the end.

For the above concerns, we try to construct a normal approximation model to increase
the computation efficiency in the future.
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Figure 1: Comparison of the direct estimates and the Bayesian estimates for 35 counties

Table 1: Relative absolute bias, posterior root mean squared error, coverage of 95% credi-
ble intervals and width of 95% credible interval averaged over the 1000 runs and different
area sizes (`=10, 25) for combined model (cb), individual area model (ind) and separate
question model (sep).

φ̂11 φ̂12

` Mol. RAB PRMSE C Wid RAB PRMSE C Wid

10 cb 0.101 0.093 0.971 0.283 0.101 0.094 0.972 0.283

Ind 0.188 0.168 0.950 0.490 0.187 0.167 0.951 0.490

Sep 0.181 0.142 0.896 0.375 0.179 0.141 0.899 0.374

25 cb 0.087 0.074 0.951 0.216 0.087 0.074 0.952 0.216

Ind 0.188 0.168 0.950 0.491 0.186 0.167 0.952 0.491

Sep 0.175 0.138 0.910 0.403 0.176 0.166 0.913 0.401
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Table 2: Relative absolute bias, posterior root mean squared error, coverage of 95% cred-
ible intervals and width of 95% credible interval averaged over the 1000 runs and two
different levels of correlations (ρ1, ρ2) = (0.2, 0.25) and (0.8, 0.8).

π1 π2

ρ1, ρ2 Mol. RAB PRMSE C Wid RAB PRMSE C Wid

0.2, 0.25 cb 0.101 0.093 0.971 0.283 0.101 0.094 0.972 0.283

Ind 0.188 0.168 0.950 0.490 0.187 0.167 0.951 0.490

Sep 0.181 0.142 0.896 0.375 0.179 0.141 0.899 0.374

0.8, 0.8 cb 0.096 0.088 0.956 0.267 0.097 0.091 0.957 0.267

Ind 0.199 0.173 0.940 0.499 0.198 0.173 0.941 0.499

Sep 0.173 0.136 0.901 0.363 0.173 0.137 0.899 0.363
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