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Abstract 
 
It is difficult to design and conduct a survey because prior information on response rates and 
the like is likely generated from a different random process than the target one governing the 
surveys to be designed; and survey process, such as text classification, may vary from one 
human or machine to another. The impact of each error-prone sets of information on the 
properties of the estimator can be significant.  We are concerned with reducing the side effect 
of both error-prone prior information and processed information on the quality of the 
estimator of the parameter of interest during survey data collection period.  Nowadays, 
computer-assisted survey methods provide an instant variety of observations on the survey 
process and on the target random process governing the survey under consideration. These 
paradata, data, and quality measures enable the survey producer to make decisions regarding 
the need for methodology-process revision during survey data collection period, which 
involves consideration of both a model that represents how the target information relates to 
the error-prone information and the design that describes how the observations are obtained. 
We think of the error-prone and target information is a random process that has a joint 
distribution with some probability function. Then, at each phase of survey data collection, 
after receiving the information that the target random process has taken specific values, we 
update the joint probability distribution to revise the design specification in the course of the 
survey data collection period. Also, the coefficient of reliability for a survey as a whole set of 
processes as well as for a single process is further discussed.  
 
Key Words:  Multiple sources of information, Optimal resources allocation, Responsive 
design, Two-phase sampling, Unit classification, Wisdom design. 

 
1. Introduction 

 
There are a wide range of consumer market areas, such as health, biometrics, industrial, 
commercial, finance, insurance, actuarial and more that require the estimation of quantities related 
to uncertain or imprecise information ψ  to learn, model, and predict human and market 
behaviours. Vague understanding of ψ  promote approaches for the development of models to 
explain known observations on prior information χ , predict ones on ψ , and relates prior 
information with the target vague information after observing some of its realisations. It is hoped 
that the approach possesses some desirable properties, such as:  
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  (1.1) 
 

 
 
 
The fourth step incorporates prevention and correction. It is also desired that the approach can be 
used for tasks that are executed by humans. For instance, in the context of pattern classification, 
artificial neural network is inspired by the way biological neural networks in the human brain 
process information. It first learns a mapping );()( ψψ λvkkE   from input kv  to expected value of 
output kψ  given a sample of training examples },...,1);,{( nkkk  vψ  of input-output pairs 

),( kk vψ  for unit k , then uses the uncovered patterns to predict unknown output using the best 
guess )ˆ;(ˆ ψψ λvkk  , where ()E  denotes expectation with respect to the random process involved, 
n  is the number of training examples in the sample ,  ψλ  is a (large) vector of weights 
expressing the importance of the respective inputs to the output (Rosenblatt 1958, 1962)  and ψλ̂  is 
the solution to an error minimization problem used to train the artificial neural network. Each 
training input kv  is a vector of numbers, representing (possibly complex structured) units such as a 
person, an image, a sequence of characters or words, a video, etc. These are called features or 
covariates. The form of the output can in principle be anything, but most methods assume that kψ  
is a categorical variable. Artificial neural network is used universally for (1) capturing similarity 
within a set of labelled units represented by features; (2) high feature dimensionality; and, (3) 
when the relation between input and output information is vague or difficult to describe. Well 
known application includes text classification, email spam filtering, image classification, 
handwriting recognition, face recognition, and fraud detection. Artificial neural network achieves, 
to some extent, the first two desired properties stated by (1.1) based on a substantial sample of 
examples. It helps to realize the fact that, in order to train an artificial neural network, one needs a 
large sample that is random with no errors. Therefore, the question follows: How can we select 
observations on the target process in the absence of a training sample? How can we prevent and 
correct processing errors when collecting observations?  It also helps to realize that there is a cost 

Desirable Propreties    
 Learning ability, 
 Prediction ability, 
 Adaptively ability, 
 Monitoring, 
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associated with each stage of the process of obtaining the random sample such as: (1) the selection 
of units; (2) the optional follow-up in an attempt to receive a response from nonrespondents; and, 
(3) each mode of data collection (e.g. in Person, by phone, by mail, or via the internet). For this 
paper, we study the general problem which includes the four desired properties stated by (1.1) in 
the context of survey studies. 
 
Survey or census studies start with a collection of distinct units of interest known as the 
population. There are multiple random variables attached to each unit, as each unit holds their own 
individual characteristics and aptitudes. Each particular study targets a small subset of these 
random variables. Measurements on some of these variables of interest are intended to be 
collected during the data collection stage from each selected unit and involve a questionnaire used 
to collect the data from the respondents. Meanwhile, measurements on the other set of these 
variables of interest are intended to be derived from one or more observed variables. These other 
variables are not directly included as items in the questionnaire. Both observed and derived 
measurements are used at the estimation stage to draw inferences about the parameter of interest 
associated with the given study.  
  
At the planning stage of a survey, the question of determining resources and allocating them 
within different stages (such as sampling, nonresponse follow-up, data collection, validation) of 
the survey design is a difficult and critical one. Survey developers must justify resources to be 
used, and the survey managers should review the justification to ensure the survey produces 
results within resources, quality and timing constraints. Efficiency is an important issue because 
inefficient determination and/or allocation may lead to: 1) imprecise results; and, 2) a waste of 
time, resources, and money. To determine optimally, the design parameters such as (1) the 
duration of the survey; and, (2) the amount of resources and their allocation period, must be 
determined. Design pre-specification requires 3 steps: 
 
1)  Specification step. The specification of: a) the population of interest; b) the parameter of 

interest; c) the sampling frame and the sampling schemes; d) the nonresponse follow-up 
activities; e) the estimator to be used; f) the desired precision or the global cost; g) the cost 
function; and, h) the precision function;  

2)  Prediction step. Obtaining prior information, from the sampling frame, administrative files, or 
from previous surveys, needed to compute unknown quantities in formulas for both precision 
and cost functions; and,  

3) Optimization step. Determining the survey design parameters through optimization of some 
objective function ‒ that involves both precision and cost functions.  
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Suppose previous surveys suggest that the conditional probability of responding h  (in a time 
period) for a unit in the population of interest is constant over time. When the conditional response 
probability h  is constant over time, then the marginal response probability over I  time periods is 
given by I

I )1(1 h . To reach a marginal probability of response close to 1 under constant 
conditional response probability, it will take around 17 time periods when 5.h , and over 100 
time periods when 1.h . Collecting data over such a long period is time consuming, costly, and 
the results may vary from one time period to another. Because of this, the method of survey 
sampling when capturing information from (or estimating parameters with respect to) a population 
generated from such random processes is as follows: 1) selecting a random sample of units from 
the population; 2) increasing the level of efforts in terms of nonresponse follow-up activities to 
improve units cooperation; and, 3) monitoring the survey process to evaluate its quality and 
stability. Sampling is based on the idea that, within a certain margin of error, one can infer 
something about the parameter of interest from a small sample, as long as the sample was chosen 
at random. Efficient nonresponse follow-up requires information on the error-free target response 
mechanism governing the survey under consideration. It is difficult to pre-specify the design for 
certain surveys because prior information is more likely to be generated from a different random 
process than the one under consideration. A naive approach simplifies the problem under the 
assumption that resources should be big enough to have good estimates. However, a survey 
usually has a limited budget and time, and those in turn, in combination with the resource 
allocations used within the stages of the survey design based on prior information, determine its 
achievable quality. Nowadays, computer-assisted survey methods provide an instant variety of 
observations about the survey process and the target random process that can be used to revise 
survey design during its process. Although, previous survey designs are mostly done 
deterministically using prior information, there is a widespread need for adaptive or responsive 
design where the design is revised during the data collection period. The intent of such revision is 
to reduce errors attached to design pre-specification on prior information grounds. Groves and 
Heeringa (2006) introduced the concept of responsive design, formulated its objectives, and used 
paradata to guide mid-survey decisions affecting properties of the estimates. Peytchev et al. 
(2010) used paradata and other information to estimate the likelihood of any sample member 
becoming a non-respondent and suggest for those sample cases, least likely to respond, to employ 
a more effective survey protocol to gain unit cooperation. Schouten et al. (2013) considered 
adaptive design where each unit is assigned a follow-up treatment or strategy from a set of 
candidate strategies. A review of a substantial literature on adaptive and responsive designs is the 
paper by Tourangeau et al. (2016). In Demnati (2016), we formulated an optimization problem for 
designing a survey, and identified steps for its revision in the course of the data collection period. 
We considered the error-prone prior information and the error-free target information as a random 
variable with a joint distribution with some probability function. Then, we updated the joint 
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probability distribution after observing some of realizations of the error-free target random process 
at each phase of data collection, to revise the design specification in the course of the data 
collection period. The proposed approach makes full use of error-prone prior information while 
requiring only few observations from the expensive error-free target random process. A reliability 
coefficient for a survey as a whole set of processes, as well as for a single process, was also 
discussed. Such a coefficient when supplied with the Mean Square Error (MSE) enhances 
information on 1) the survey results; 2) the comparisons between surveys; and, 3) the contribution 
of the given survey as addition to prior information. In this paper, we extend our work to cover 
survey process. 
 
A survey process such as data collection, measurement, text classification, or imputation, is the 
process by human or machine of taking provided responses and deriving them into a set of values 
that represent the targeted values of the complete survey variables of interest.  Once obtained, the 
complete set of values is analyzed in the same way a set of complete observed responses can be. 
Here, automatic text classification also known as automatic text or document categorization is the 
task of automatically sorting a set of texts into predefined groups (or classes or categories) based 
on its inputs. Automatic classification system learns from previously classified texts the 
characteristics of one or more groups. Automatic classification means the automatic: 1) 
assignment of texts on the basis of their contents to a predefined set of groups which may not be 
predefined; and, 2) definition of each group. The advantages of automatic classifiers are obvious: 
1) considerable savings in terms of both cost and expert manpower; and, 2) domain independence. 
A text is a sequence of characters or words, representing in the context of survey sampling the 
answer given in response to an open-ended question in a questionnaire. For example, open-ended 
question is used to classify units by industry code on the business register. This classification on 
the business register offers a convenient way for sampling and variance reduction, which is an 
example of partitioning a set of units into meaningful and useful groups. Even when the survey 
process is undertaken carefully, the process can be subjective, open to judgment and 
interpretation, and the results can vary from one human or machine to another. This means that the 
derived values cannot be determined with certainty, which in turn means that any survey process 
is fallible. It is thus customary for statistical agencies to both monitor survey process and collect 
data to evaluate its quality and stability. Although the accuracy of machines rivals that of human 
professionals, random sampling in combination with human validation still widespread for quality 
controls. The drawback of this approach is the cost of human power required for validation. Thus, 
survey process can be very tedious, cost consuming, and the challenge is to maintain a high degree 
of quality and stability of the survey process with a small validation sample. 
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Design pre-specification as well as survey process are special cases of measurement error which 
refers here to the case where the error-prone prior information, say χ , and the error-prone 
processed information, say  , are not necessarily identical to the error-free (or target) 
information, say ψ , of the process underlying the population of interest. We assume that the 
assessment of error in χ  and the assessment of error in   can be carried out based on 
observations on ψ . We also assume that the error-prone prior information χ  and the error-prone 
processed information   have a potential bias χb  and b  respectively when used to estimate ψ  
and that the error-free information ψ  has no error. Thus, the assessment of errors allows 
quantification of such biases. Under two random processes, we are interested in the error-free 
random variable ψ , knowing its probability function, the probability function of another random 
variable TTT ),( χ , together with the joint probability function of TTTT ),,( ψχ  with vector 
parameter denoted by λ . It is assumed that the sampling frame has no coverage bias. It is also 
assumed that values of the error-prone prior information are available for all units in the 
population, while values of the error-free variable are unknown but observable.  
 
Once an estimate of λ , of a realization of ψ , or of the parameter of interest is obtained, the 
question follows; what is the reliability of this estimate? In a general sense, reliability of an 
estimate refers to the degree to which the estimate is free from error and therefore truly measures 
the parameter that it is intended to measure. When reliability measures are available at all various 
stages of the survey process, they can serve as performance measures. Such measures enable the 
survey manager to make decisions regarding the need for methodology-process modification. As 
there is no general reliability measure that would capture all information on the impact of each 
stage of the survey design on the ultimate estimate, the survey manager tends to combine various 
measures to get a broader effect and interactions between different factors of the survey process. A 
key step in defining reliability was the introduction of an error criterion that measures, in a 
probabilistic sense, the error between the desired parameter θ  and an estimate θ̂  of it. Possible 
sources of error in surveys include sampling frame, sampling scheme, nonresponse, measurement, 
editing, imputation, disclosure-avoidance, etc. A criterion which is commonly used in judging the 
performance of an estimator θ̂  of a parameter θ  is its MSE defined by })θθ̂{()θ̂( 2 EM . Here, 
the parameter θ  can be seen as the quantity that would be obtained under the ideal situation which 
consists of census case with complete response and without any processing error. We can also 
interpret the MSE formula via the MSE decomposition. For any random variable z , we have 

222 )}({})]({[)( zEzEzEzE  . Applying this to θθ̂ z  we get 
 222 )}θθ̂({})]θθ̂()θθ̂{[(})θθ̂{(  EEEE . (1.2) 
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The first term of (1.2) is the variance of θθ̂  . It is the error of the estimator due to the random 
processes involved. The second term of (1.2) is the square of the bias of θ̂ , the best one can do is 
make this zero. Given that the remaining relative error or the relative missed information about θ  
based on the knowledge of θ̂  is given by )θ(/)θ̂|θ( VarVar , Demnati(2016) defined the coefficient 
of reliability as the proportion of knowledge or the proportion of attained information about θ  
obtained after observing θ̂ , i.e., 
 )θ(

)θ̂|θ(1}θ̂;θ{K Var
Var . (1.3) 

If )θ()θ̂|θ( VarVar   then 0}θ̂;θ{K  , and if 0)θ̂|θ( Var  then 1}θ̂;θ{K  ; so that 1}θ̂;θ{K0  . 
Under the normality assumption, the coefficient of reliability (1.3) reduces to the square of the 
correlation coefficient 
 2

θ̂θ

2

θ̂θ

)θ̂,θ(}θ̂;θ{K  



 Cov

N . (1.4) 

Tenenbein (1970) introduced the square of the correlation coefficient given by (1.4) as a measure 
of reliability between the error-prone and error-free classification variables to measure the strength 
of the relationship between the true and fallible classifications; i.e. it measures how well the true 
classification can be predicted from the fallible classification on a given unit. Expression (1.4) 
gives a convenient way to compute the coefficient of reliability: It is reasonable in practice to 
replace conditional variance, which depends on the joint distribution, with correlation which can 
be calculated more easily. That being said, conditional independence is more meaningful and 
preferable than zero-correlation. 
 
In an attempt to discuss side effect reduction of both errors sources of information on the quality 
of the estimator of the parameter of interest during survey data collection period, Sections 2 and 3 
consider the case of no processing errors; while sections 4 and 5 consider the case with the 
inclusion of processing errors. In detail our work below is organized as follows: in Section 2, we 
study steps required for design pre-specification when designing a survey in the absence of 
processing errors; in Section 3, we update design pre-specification after observing some 
realizations of the target process; in Section 4, we study the extra steps required for design pre-
specification in the presence of processing errors; and, in Section 5, we update design pre-
specification after observing some realization of the target process. 
 

2. Design Pre-specification under No Processing Errors 
 
There will be a survey to be conducted on a population of size N , where the sampling frame had 
covariate u  on it; an address and telephone information. The initial request for response is by Web 

 
1200



  

or mail. The main interest is to estimate a domain total of the variable of interest y , where the 
sampled units are to be classified to the domain of interest based on their response to an open-
ended question in the questionnaire. The upper limit on the coefficient of variation of the estimator 
is set to 05.0 . The budget is constrained to a global cost of maxC , while the maximum duration of 
the survey data collection is constrained to maxI  time periods. After FI  time periods of data 
collection under self-enumeration, there will be an optional follow-up for those who had not 
responded. The duration of a follow-up is FD  periods of time.  Poisson sampling is to be used for 
the selection of the main sample. Known values of survey design parameters such as N , maxC , 

maxI , FI , and FD  are provided in Table 1. The first task is to pre-specify the design that better 
enhance the quality of the estimator while respecting the survey design constraints. In particular, 
we have to: 1) derive steps required for design pre-specification; 2) present briefly available prior 
information; and finally, 3) determine the resources and their allocation within stages of the survey 
design. 
 
We divide the continuous time of the entire survey process period into a sequence of continuous 
time periods: 1, 2, and so on, and let minI  denote the minimum length of data collection period to 
obtain full responses on the target information. Suppose that the survey limited length of duration 
of data collection is made up of maxI  time periods; or equivalently maxP  phases. The thp  phase 
being of size )1(p n  time periods, so that the limited duration of data collection is made up of 

p
P

1pmax maxI n  time periods, with minmax II  . We then shall be dealing with maxPN  rectangular array 
of phases of data collection.  
 
2.1 Specification Step 
 
2.1.1 Parameter of Interest 
 
Estimate is wanted for specific subpopulation  , called domain  . The methodology behind 
estimating parameters for domains, based on observation of randomly selected units, is well 
described by survey literature. See for example Cochran (1977); or, Särndal et al. (1992). Let the 
specific subpopulation   of units of interest or domain   be denoted as  P , and let 

)|(1; PPl kk    be the domain   membership indicator variable for unit k , where 
)|(1)|(1 **  kkk  is the set   membership indicator variable for unit k  given that unit 

k  belongs to the set * , )(1 condition  is the truth  function, i.e., 1)(1 condition  if the condition  is 
true, 0)(1 condition  if not. The domain total Y  of a characteristic y  may be written as  
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 kkkkk yylY ;;   , (2.1) 
where k  denotes sum overall population units, T

Nyy ),...,( 1y  is the vector of values of the 
characteristic of interest y , and kkk yly ;;   . The parameter Y , obtained under the assumed ideal 
situation which consists of census case with complete response and without any processing error, 
plays the role of a "gold standard".  
 
2.1.2 Response Mechanism 
 
We now give a brief account of the Demnati modeling approach of the response indicators as 
discrete-time hazard. See for example Demnati (2017). Let t  represent the discrete random 
variable that indicates the time period i  when the response occurs for a randomly selected unit 
from the sample. We assume that every unit in the sample lives through each successive discrete 
time period until the unit responds or is censored by the end of data collection. Then each unit k  
is observed until some period kI , with maxII k . Observation of the unit could be discontinued for 
two reasons: 1) the unit response; or, 2) the survey data collection period ends. In the first case, 

kkt I . In the second case, we only know that maxIkt . Units with maxIkt  are right-censored ‒ 
when they respond is unknown. Because response occurrence is intrinsically conditional, we 
characterized t  by its conditional probability function ‒ the distribution of the probability that a 
response will occur in each time period given that it has not already occurred in a previous time 
period ‒ known as the discrete-time hazard function. Discrete-time hazard ),( βxkikih , kih  for short, 
is defined as the conditional probability that unit k  will respond in time period i , given that the 
unit did not respond prior to i : 
 )|Pr( itith kkki  , 
where kix  refers to both time-invariant and time-varying explanatory variables and β  is the 
unknown 1rq  vector parameter to be estimated. For unit with itk  , the probability of obtaining 
a response at time period i  could be expressed in terms of the hazard as  
 )1()Pr( 1

1 kj
i
jkik hhit  
 . 

For units with itk  , the probability of obtaining a response can be expressed as  
 )1()Pr( 1 kj

i
jk hit   . 

The marginal probability of obtaining a response after maxI  time periods is given by 
 )Pr()1(1 maxmax I

1
I

1 ith kikiik   . 
2.1.3 Estimator To Be Used 
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Suppose that the response probabilities k;I  after I  time periods of data collection are known for 
all population units. Then for general sampling design with known positive inclusion probabilities, 

k;I , an unbiased estimator of the domain total Y  given by (2.1) after I  time periods of data 
collection is given by 
 kkkkk yrdY ;;I;I;I;I )/(   

  , (2.2) 
where kkkk PPdd ;III;I /)|(1)|(   are the design weights associated with the random sample 

I  obtained after I  time periods of data collection, )|( I;I Pkk   , )}|(1{)|( **   kE kk  
is the set   inclusion probability for unit k  given *k , and E  denotes expectation with 
respect to the inclusion mechanism. 
 
2.1.4 Derivation of the Variance Function 
 
We may decompose the variance of ;IY  given by (2.2) as 
 wopemrrmrmrm YEEVarYEVarEYVarEE=YVar VVVV)()()()( ;I;I;I;I   

  (2.3) 
where Var , rVar  and mVar  denote variance with respect to the sampling design, the response 
mechanism and the model on y  respectively, and the subscript “ wope ” in wopeV  stands for 
“without processing error”. Under independent mechanism on kr ;I , the first component 

})/({V ;;I;I;I kkkkkrmr yrdVarEE     of (2.3) is given by 
 )/()1)((V ;I;I;I

2
; kkkkmkr yE    . (2.4) 

Under Poisson sampling, the second component )(V ;;I kkkm ydVarE=   of (2.3) is given by 
 kkkmk yE= ;I;I

2
; /)1)((V    . (2.5) 

 
Finally, under independent model mechanisms on ky , the last component of (2.3) is given by 
 )(V ;kmkm yVar  . (2.6) 
 
The sum of (2.4), (2.5), and (2.6) constitutes mrwope VVVV   , the variance of ;IY  given by 
(2.2). It follows that, we can express )( ;I YVar   as 
 )/()( ;I;I;0;;I kkkwopehwope vvYVar   , 
where 2

;0; )}({ kmkwope yEv  , and )( 2
;; kkwope yEv  . 

 
2.1.5 Specification of the Follow-up Activity 
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We define the nonresponse follow-up indicator variables as 1)p(
; kfl  if unit k  is assigned to the 

follow-up activity at phase p , and 0)p(
; kfl  if not, where )p(

;kfl  are realizations of independent 
distributed variables according to a Bernoulli distribution, )( )p(

;kfB  , )p(
;kf  is the probability of a 

follow-up, and the subscript " f " stands for "follow-up". The follow-up probability is constructed 
as 
 )p()p(

;
)p(

;
)p(

; )}1/(log{ f
T

kfkfkf λv , 
where T

kkf y ),1( ;
)p(

; v  is the vector predictor and T
fff ),( )p(

1;
)p(
0;

)p( λ  is the unknown vector parameter 
to be determined. 
 
2.1.6 Specification of the Initial Cost Function 
 
We may decompose the initial global cost over I  time periods of data collection as 
 dcfwope CCCCC  I . 
The fixed cost IC  is given by II  cC , where c  is a fixed cost per time period. The sampling 
component C  is given by kkk cPC ;I )|(1   , where kc ;  is the sampling cost for unit k . The 
follow-up component fC  is given by  kfkf

self
kekkf clrPC k ;

)1(
;

)(
;I )1)(|(1  , where )(

;
self
kir  represents the 

response indicator under self-enumeration over i  time periods of data collection, ke  is the follow-
up entry time period for unit k , and kfc ;  is the follow-up cost for unit k . The data collection cost 

dcC  is given by   }){|(1 )(
;

)(
;I

)(
;

)(
;II

W
kdc

W
k

M
kdc

M
kkkdc crcrPC  , where the superscripts “ M ” and “W ” stand 

for “Mail” and “Web” respectively, and )(
;

m
kdcc  is the data collection cost associated with mode 

},{ WMm . 
 
2.1.7 Modeling the Sample Selection Probabilities 
 
The conditional probability that unit k  will be selected in phase p , given that the unit was not 
selected prior to p  is constructed as 
 )p()p(

;
)p(

;
)p(

; )}1/(log{   λv T
kkk  , 

where T
kk l ),1()p(

; v  is the vector predictor and T),( )p(
1;

)p(
0;

)p(
  λ  is the unknown vector parameter to 

be determined.  
 
2.1.8 Specification of the Initial Objective Function 
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To create a design, we determine the number of time periods I  of data collection (or equivalently 
the number of phases P  with p

P
1pI n ), the initial samples selection parameter )1(

λ , and the 
initial follow-up model parameter )1(

fλ  by minimizing the variance, )(min ;I YVar 

a , subject to 
constraint on the expected cost, maxCCwope  , and constraint on the duration maxII1  , where 

TT
f

T ),,I( )1()1( λλa  , dcfwope CCCCC  I ,  kkk cC ;;I    , kfkf
self

kekkf cC k ;
)1(
;

)(
;;I )1(   , 

}{ )(
;

)(
;I

)(
;

)(
;I;I

W
kdc

W
k

M
kdc

M
kkkdc ccC   , and )1(

;I   k . In this case a Lagrange multiplier can be use to find 
the constraint minimum of the variance. So then, the objective function is given by 
 )()/()( max;I;I; CCvG wopekkkwok  a , (2.7) 
where   is the Lagrange multiplier. The optimization problem obtains a constrained minimum at 
the point where the estimating equations (EE) are set to zero, 0 aaa /)()( Gg . Kokan (1963) 
discussed similar allocation problem extensively under stratified simple random sampling and 
showed how it can be adapted to cover many common sample allocations. We have used the 
concept of EE to define a set of simultaneous equations involving both the data and the unknown 
parameter which are to be solved in order define the estimate of the parameter. This concept of EE 
is more general than the concept of estimating functions having zero mean for the thk  component 
at the true parameter which includes the log-likelihood estimating functions as well as least square 
estimating functions. 
 
We do not have an explicit solution, but nonlinear programming can be used to get a constraint 
minimum )( kψaa  , where TT

kk
m
kikkk ely );,,,,( )(

;; ψψ λc , TT
c

T
r

T
l

T
y ),,,( λλλλλ ψ , yλ  is the vector 

parameter associated with the model on y , lλ  is the vector parameter associated with the 
classification model on l , rλ  is the vector parameter associated with the response model, and cλ  
is the vector parameter associated with the cost model on TT

kdckfkk cc ),,( ;;; cc  . The first two 
components ky  and kl ;  of kψ  are referred as data in adaptive design literature, while the rest of 
the vector kψ  is referred as paradata.  
 
2.2 Prediction Step 
  
It is clear from (2.7) that the optimization problem cannot be performed since kψ  are unknown. 
From the sampling frame, the variable u is used to approximate y . From the modeling of previous 
surveys, it was possible to assign to each unit k  in the sampling frame: 1) an initial estimated 
probability k

pri p)(  of being a member of the domain of interest   given the covariate; 2) an initial 
estimated conditional probability )()( m

ki
pri h  of responding by mode m  and by time period i ; and, 3) 
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a follow-up entry time period k
pri e)(  generated from the uniform interval ]2I1,[I max1  FD . So 

that the vector of available prior information for each unit k  in the frame is 
TT

k
pri

k
prim

ki
pri

k
pri

kk ehpu );,,,,( )()()()()(
χλcχ  , maxI,...,1i . Hence the estimator used for design pre-

specification is 
  kkkkkk ylrdY )1(

;
)1(

;I
)1(

;I
)1(

;I;I
)1( )/(   , 

with k
pri

k ll ;
)(

;
)1(   , kk uy )1( , k

pri
k ;I

)(
;I

)1(   , 2)(2
0; k

pri
kkwope puv  , and k

pri
kkwope puv )(2

;   are the 
components of the variance under the assumptions that ku  are constants, where 

)(
;I;

)(
;I;;I )1( fself

kkf
self
kkfk

  , )1(
;; kfkf   , and )(

;I
fself

k
   is the probability of response under follow-

up in addition to self-enumeration for unit k  during I  time periods of data collection. Table 2 
gives the initial estimate of the size of the domain of interest and its total of u , while Table 3 
displays the response rates for different durations of data collection under the prior response model 
parameter. 
 

Table 1. Prior Information on the Survey 
N  maxI  FI  maxC  c  pc  fc  )( M

dcc  )( I
dcc  FD  

5000 40 3 5000 20 1 3 2 1 3 
 

Table 2: Prior Information on the Domain of Interest 
Domain Size Domain Total 

2 495 46 238 
  

Table 3: % of Expected Number of Respondents based on Prior Information 
Duration Self-enumeration Only With Follow-up 

Mail Internet Both Mail Internet Both 
5 5 5 10 6 5 11 

10 9 9 18 20 12 32 
15 12 12 25 32 18 50 
20 15 15 31 42 23 65 
25 18 18 35 51 26 77 
30 20 20 40 59 30 89 
35 22 21 43 66 32 98 
40 24 23 47 67 33 100 

 
2.3 Optimization Step   
 
Using the error-prone prior information as input to the optimization problem, Table 4 displays the 
values of the design parameters: the expected sample size, the expected number of follow-ups, the 
expected number of respondents, and the expected coefficient of variation in percentage. Table 4 
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also displays the expected ratios in percentage for the fix cost, the sampling cost, the follow-up 
cost and the data collection cost. Finally for more information, Table 4 displays estimates of 
regression parameters )1(

λ  and )1(
fλ .  

 
Table 4: Resources Allocation Based on Prior Information 
 

Duration 

Expected % Cost Ratio Regression Parameter Estimates 
Sample 
Size 

#Follow-
up 

# 
Respondents 

CV Total 
Cost 

Fixed Sampling Follow-
up 

Data 
Collection 

Sampling Follow-up 
)1(
0;  )1(

1;  )1(
0;f  )1(

1;f  
5 4174  413 8 5000 2 83 0 15 1.62 .001 -.27.46 .47 

10 3205  578 6 5000 4 64 0 32 .58 .000 -21.22 .33 
15 2613  649 6 5000 6 52 0 42 .09 ..001 -24.03 .39 
20 2235  683 6 5000 8 45 0 47 -.21 .000 -148.5 4.12 
25 1734  720 6 5000 10 35 11 44 -.63 .001 -1.77 .00 
30 952  834 6 5000 12 19 41 28 -1.43 .005 523 5.56 
35 894 894 877 5 5000 14 18 39 29 -1.52 .000 11.87 4.28 
40 868 867 867 5 5000 16 17 38 29 -1.56 .013 7.89 19.12 

 
Note: The required coefficient of variation (cv) of .05 is reached only for 10I  . 
 

3. Adaptive Design 
 
It was decided to proceed with 35I  , T)002,.525.1(

(1)λ as the regression parameter for 
sampling, and T

f )28.4,.87.11((1)λ  as the regression parameter for nonresponse follow-up. We 
computed descriptive statistics on the observed data and on the predicted data based on the prior 
information, after observing realisations over 10 time periods of data collection. Table 5 displays 
the realized sample size, the number of respondents, and the number of follow-ups. While Table 6 
displays the distribution of the cost. Respondents and nonrespondents are represented by Table 7, 
while Table 8 displays the classifications of the respondents. These tables show that the first 
phase, composed of 10 time periods, goes better than predicted in the selected sample. Using only 
147 follow-ups instead of the predicted number of 165, the number of respondents improved from 
the predicted 284 to the observed 389 (Table 5). This improvement in the number of respondents, 
increased the data collection cost from the predicted cost of 452 to the cost spent of 682 (Table 6). 
Tables 7 and 8 show clearly that there is error in prior information (e.g. domain classification and 
response behavior). The question is now to decide whether proceeding with the pre-specified 
design is a good idea, or whether the eventual efficiency of the estimator would be better enhanced 
by updating the design parameter.  We first give in section 3.1 a brief description of the Demnati 
(2016)’ adaptive approach to revise the survey design during its progress. In Section 3.2 we update 
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the classification model to illustrate the revision process, and in section 3.3 we revise the design 
parameter using the updated information for the remaining time periods of data collection.  
 

Table 5 : Observed Counts After 10 Time Periods of Data Collection 
Sample Size  878 
Observed Counts # Respondents 389 

# Follow-up 147 
Predicted Counts  
(Based on Prior 
Information 

# Respondents 284 
# Follow-up 165 

 
Table 6 : Observed Costs After 10 Time Periods of Data Collection 
Observed Costs Sampling 878 

Follow-up 441 
Data Collection 682 
             M 586 
             W 96 
Fixed 200 
Total 2201 

Predicted Costs (Based on 
Prior Information 

Sampling 878 
Follow-up 495 
Data Collection 452 
              M 336 
              W 116 
Fixed 200 
Total 2025 

 
Table 7 : Counts of Respondents and Nonrespondents after 10 Time Periods of Data Collection 
  Observed Information Total 
  Respondents Non Respondents  
Prior Information Respondents 196 88 284 

Nonrespondents 193 401 594 
Total 389 489 878 

 
Table 8 : Respondents Classification after 10 Time Periods of Data Collection 
  Observed Information Total 
  In Domain Outside Domain  
Prior Information In Domain 110 63 173 

Outside Domain 106 110 216 
Total 216 173 389 
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Table 9 : Domain Estimation after 10 Time Periods of Data Collection 
 Estimation based on 
 Prior Values Observed Values (%estimated cv) 
Domain Size 2 127 2 476 (7.38) 
Domain Total 38 789 142 089 (7.47) 

 
3.1 Demnati Adaptive Method  
 
We now give a brief account of the Demnati (2016) approach to revise the survey design during its 
progress. The method begins with a pre-specified design based on prior information then design 
revision consists on: 1) accumulating observations on the target process governing the survey 
under consideration from the sampled respondent; 2) updating information used for design 
specification; 3) determining the design parameter for the remaining time periods of data 
collection using the updated information; and, 4) revising, if necessary, specification of the design. 
After completing the fourth step, the stopping rules are consulted to see if the data collection 
should stop. If not, decide if the design parameter should change; and repeat the four steps 
continuously. The above four steps are termed as the Observation-Revision-Optimization-Decision 
(O-R-O-D) steps. The second step incorporates learning and prediction, while the fourth step 
incorporates actioning.  
While most existing literature on adaptive designs faces nonresponse using a traditional 
approaches organized in 2 or 3 phases during which the design is extant (Groves and Heeringa 
2006), our approach is embedded in a continuing learning process that permits changes in 
methodology-process at any time of data collection period as a result of an increase in acquiring 
information and facts, while relating phases and stages of the design to each other. Such changes 
are guided by the primary survey objective.  The method does not, therefore, use a fixed design, 
although an expected design is always pre-specified.  
 

 
 

Goals 

Adaptive System 
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 Observation Step: Obtain next phase p  of observations on the error-free process. 
 

 Revision Step:  
 Estimation/Imputation: 1) Update 1pλ  to get pλ  using po;d ; and, 2) Impute missing values 

of each component ψ  of ψ  to get ),|ψ(ψ ppo;ψ;p λdkk E ,  where po;d  denotes all observed 
information until the end of phase p  of data collection, and ψE  denotes expectation with 
respect to the random process governing the component ψ . Note that kk ψψ ;p   when item 

kψ  is observed.  
 Optimization Step: 

 Determine the optimal design parameter TT
f

T ),,P( )p()p( λλa   conditional on pψ  and pλ . The 
solution is denoted by TT

f
T ),,P( )p()p(

pp λλa  . 
 Decision Step:  

 Decide if the data collection should stop (i.e., pPp  ), if not, decide if the methodology-
process should change, and then repeat the four steps continuously after observing some 
realizations of the target process. 

.  
Depending on the relationship between the error-prone prior information, the target information; 
and, the stopping rules, only a few time periods may be sufficient to stop the data collection 
period. 
 
3.2 Revision of the Classification Model Parameter 
 
We now give an example of the revision process in the Revision Step. The effects of 
misclassification in categorical data on estimators have been discussed for some time by Bross 
(1954) and others. Tenenbein (1970, 1972) proposed two-phase sampling to protect against error, 
assuming that error-free classification is possible to obtained, though it is expensive. 
Misclassification assumed that two measuring devices are available to classify units into one of 
numerous mutually exclusive groups. The first device is a cheaper procedure which tends to 
misclassify units; the second device is an expensive procedure which classifies units correctly.  
 
The domain-classification for unit k  is characterized by the matrix kP  who depends on two 
conditional probabilities: )1|1Pr( ;;

)()1|1(  kk
pri

k llp   which consists of the probability of 
classifying the domain of interest given that unit belongs truly to the domain of interest, and 

)0|1Pr( ;;
)()0|1(  kk

pri
k llp   which consists of the probability of classifying the domain of interest 

given that unit do not belongs truly to the domain of interest. Hence 
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  )1|1()0|1(
)1|1()0|1( 11

kk
kk

k pp
ppP . 

The marginal distributions of k
pri p)(  is given by 

 )1()0|1()1|1()(
kkkkk

pri ppppp  . 
 
The census parameter minIλ  is defined as the solution of  
 0S  λλ /),(log)( ;;

)(
II minmin kk

pri
k llf  , (3.1) 

where the subscript I  in )(I ζf  denotes that ζ  is observed during the interval ]I,0[ . Hence when 
the data collection period is considered, the census case means that minII   and 

1)(1)(  kkkd  . The solution to (3.1) obtained by Newton-Raphson-type iterative method or 
the Expectation Maximization (EM) algorithm gives the census parameter minIλ  associated with λ . 
The census parameter minIλ , obtained under the assumed ideal situation which consists of census 
case with complete response and without any processing error, plays the role of a "gold standard".  
 
After observing I  time periods of data collection, Demnati (2016) decomposed the joint 
distribution for unit k  in two parts 
 )|()(),( ;

)(
;I;

)(
I;;

)(
I min k

pri
kk

pri
kk

pri llflfllf   . (3.2) 
Note that ),()|()( ;

)(
;I;

)(
;I;

)(
I minmin k

pri
kk

pri
kk

pri llfllflf    as minII  . We may write )|( ;
)(

;I k
pri

k llf   as 
)(/),()|( ;

)(
I;

)(
;I;

)(
;I k

pri
k

pri
kk

pri
k lfllfllf   . The log-likelihood for unit k  is given by 

 )|(log)(log)( ;;
)(

I;
)(

I;I min kk
pri

k
pri

k llflf  λ , (3.3) 
where )1log()1()log()(log )(

;
)()(

;
)(

;
)(

Imin k
pri

k
pri

k
pri

k
pri

k
pri plpllf   ,  

 )},1log()1()log(){1(
)}1log()1()log({)|(log

)0|1(
;

)0|1(
;;

)(

)1|1(
;

)1|1(
;;

)(
;

)(
;I

kkkkk
pri

kkkkk
pri

k
pri

k
lll

lllllf








  

k
pri

kkk ppp )()1|1()1|1( /  is the conditional probability that unit k  belongs really to the domain of 
interest given that the unit is classified into the domain of interest, and )1/()1( )()1|1()0|1(

k
pri

kkk ppp   
is the conditional probability that unit k  belongs really to the domain of interest given that the 
unit is not classified into the domain of interest. Taking the derivatives of (3.3) and adjusting for 
unequal probability of selection and for the response mechanism, we get the weighted EE  
 0ssS  )}|;()/)(();({),;(ˆ ;

)(
;;I;I;I;

)(
;I;

)(
;I min k

pri
kkkkkk

pri
kkk

pri
k llrdlll   λλλ , (3.4) 

where λλ  /)(log);( ;
)(

I;
)(

;I min k
pri

k
pri

k lflinax s  and λλ  /)|(log);( ;
)(

;I;
)(

;;I k
pri

kk
pri

kk llfll  |s . 
Note  that )()},;(ˆ{ minI;

)(
;I λλ SS k

pri
k llE   the censuss EE given by (3.1). The estimator Iλ̂  of λ  is 

obtained using the following update step. 
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Update Step of λ : Starting with a guessed value, 1-I
)0( λλ  , then for ,...2,1b  updates are made 

using 
 ),;(ˆ)}(ˆ{ ;

)(
;

)1(
I

1)1(
I

)1()(
k

pri
k

bbbb ll   λλλλ SJ ,  
where λλλ  /),;(ˆ)(ˆ ;

)(
;II k

pri
k

T ll SJ .  
 
One may use the EM algorithm to derive the maximum likelihood estimate of λ . The EM 
algorithm introduced by Hartley (1958)—formalized and termed by Dempster et al. (1977) — has 
become a major tool for finding maximum likelihood estimates in situations considered practically 
intractable such as missing data. Let Nddd ,...,, 21  be independent identically distributed random 
variables from a distribution indexed by an unknown parameter λ . For each unit k , we divide the 
vector kd  into an observed and a unobserved (or missing) parts: TT

km
T

kok ),( ;; ddd  . This notation 
does not imply that always the same dimension of the vector is not observed. Any dimension could 
not be observed. The observed data od  are supposed to be generated from the density );( ; λog d . 
The objective is to estimate λ  by );(maxargˆ ; λλ od , where );(log);( ;; λλ oo g dd  . Let 

);(/);();|( ;;; λλλ oom gfk dddd   the conditional density of the unobserved part md  given the 
observed part od . Using some initial value for λ , say )(bλ , the E-step of the EM algorithm 
requires the calculation of a function of λ , ),( )(bQ λλ , such that 

m
b

om
b

oc
b kfEQ dddddd  );|();(log};|);({),( )()(

;
)( λλλλλλ  , where λ  is the parameter of interest, 

and )(bλ  is the value of λ  in the previous iteration. Then, the M step of the EM algorithm intent to 
choose the value of λ , say )1( bλ , that maximizes ),( )(bQ λλ , i.e., ),(maxargˆ )()1( bb Q λλλ  . If we 
iterate the E-step and M-step until convergence, under regularity conditions, the algorithm 
converges to the maximum likelihood estimate.  
 
We use instead in this paper a variant of the EM algorithm called the Stochastic Expectation 
Maximization (SEM) algorithm. The idea underlying SEM algorithm (Broniatowski et al. 1983, 
Celeux and Diebolt 1985) is to replace the derivation and maximization of ),( )(bQ λλ  by the 
generation )(b

md  values for the unobserved part md  from );|( )(
;;

b
omk λdd  and then update λ  from the 

complete data Tb
N

bb ),...,( )()(
1

)( ddd   with TTb
km

T
ko

b
k ),( )(

;;
)( ddd   Nk ,...,1 . The stochastic step of the SEM 

relies on the random imputation by generating observations from their conditional density of the 
unobserved part given the observed part and the current value of the parameter. Hence, the SEM 
algorithm takes the following form. From an arbitrary starting value )0(λ  a sequence 
( )(bλ , ,..2,1b ) is formed by going through the stochastic E-step or SE Step and a M Step. SE Step: 
Given a value of )(bλ , simulate values )(b

kd  from the conditional distribution of kd  given ko;d , i.e., 
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draw )|(~ ;;
)(
; kokm

b
km k ddd . M Step: Maximize the resulting complete data log-likelihood, 

);(log )( λb
kk f d  with TTb

km
T

ko
b

k ),( )(
;;

)( ddd  , and let the maximum be the next value )1( bλ .  
 
Let T

kk
pri

k ll ),( ;;
)( d  denotes a bivariate discrete variable with mean  T

kk
pri

k pp ),( )(μ  and 
covariance kΣ . We have )1)(1()|( )0|1(

;
)()1|1(

;
)(

;
)(

; kk
pri

kk
pri

k
pri

k llllE    .  
Given kd , the joint distribution is given by 
 

)1)(1()0|1()1()1|1()1()0|1()1|1(
;;

)( ;;)(;;)(;;)(;;)( )}1)(1{(})1{()}1({}{),( kkprikkprikkprikkpri ll
kk

ll
kk

ll
kk

ll
kkkk

pri ppppppppllf 
 

. 
 
Given kd , k , one could estimate the parameter using the following EE: 
 0uuuU  )};();();(){()(ˆ )0|1(

;
)1|1(

;; λλλλ kkkkk llld  , 
where 1

;; )}1(){();(  kkkkkkk pppll  pλ u , 
 1)1|1()1|1()1|1(

;
)()1|1(

;;
)1|1( )}1)(){();(  kkkk

pri
kkkk ppplll  pλ u , 

  1)0|1()0|1()0|1(
;

)()0|1(
;

)0|1(
; )}1)(){()1();(  kkkk

pri
kkkk ppplll  pλ u , 

λp  /kk p , λp  /)1|1()1|1(
kk p , and λp  /)0|1()0|1(

kk p . 
 
3.3 Optimization Step 
 
So we use the phase 1 (10 time-periods of observations): 1) updated domain classification model; 
2) updated response model; and, 3) updated values of the variable of interest; to determine the 
extra number of time periods I  of data collection (or equivalently the extra number of phases P  
with p

P1
1pI10 n
  and 101 n ), and the revised follow-up model parameter )2(

fλ  by minimizing 
the variance, )(min ;I10 YVar 

a , subject to constraint on the expected cost, 10max CCCwope  , and 
constraint on the duration 10II0 max  , where TT

f ),I( )2(λa  , and 10C  is the total cost spent in the 
first phase,  Here the estimator used for design revision is 
  kkkkkk ylrdY )2(

;
)2(

;I
)2(

;I
)2(

;I;I
)2( )/(   , 

with )(
;I;

)(
;I;;I )1( fself

kkf
self
kkfk

  , and )p(
;

2
1p; 1 kkf   . 

 
 Using the revised information as input to the optimization problem, Table 10 displays the revised 
values of the design parameters: the expected duration to reach the required cv, the expected 
number of follow-ups, the expected number of respondents, and the expected coefficient of 
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variation in percentage. Table 10 also displays the expected fix cost, the expected follow-up cost 
and the expected data collection cost.  
 
Table 10: Extra Resources Allocation 

Extra 
Duration 

Expected Number of Extra Expected Cost 
Follow-up Respondents CV Cost Fixed Follow-up Data Collection 

5 0 203 3 740 300 0 440 
Note that the required of .05 is expected to be reached after 15(=10+5) time periods. 
 
3.4 Decision Step 
 
It was then decided to proceed without follow-up for a maximum of 5 time periods of data 
collection. Instead, after a time period of data collection is complete, the new observations are 
included and the follow-up decision is revised. This would be conducted on a continual basis for 
however many number of time periods needed until data collection is complete.  
 

4. Design Pre-specification under Processing Errors 
  
We now consider the case where the classification process is fallible. A Poisson subsampling is 
used to validate the processed classification, as well as the prior classification. 
 
4.1 Estimator 
 
A naïve estimator of the domain total Y  is given by  
 kkkkkkk

pro
kkkk

N rdylrdY ;;I;I;I;
)(

;I;I;I
)(

;I )/()/(     (4.1) 
where k

pro l ;
)(   is the error-prone  processed classification indicator for unit k , kk

pro
k yl ;

)(
;   , and 

the superscript “ pro ” stands for the error-prone “processed” information. The conditional bias 
induced by the naïve estimator )(

;I
NY 

  is given by )( ;;
)(

;I kkk
N yEB   . In order to remove the 

potential processing bias, we subsample from respondents, obtain the true classification for 
subsampled units, and estimate the bias by 
 )()|( ;;

)1|2(
;I|v;I;I;I

)(
;I kkkkkkk
N ydrdB   

  , 
where )1|2(

;I|v kd  are the design weights associated with the validation subsample I|v . Finally we adjust 
)(

;I
NY 

  to get a bias-adjusted estimator 
 )(

;I
)(

;I
)(

;I
NNad BYY 

  . (4.2) 
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If 1)( )1|2(
;I|v;v  kdE , then )(

;I
adY 

  is unbiased estimator for Y , where ;vE  denotes conditional 
expectation with respect to the subsampling design.  
 
4.2 Derivation of the Variance Function 
 
Assume that I  time periods of survey process are completed, with maxII1  , and consider 
variance derivation of the estimator  given by (4.2). We may first decompose the variance of )(

;I
adY 

  
as 
 wope

adadad YVarEYEVar=YVar VV)()()( ;v
)(

;I;v
)(

;I;v
)(

;I   
  (4.3) 

where ;vVar  denotes conditional variance with respect to the subsampling design. 
 
For Poisson subsampling with constant subsampling probabilities )1|2(

;I k , the first component 
)}()/({V ;;

)1|2(
;I|v;I;I;I;v;v kkkkkkk ydrdEVar=    is given by 

 )/()1)((V )1|2(
;I;I;I

)1|2(
;I;;;v kkkkkkk yM=    , (4.4) 

where 2
;;;; )()( kkkk yEyM    . In the absence of processing error kk y ;;    and 0V ;v = . 

The sum of (2.3) and (4.4) constitutes mr
ad
kYVar VVVV)( ;v

)(
;I  

 , the variance of )(
;I
ad
kY  given 

by (4.2). It follows that, we can express )( )(
;I
ad
kYVar   as 

 )/()/()( ;I;vI;v;I;I0
)(

;I kkkkkkkh
ad
k vvvYVar   , 

where 2
;0 )}({ kmk yEv  , )()( ;;

2
;; kkkkk yMyEv    , )( ;;;v kkk yMv   , and )1|2(

;vI;I;vI kkk   . 
4.3 Specification of the Cost Function 
 
We may decompose the global cost as 
 vCCC wope  . 
The subsampling and validation component vC  is given by k

r
kkkk crPC ;v

)(
IvI;IIv )|(1)|(1  , 

where )(
I
r  is the sample of respondents at time period I , and kv;c  is the subsampling-validation 

cost for unit k .  
 
4.4 Modeling the Subsample Selection Probabilities 
 
The conditional probability that unit k  will be selected in phase p , given that the unit was not 
selected prior to p  is constructed as 
 )p)(1|2()p)(1|2(

;
)p)(1|2(

;
)p)(1|2(

; )}1/(log{   λv T
kkk  , 
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where TW
kdck l ),1( )(

;
)p)(1|2(

; v  is the vector predictor, 1)(
; W
kdcl if the mode of data collection is Web, and 

0)(
; W
kdcl  if not, and T),( )p)(1|2(

1;
)p)(1|2(

0;
)p)(1|2(

  λ  is the unknown vector parameter to be determined.  
 
4.5 Specification of the Objective Function 
 
To create a design, we determine the number of phases P  of data collection (or equivalently the 
number of time periods p

P
1pPI n ), the samples selection parameter TTT ),( )2|1(

 λλ , and the follow-
up model parameter fλ  by minimizing the variance, )(min )(

;I
adYVar 



a , subject to constraint on the 
expected cost: maxCC  , and constraint on the duration maxPP1  , where the expected cost is 
given by vCCC wope  , where kkkkk cC ;v

)1|2(
;;vI;I;Iv  . 

 
6. Wisdom Design 

 
We now extend our approach to cover the validation task: 1) accumulate observations from the 
sampled units on the processed information and the target information governing the survey under 
consideration; 2) validate the processed outputs for the subsample units;  3) update information 
used for design specification; and, 4) revise, if necessary, specification of the design for the 
remaining time periods of survey process. After completing the fifth step, the stopping rules are 
consulted to see if the survey process should stop. If not, the five steps are repeated continuously 
to detect any discrepancies between observed and expected information. We refer to the above five 
steps as the Observation-Validation-Revision-Optimization (O-V-R-O) steps.  
 
 Observation Step: Obtain next phase p  of observations on the error-prone process.  
 Validation Step: Obtain next phase p  of observations on the error-free process. 
 Revision Step:  
 Estimation/ Imputation: 1) Update 1pλ  to get pλ  using po;d ; and, 2) Impute missing values of 

each component ψ  of ψ  to get ),|ψ(ψ ppo;ψ;p λdkk E ,   
 Optimization Step: 

 Determine the optimal design parameter TT
f

TTP ),,,( )1|2( λλλa   conditional on pψ and pλ . 
The solution is denoted by TT

f
TTP ),,,( p;

)1|2(
p;p;pp λλλa  . 

 
 Decision Step:  
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 Decide if the data collection should stop (i.e., pPp  ), if not, decide if the methodology-
process should change, and then repeat the five steps continuously after observing some 
realizations of the processed/target information. 

 
 
  

 
 

Concluding Remarks 
 
We formulated an optimization problem for designing a survey, and we identified steps for its 
revision during the survey process period. We considered the error-prone prior, error-prone 
processed and error-free information as a random variable with a joint distribution with some 
probability function. Then, we updated the joint probability distribution after observing some of 
realizations of the error-free random process at each phase of survey process to revise the survey 
design specification. The proposed approach makes full use of both error-prone sets of 
information while requiring only few observations from the error-free and expensive random 
process. Since revision of a design indicates when a design is nearly "optimal", and how the error-
free information varies from the error-prone prior and processed information, the revision of the 
design has an important role to play in survey quality and cost. 
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