
Shared and Study-Specific Dietary Patterns: a Novel 

Approach to Replicability and Validity 
 
 

R. De Vito1, C. La Vecchia 2, G. Parmigiani 3,4,  V. Edefonti 2* 
  

1 Department of Computer Science, Princeton University, Princeton, NJ, USA; 
2 Branch of Medical Statistics, Biometry and Epidemiology ”G. A. Maccacaro”, 

Department of Clinical Sciences and Community Health, Università degli Studi di 
Milano, Milano, Italy; 

3 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 
Boston, MA, USA; 

4 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 
USA. 

 
* The author list included all the INHANCE consortium investigators that participated in 
this project 

 
Abstract 

We adopt the “multi-study factor analysis” approach in order to identify dietary patterns 
(DPs) across different studies. The goal is 1) to distinctly estimate shared and study-
specific DPs across multiple populations, and 2) to validate the DPs by examining their 
association with cancers of the oral cavity and pharynx (OCP) and larynx.  
To assess these issues we use individual-level pooled data from 7 case-control studies 
(3,844 cases and 6,824 controls from Europe and the United States) participating in the 
International Head and Neck Cancer Epidemiology consortium.  
We identified 3 DPs that were shared among all studies: the Antioxidant vitamins and fiber 
DP was inversely associated with risk of OCP and laryngeal cancers, the Fats DP was 
inversely associated with risk of OCP cancer, whereas the Animal products and cereals 
and the Fats DPs were positively associated with risk of laryngeal cancer. Each study from 
the US expressed an additional study-specific DP. 
We provided a valuable tool to fully understand multi-study replicability in a DP analysis 
and insight into DP validity. 
 

Key Words: dietary patterns, multi-study factor analysis, replicability, validity  
analysis, laryngeal cancer, oral cavity and pharyngeal cancer   
 

 
1. Introduction 

 
Dietary patterns (DPs) are an effective tool for assessing overall diet in individuals. One of 
the main contribution of DPs is focused on its association with health, and on its effects on 
disease risk (Hu, 2002).  
In order to estimate DPs, research in nutritional epidemiology has been focused on 
statistical methods for a posteriori DPs, although most of the literature  has adopted 
standard multivariate statistical methods, such as principal component analysis (PCA) 
(Varraso et al., 2012, Moskal et al., 2014, Castelló et al., 2016), and factor analysis (FA) 
(Gittelsohn et al., 1998, Togo et al., 2004, Judd et al., 2015). 
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However, an analysis that integrates different population and studies has not been 
extensively explored in this field. Considering multiple studies can leverage the power of 
sample size and can capture replicable signal and differences among diverse populations 
and, consequently, dietary habits. Indeed, when considering multiple studies, a crucial 
challenge is learning replicable features shared among studies while simultaneously 
identifying the component specific to each study. To our knowledge, few studies have 
focused on replicability of DPs. For example, some studies (Castelló et al., 2016, Castelló 
et al, 2016) compared similar DPs using correlation and congruence coefficients between 
DP loadings.  Edefonti et al. (2012) analyzed five different populations shared exactly the 
same variables (e.g. nutrients) to be then merged in one single population. Then, they 
applied FA to this population to determine shared dietary patterns and their relation with 
head and neck cancer (HNC) risk. 
These examples highlight the urgent need in this setting for a model able to handle multiple 
populations and to derive in a single analysis (1) factors that capture shared  dietary patterns 
common to all available studies, and (2) study-specific factors. 
In our paper (De Vito et al., 2018), we adopted the multi-study factor analysis (MSFA), 
developed by De Vito et al., 2016, in the International Head and Neck Cancer 
Epidemiology (INHANCE) consortium (Hashibe et al, 2007, Conway et al., 2009).  
Multi-study factor analysis is a dimension-reduction approach that allows for the joint 
analysis of multiple studies. Specifically, MSFA is a generalization of FA able to handle 
multiple studies simultaneously. Indeed, MSFA estimates shared DPs common to all the 
studies, and identifies the study-specific DPs related to the specificity of each population. 
This method is based on the maximum likelihood estimation approach computed via an 
Expectation Conditional-Maximization (ECM) algorithm (Meng et al, 1993).  
In the setting of the INHANCE consortium (Conway et al, 2009), MSFA tackles the issue 
of replicability of DPs. The INHANCE consortium was established in 2004 to elucidate 
the etiology of HNC through pooled analyses of individual-level data from several studies. 
In this way we are able to assess replicability of DPs in different studies presented in 
INHANCE and to validate the shared and study-specific DPs identified by MSFA by 
associating them with the risk of HNC subsites, including oral cavity and pharynx (OCP) 
and larynx. 
Section 2 of this report introduces the data and describes MSFA, the estimation of model 
parameters based on maximum likelihood, implemented via the ECM algorithm. Section 3 
presents the application to study DP replicability and validity. Section 4 contains the final 
discussion. 
 
 

2. Materials and Methods 

 
2.1 Design and Subjects 

We extracted from version 1.5 of the INHANCE pooled dataset seven case-control studies 
(Bravi et al., 2013, Schantz et al., 1997, Levi et al., 1998, Bosetti et al., 2003, Peters et al., 
2005, Cui et al., 2006, Hashibe et al., 2006, Divaris et al.,  2010) that provided a sufficiently 
large list of nutrients. Three of the studies analyzed here were conducted in Europe and 
four in the United States (the case-control ratio is from 0.41 to 0.98 across studies). Other 
details on the individual studies, harmonization of data and data pooling methods have 
been previously described (Conway et al., 2009) and summarized (De Vito et al., 2018). 
Relevant institutional review boards approved the investigations, according to the specific 
rules applied to each country at the data collection time. 
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2.2 Model 

We adopted MSFA to identify shared and study-specific DPs for the overall set of HNC 
cases and controls. Specifically, we considered S=7 studies, each represented by the same 
set of P=23 nutrients. Study s has ns subjects, each represented by a P-dimensional log-
transformed and standardized data vector, xis, with i=1,…,ns, s=1,…,S. The xis were 
expressed by MSFA in terms of K shared factors and Js additional study-specific factors, 
giving a total Ts=K+Js factors. Let fis be the (K × 1) shared latent factor vector for subject 
i in study s, and Φ be the (P × K) shared factor loading matrix. Moreover, let lis be the (Js 
× 1) study-specific latent factor vector and  Λ𝑠 be the (P × Js) specific factor loading matrix. 
Multi-study factor analysis assumes that the P-dimensional vector xis is decomposed as: 
 

𝑥𝑖𝑠 = Φ 𝑓𝑖𝑠 +  Λ𝑠  𝑙𝑖𝑠 + 𝑒𝑖𝑠       𝑖 = 1, … , 𝑛𝑠     𝑠 = 1, … , 𝑆 
 
where the (P × 1) error term eis has a multivariate normal distribution with mean vector 0 
and diagonal covariance matrix Ψ𝑠 = 𝑑𝑖𝑎𝑔 (𝜓𝑠1, … , 𝜓𝑠𝑝). 
As a result of the model assumption, the marginal distribution of xis is multivariate normal 
with mean vector 0 and covariance matrix Σ𝑠 = ΦΦ𝑇 +  Λ𝑠Λ𝑠

𝑇 + Ψ𝑠 . The covariance 
matrix is decomposed in three different components, namely the shared factor’s variance, 
the study- specific factor’s variance and the variance of the error term. 
 
2.2.1 Parameter Estimation 
The parameters to be estimated within the MSFA approach are given by 𝜃 = (Φ, Λs, Ψs ). 
Let’s assume that the observed variables xis have been centered. Then the log-likelihood 
for the MSFA method is 
 

𝑙(𝜃) =  ∑ −
𝑛𝑠

2
log|Σ𝑠| − 

𝑛𝑠

2
𝑡𝑟 ( Σ𝑠

−1 𝐶𝑥𝑠𝑥𝑠
 )

𝑆

𝑠=1

 

 
where  𝐶𝑥𝑠𝑥𝑠

 is the covariance matrix computed in each study. 
The parameters Φ, Λs, and Ψs  are estimated by a generalized version of the Expectation 
Maximization (EM) algorithm (Dempster et al., 1977). We use the ECM (Meng et al., 
1993) to estimate the parameter vector by replacing the standard maximization step in the 
EM with a set of conditional maximization steps.  
For a better interpretation of the loadings, the varimax rotation is then applied to the 
estimated factor loading matrices. 
 
2.2.2 Dimension procedure (model selection) 
To select the dimension of the model, we proceeded in two steps. Firstly, we determined 
the total number of factors, Ts, s=1,…, S, by adopting a combination of standard techniques 
for FA, such as Horn's parallel analysis, Cattell's scree plot, or the use of indexes, namely 
the root mean square error of approximation (Mulaik, 2009). Next, model selection 
techniques, such as Akaike Information Criterion (AIC) (Akaike, 1974), were applied to 
the MSFA model to select the number of shared factors, K. The number of study-specific 
factors, Js  s=1,…, S, is then obtained by difference as Ts - K, s=1,…,S.  
Moreover, we determined a global AIC as a final criterion to identify the optimal pair (K, 
Js).  
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2.2.3 Factor Scores 
In order to estimate the degree of each subject’s diet adherence to the previously identified 
DPs, we computed the factor scores from the MSFA model. Factor scores were computed 
within MSFA (De Vito et al., 2018) by adopting both the standard available methods for 
FA (Bartlett and Thurstone) (Johnson et al., 2002, DiStefano et al., 2009). Specifically, we 
determined a factor score for each subject and factor within each study by using the 
correlation matrix of each study, 𝐶𝑥𝑠𝑥𝑠

, and the overall factor-loading matrix [Φ, Λ𝑠]. Since 
the correlation between the factors estimated by the two methods, Bartlett and Thrustone, 
was relevantly high (0.99) (De Vito et al., 2018), we proceeded with the Bartlett method, 
since it assumes unbiaseness and uncorrelation between factor scores (Johnson et al., 2002, 
DiStefano et al., 2009). 
 
2.3 Association of the identified dietary patterns and head and neck cancer 

Participants were grouped in five (quantiles for the shared factor) or three categories 
(tertiles for the study-specific factors) (De Vito et al., 2018).  
The odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) of OCP and 
laryngeal cancers were computed, separately, for each category using multiple logistic 
regression models (Hosmer et al., 2000). Separate models were fitted for each factor. In 
validation, we fitted a shared-factor regression model and a study-specific regression 
model including all the shared and one study-specific factor at a time. Each model included 
adjustments for age, sex, race, study center (when appropriate), education, pack-years of 
cigarette smoking, cigar smoking status, pipe smoking status, and alcohol drinking 
intensity (see De Vito et al., 2018 for the covariate categories adopted). 
The resulting ORs and CIs were computed adopting a random-slope generalized linear 
mixed model with logit link function and binomial family (Pinheiro et al., 2011), in order 
to include the heterogeneity of the shared DPs’ associations across studies. The random-
effects had the quintile categories effects (except for the reference) as random slopes and 
study center as common grouping factor, in total eight levels. We did not include in the 
model random intercepts or random effects correlations. Specifically, four random-effects 
terms (one for each quintile category, reference category excluded) could be considered in 
the model for each shared pattern, with a total of thirty-two random effects (one for each 
study center and quintile category, reference category excluded). Moreover, we considered 
only random-effects terms for patterns showing a good fit in favor of them. 
 
 

3. Analysis and Results 

 
In this section, we analyzed the seven studies in order to estimate the shared and the study-
specific DPs and their association with risk of cancer of OCP and larynx.  
Initially we conducted preliminary analysis to inspect the factorability of the data adopting 
techniques such as Bartlett's test of sphericity, the Kaiser-Meyer-Olkin measure, and 
individual measures of sampling adequacy (Pett et al., 2003).  
Since all these measures produced reasonable values, we then proceeded with DP 
estimation. We firstly assessed the total factors dimensions, the number of the shared 
factors and the number of the study-specific factors. Comparing AICs from different 
models, we set the number of shared factors to three and the number of study-specific 
factors to one for the American studies [Los Angeles, Boston, Memorial Sloan Kettering 
Cancer Center, and North Carolina (2002-2006)].  
Next, we focused on the DPs. The three shared factors explained 75% of the total variance. 
The first factor, Animal products and cereals, had highest loadings on phosphorus, 
riboflavin, zinc, total protein, calcium, niacin, thiamin, vitamin B6, sodium, potassium, 
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iron, cholesterol, and total carbohydrates. The second factor, Anti-oxidant vitamins and 
fiber, had the highest loadings on vitamin C, total fiber, total carotene, total folate, vitamin 
E, and potassium. The third factor, Fats, had the highest loadings on monounsaturated, 
polyunsaturated, and saturated fatty acids, and vitamin E. 
The study-specific factors explained 5% (Los Angeles), 3% (Boston), 6% (Memorial Sloan 
Kettering Cancer Center), and 3% (North Carolina (2002-2006)) of the total variance. 
These four factors, all named Dairy products and breakfast cereals, presented a similar 
pattern. Specifically, all of these four factors showed a high positive loading on calcium 
and a high negative one (in absolute value) on niacin.  
Further, we compared MSFA and FA via bootstrap analysis. In particular, we analyzed the 
distributions and standard errors of the factor loadings computed from 100 bootstrapped 
random sets of the seven studies under the two approaches, i.e. MSFA and FA, after 
merging all the data-sets in one. Figure 1 depicts the bootstrap results: the boxplots 
produced by the MSFA are always less broad than the corresponding ones from FA. 
Additionally, the standard errors of the shared-factor loadings are always smaller under the 
MSFA approach.   
 
 

 
Figure 1: Distribution of 100 bootstraps of the sample of the estimated factor loadings for 
the three shared dietary patterns identified by both the multi-study factor analysis and factor 
analysis. The distribution of each loading is depicted in each boxplot.  
 
 
 
The bootstrap analysis illustrates how MSFA borrows strength across studies in the 
estimation of the factor loadings, in such a way that the reliability in independent 
observations is not only preserved but even improved. 
Finally, the ORs and the CIs for cancers of the OCP and larynx were computed. For the 
shared factors, as reported in detail in De Vito et al., 2018, the Animal products and cereals 
pattern was positively associated with laryngeal cancer risk, the Anti-oxidant vitamins and 
fiber pattern was inversely related to the risk of cancer at both OCP and larynx, and, finally, 
the Fats pattern was inversely associated with cancer of the OCP and positively associated 
with laryngeal cancer. For the study-specific factors, the Los Angeles specific DP was 
inversely associated with OCP cancer risk, however the pattern identified in the Boston 
study was positively associated with the same cancer site. 
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4. Discussion 

 
Multi-study factor analysis provide a valuable tool for the analysis of reproducibility and 
validity of DPs in a nutritional epidemiology framework. The main idea is to estimate the 
shared factors across studies and to identify study-specific factors related to each 
population. De Vito et al., 2018 identifies four American study-specific patterns and no 
additional study-specific patterns in any European population. The reason can be found in 
differences between Europe and United States in terms of foods and breakfast habits. 
Indeed, the foods rich in niacin and low in calcium (or vice versa), as identified in our 
study-specific DPs analysis, includes: milk, cheese, yoghurt, instant and filter coffee, as 
well as cereal products in general, with most breakfast cereals. Secondly, there are some 
differences in the FFQ questionnaire: the European studies have the same FFQ, which 
differs from those of the American studies.  
Differences in terms of risk for Los Angeles-specific and Boston--specific DPs are 
reported. The diverse direction of the risk for the Dairy products and breakfast cereals DP 
can be related to different food sources of the two FFQs. 
Multi-study factor analysis can be applied to many settings, such as any consortium or 
network of consortia, including those of cohort studies where the aim is to identify shared 
and study-specific factors. The selection of the factor-loading matrix dimension via 
objective criteria, like AIC, allows us to check the model dimension with a valuable 
measure and tool. Moreover, MSFA is consolidated with standard checks of internal 
stability and internal consistency of the estimated DPs (Edefonti et al., 2010). 
In conclusion, the application of MSFA in nutritional epidemiology allowed to identify 
relevant eating patterns across the INHANCE consortium populations from Europe and the 
US associated with risk of OCP and laryngeal cancers. This approach can be the basis for 
integrating information from different population in a DP framework. Moreover, these 
results may be relevant information for the next releases of national dietary guidelines.  
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