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Abstract  
Accurate estimation of bioreaction parameters (e.g., the substrate reaction rate constant and 
the substrate half-saturation parameter in Monod or Monod-derived equations) is critical 
for successful modeling, reactor design, and scale-up in bioremediation. Conventional 
maximum likelihood estimation methods are not well suited to estimation of parameters 
associated with complex nonlinear biological reactions and small-scale experimental data. 
This paper demonstrates that Bayesian estimation, a standard approach for parameter 
estimation for physiologically based pharmacokinetic models, is viable for estimating 
model parameters for such dynamic biological systems. This approach is illustrated using 
reaction kinetic data from replicated batch experiments for toluene and trichloroethylene 
(TCE) biodegradation by the microorganism Pseudomonas putida F1. This paper evaluates 
the prediction capabilities of Bayesian estimation by comparing predicted and observed 
data and reports on goodness-of-fit statistics. The results demonstrate that Bayesian 
estimation methods can be particularly useful for bioreaction kinetic determination in the 
presence of small data.  
 
Key Words: Bayesian statistics, toluene and trichloroethylene cometabolism, kinetics 
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1. Introduction 
 
Trichloroethylene (TCE) is a nonflammable volatile organic compound (VOC) widely 
used as a cleansing agent or solvent for metal degreasing and solvent extraction in various 
industries and in household products, such as typewriter correction fluid, paint removers, 
and spot removers (Agency for Toxic Substances and Disease Registry [ATSDR], 2018b). 
Careless disposal, spillage, and leakage have made TCE among the most common 
pollutants found in U.S. contaminated groundwater (Moran, Zogorski, & Squillance, 
2007), and it has been detected in at least 1,045 of the 1,699 National Priorities List sites 
identified by the U.S. Environmental Protection Agency (ATSDR, 2016). TCE's toxicity 
and possible carcinogenic property (Eder, 1991; Scott & Jinot, 2011) cause great concern 
when it is found in contaminated groundwater. In addition, toluene, which is used as an 
industrial solvent (ATSDR, 2018a), is one of the most common pollutants found in 
groundwater and domestic water supplies in some areas (Hamid, Amin, Alazba, & 
Manzoor, 2014). TCE together with toluene and other compounds, such as benzene and 
xylenes, are likely found together as combined pollutants at contaminated industrial sites.  
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Many studies have been conducted to remove TCE through biotransformation by using 
various microorganisms via reductive or oxidized dechlorination (Pant & Pant, 2010). 
Because TCE cannot be used as a carbon source for microorganisms to grow, it can be 
transformed only through cometabolism under aerobic conditions in which nonspecific 
oxygenases of microorganisms catalyze the oxidation of TCE in the presence of a primary 
substrate. These microorganisms include methane-oxidizing bacteria, toluene oxidizers, 
and phenol oxidizers. For example, when toluene and TCE present together in an 
environment, toluene can be used as a primary substrate for microorganisms to grow and 
produce nonspecific oxygenases to degrade TCE into nontoxic compounds. The advantage 
of using coexisting pollutants as a growth substrate for TCE cometabolism is that the co-
occurring pollutants in the environment can be removed simultaneously.  
 
TCE cometabolism kinetics is important for predicting the concentrations of contaminants 
and modeling or designing bioreactors for TCE treatment. Kinetic parameters can be 
obtained either directly from the literature or by reversing the engine to solve the problem 
via model fitting to the experimental data. However, parameters reported in the literature 
may vary substantially due to different estimation methods or experimental conditions 
(Alvarez-Cohen, 1998; Mars, Prins, Wietzes, de Koning, & Janssen, 1998; Mii, Morono, 
Tanji, Unno, & Hori, 2004; Robertson & Button, 1987; Sun & Wood, 1996), which could 
result in differences in parameter values even for the same kind of microorganism species. 
Hence, the second option is sometimes necessary to accommodate local experimental 
conditions for a customized parameter fitting. In that sense, reliable estimation of 
biodegradation parameters, such as the substrate reaction rate constant and the substrate 
saturation parameter in the Monod or Monod-derived equations, is the key step toward 
successful modeling, prediction, and bioreactor design. However, nonlinearity, the 
multiple highly correlated parameter spaces involved in differential equations, and the 
small-scale data collected from experiments present great challenges in parameter 
estimation. The traditional method for biological parameter estimation usually cannot 
handle high-dimension parameter spaces. Strategically, one has to first decompose the 
modeling process by doing one compound at a time (i.e., estimating compound-specific 
parameters by steps), then based on some approximate assumptions one needs to further 
simplify the model by converting it to linear equations to estimate the parameters. For 
example, the initial rate method (Shuler & Kargi, 1992) is a linearization method for 
estimating parameters from simple biological models. Therefore, the traditional method 
relies on certain modeling assumptions and needs more experimental data in order to 
achieve the desired precision. Further, when models are complicated with multiple 
compounds, it is hard to capture the interactions between the compounds if estimation is 
done separately by stepwise modeling. In term of statistical methods, on the other hand, 
conventional maximum likelihood estimation methods are not well suited in complex 
nonlinear biological reactions with limited data because significant bias may occur when 
experimental datasets are small; moreover, these methods produce poor uncertainty 
estimates based on the Cramer–Rao bound (Jang & Gopaluni, 2011). 
 
The Bayesian method, however, has been a commonly used approach in statistical 
inference and parameter estimation in physiology-based pharmacokinetics (PBPK) models 
(Bernillon & Bois, 2000; Chiu, Okino, & Evans, 2009; Krauss et al., 2013; Zurlinden & 
Reisfeld, 2015), where data are often limited and are collected dynamically among human 
subjects in clinical trials. Bayesian inference computes the posterior probability-given 
evidence, which is proportional to the prior probability and the likelihood of evidence given 
the hypothesis normalized by the probability of events (i.e., the marginal probability from 
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all hypotheses) (Jeffreys, 1973). Under the Bayesian framework, prior knowledge of 
parameter distributions is updated with the information obtained from the experimental 
data to form posterior distributions. In other words, the joint probability distribution of the 
parameters is obtained after conditioning them to the data and prior knowledge. The prior 
knowledge relating to the parameters can come from the past experimental data or values 
reported in the literature. The major advantage of the Bayesian approach is that it is easy 
and flexible to implement, and it integrates prior information into the model considerations. 
By combining the Bayesian approach with Markov Chain Monte Carlo (MCMC) 
procedures, Bayesian estimates can be appropriately calculated even for small samples 
(Dunson, 2001). By applying MCMC algorithms (Gilks, Richardson, & Spiegelhalter, 
1996; Tierney, 1994) to the Bayesian method, once a model converges, one can iteratively 
draw a large number of samples based on the joint posterior distribution of the model 
parameters. Hence, estimates of the posterior distribution of parameters in a model can be 
easily obtained. Engineering applications for this approach have also been found, such as 
parameter estimation in wastewater treatment to address uncertainties (Sharifi, Murthy, 
Takács, & Mossoudieh, 2014; Stewart et al., 2017). Parameter estimation for TCE 
biodegradation from a mixed culture has been explored and reported elsewhere (Kandris, 
Antoniou, Pantazidou, & Mamais, 2015). This paper attempts to apply the Bayesian 
method to estimate TCE and toluene biological parameters for a microorganism culture in 
a dynamic system.  
 
In this paper, parameter estimation was investigated for toluene and TCE biotransformation 
by Pseudomonas putida F1 under batch experimental conditions using the Bayesian 
method. Psedomonas putida F1 is one of the common bacteria (Wackett & Gibson, 1988) 
that has the capability to mineralize TCE. It can use toluene as the main carbon source for 
its growth. In the cometabolism reaction, toluene dioxygenase was induced by toluene, 
which simultaneously catalyzed the reaction of TCE degradation. A three-step hierarchical 
modeling strategy was employed with increasing complexity in the parameter estimation 
process: (1) estimate the Monod parameters for toluene degradation only; (2) estimate the 
parameters for TCE degradation only; and (3) estimate the parameters for toluene and TCE 
cometabolism. The first two steps were to verify the parameters obtained from the Bayesian 
method with those obtained from the traditional method (i.e., the initial rate method). The 
third step in the parameter estimation serves as a verification step that the individual 
parameters obtained from the separate steps are reliable and additionally as a way to 
identify if there is any interaction when two compounds are degraded cometabolically. 
Hence, three different types of mathematical models were employed in sequence: (1) the 
Monod model with toluene as the only substrate; (2) the Monod model with TCE as the 
only substrate and its toxicity; and (3) the Michaelis-Menten model with the co-presence 
of toluene and TCE and competitive inhibition in the cometabolism. The corresponding 
data were collected over time from batch experiments with toluene only, TCE only, or 
mixed toluene and TCE as the primary substrate(s). The Bayesian method was employed 
to estimate the posterior distributions of these kinetic parameters. To account for 
uncertainties from the experiment and measurement, MCMC simulations were conducted 
to achieve an optimal solution. Overall model fittings were assessed by the deviance 
information criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde, 2002). In 
addition, other standard goodness-of-fit measures, such as mean squared error (MSE) and 
mean absolute error (MAE), which quantify the discrepancy between "observed" 
concentrations of toluene and TCE and the models' "predicted" concentrations over time, 
were calculated to measure the models' accuracy. Finally, the prediction capability of the 
models with newly fitted parameters was examined by comparing the model prediction 
values with the different sets of experimental data under the three models.  
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2. Materials and Methods 

 
2.1 Batch Toluene and/or TCE Degradation Data 
Data were collected from series batch experiments in 25-milliliter (mL) Mininert® vials 
(Yu, 1998). Pseudomonas putida F1 cell cultures, medium, and toluene and/or TCE were 
added into the vials to form a final liquid volume at 5 mL for different initial toluene and/or 
TCE concentration combinations. The vapor-phase volume and liquid-phase volume ratio 
was kept at 4:1. Toluene and TCE concentrations were recorded over sample time. In this 
work, the following three groups of data were used: 
 
Group 1. Toluene-only degradation data: initial toluene concentrations at 10 milligrams 
per liter (mg/L), 20 mg/L, 30 mg/L, 40 mg/L, and 50 mg/L with three replicated vials 
(replicates) for each of the starting concentrations. Data from the 30 mg/L experiments 
were used for parameter estimation.  
 
Group 2. TCE-only degradation data: initial TCE concentrations at 0.5 mg/L, 1.0 mg/L, 
1.5 mg/L, and 2.0 mg/L with two replicated vials (replicates) for each of the starting 
concentrations. Data from the 1 mg/L experiments were used for parameter estimation. 
 
Group 3. Toluene and TCE cometabolism data: initial toluene and TCE concentrations at 
10 mg/L, 1 mg/L, respectively; 40 mg/L and 1 mg/L, respectively; and 10 mg/L and 5 
mg/L, respectively, with three replicated vials (replicates) for each of the starting 
concentrations. Data from the 40 mg/L and 1 mg/L experiments were used for parameter 
estimation.  
 
As noted above, for each data group, one initial concentration experiment's data were used 
for modeling and parameter estimation, and the rest of the experiment's data with initial 
concentrations different from that were used for testing the predictive ability for each 
model. 
 
2.2 Mathematical Models 
Mass balance in a closed gas-liquid system for toluene or TCE can be written in the 
following expressions: 
 

 𝑉𝑙 𝑑𝐶 𝑖
𝑙

𝑑𝑡
+ 𝑉𝑔 𝑑𝐶 𝑖

𝑔

𝑑𝑡
= 𝑉𝑙 (

𝑑𝐶 𝑖
𝑙

𝑑𝑡
)

bioreaction
 (1)  

and 
 𝑉𝑙𝐶𝑖 = 𝑉𝑙𝐶𝑖

𝑙 + 𝑉𝑔𝐶𝑖
𝑔, (2) 

 
where 𝑉𝑙 is the liquid-phase volume, 𝑉𝑔  is the gas-phase volume, 𝐶 𝑖

𝑙   is the liquid-phase 
concentration, 𝐶 𝑖

𝑔
  is the gas-phase concentration, 𝐶𝑖  is the total concentration if the 

substance were not volatile, and i = 1, 2, which refers to toluene or TCE. Equation (1) says 
that the total rate of change for toluene or TCE is the sum of the rate change in the liquid 
phase and gas phase and is equivalent to the toluene or TCE biodegradation rate in the 
liquid phase. Equation (2) says that the total mass of toluene or TCE is the sum of the mass 
in the liquid phase and the mass in the gas phase. Under rigorous shaking conditions, fast 
equilibrium can be achieved between the liquid and gas phases for both toluene and TCE 
without mass transfer resistance between the gas and liquid phases, so the relationship 
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between the gas-phase concentration and the liquid-phase concentration can be described 
by Henry's law as follows:  
 
 𝐶𝑖

𝑔
= 𝐻𝑖𝐶𝑖

𝑙.  (3) 
 
Substituting Equation (3) into Equations (1) and (2) yields the following:  
 

 𝐴𝑖
𝑑𝐶 𝑖

𝑙

𝑑𝑡
= (

𝑑𝐶 𝑖
𝑙

𝑑𝑡
)

bioreaction
 (4) 

and  
 𝐴𝑖 = 1 +

𝑉𝑔

𝑉𝑙 𝐻𝑖.  (5) 
 
Equation (4) says that the total rate of toluene or TCE change can be expressed using the 
liquid-phase concentration and is equivalent to the biodegradation rate in the liquid phase.  
 
Therefore, mathematical models under batch conditions can be described using the liquid-
phase toluene or TCE concentration for the corresponding data groups denoted earlier in 
Section 2.1. Below, the superscript "l" is omitted for all concentration notations in the 
equations. The total liquid concentration (assuming all compound molecules were in the 
liquid phase without evaporation) can be obtained by multiplying the liquid-phase 
concentration with the physical constant 𝐴𝑖.  
 
Model 1: Only toluene presented in the solution as the substrate; hence, the toluene 
consumption rate can be described by substituting the Monod equation into Equation (4), 
yielding the following: 
 
 −

𝑑𝐶𝑇𝑂𝐿

𝑑𝑡
=

1

𝐴𝑇𝑂𝐿

𝑘𝑇𝑂𝐿𝑋𝐶𝑇𝑂𝐿

𝐾𝑠,𝑇𝑂𝐿+𝐶𝑇𝑂𝐿
 (6) 

and  
 𝑑𝑋

𝑑𝑡
= 𝑌𝑒 (−𝐴𝑇𝑂𝐿

𝑑𝐶𝑇𝑂𝐿

𝑑𝑡
) − 𝑏𝑑𝑋, (7) 

 
where 𝑘𝑇𝑂𝐿 is the rate constant of toluene, 𝐾𝑠,𝑇𝑂𝐿 is the substrate half-saturation constant 
of toluene, X is the biomass concentration, 𝑌𝑒 is the cell yield coefficient, and 𝑏𝑑 is the cell 
decay rate. Note here that the total change of the liquid phase and the gas phase of the 
toluene contributes to the growth of the bacteria.  
 
Model 2: TCE degradation was conducted by using resting cells in the absence of toluene. 
After Pseudomonas putida F1 grew under toluene, they produced sufficient toluene 
dioxygenase that can be used to catalyze TCE biodegradation even without the presence of 
toluene. These bacteria are the resting cells. Equations similar to Equations (6) and (7) can 
be used to quantify the TCE reaction rate, with the exception that TCE has a toxicity effect 
to the cells so that there is a transformation capacity involved in the biomass equation: 
 
 −

𝑑𝐶𝑇𝐶𝐸

𝑑𝑡
=

1

𝐴𝑇𝐶𝐸

𝑘𝑇𝐶𝐸𝑋𝐶𝑇𝐶𝐸

𝐾𝑚,𝑇𝐶𝐸+𝐶𝑇𝐶𝐸
 (8) 

and  
 𝑑𝑋

𝑑𝑡
= −

1

𝑇𝐶
𝐴𝑇𝐶𝐸 (−

𝑑𝐶𝑇𝐶𝐸

𝑑𝑡
) − 𝑏𝑑𝑋, (9) 
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where 𝑘𝑇𝐶𝐸 is the rate constant of TCE, 𝐾𝑚,𝑇𝐶𝐸 is the substrate half-saturation constant of 
TCE, and 𝑇𝐶  is TCE transformation capacity, which is defined as the mass of TCE 
consumed per unit amount of biomass. The inverse of 𝑇𝐶 is the cell mass deactivated per 
the amount of TCE degraded. Similar to Equation (7), the toxicity caused by TCE is the 
result of the biodegradation of TCE in the liquid phase.  
 
Model 3: This model involves toluene and TCE cometabolism, where toluene and TCE 
were introduced in the solution and a general competitive enzyme reaction model (i.e., a 
modified Michaelis-Menten equation) can be used to describe the reaction rate change for 
toluene and TCE, as follows:  
 
 −

𝑑𝐶𝑇𝑂𝐿

𝑑𝑡
=

1

𝐴𝑇𝑂𝐿

𝑘𝑇𝑂𝐿𝑋𝐶𝑇𝑂𝐿

𝐶𝑇𝑂𝐿+𝐾𝑠,𝑇𝑂𝐿(1+
𝐶𝑇𝐶𝐸

𝐾𝑚,𝑇𝐶𝐸
)
, (10) 

 
 −

𝑑𝐶𝑇𝐶𝐸

𝑑𝑡
=

1

𝐴𝑇𝐶𝐸

𝑘𝑇𝐶𝐸𝑋𝐶𝑇𝐶𝐸

𝐶𝑇𝐶𝐸+𝐾𝑚,𝑇𝐶𝐸(1+
𝐶𝑇𝑂𝐿

𝐾𝑠,𝑇𝑂𝐿
)
, and  (11) 

 
 𝑑𝑋

𝑑𝑡
= 𝑌𝑒𝐴𝑇𝑂𝐿 (−

𝑑𝐶𝑇𝑂𝐿

𝑑𝑡
) −

1

𝑇𝐶
𝐴𝑇𝐶𝐸 (−

𝑑𝐶𝑇𝐶𝐸

𝑑𝑡
) − 𝑏𝑑𝑋.  (12) 

 
Equations (6), (8), (10), and (11) quantify the biodegradation rates of toluene and TCE. 
Equations (7), (9), and (12) quantify the cell growth rate in the presence of toluene and/or 
TCE. The growth equations indicate that toluene supports cell growth and TCE generates 
the toxicity effect on the cells. 
 
In prediction, one can use the above models to solve the differential equations to get the 
solution given the initial conditions and parameters. One the other hand, parameter 
estimation involves finding the values of these parameters given the measured data. 
Therefore, to solve the reversed problem for parameters 𝑘𝑇𝑂𝐿, 𝐾𝑠,𝑇𝑂𝐿, 𝑘𝑇𝐶𝐸,  𝐾𝑚,𝑇𝐶𝐸, and 
𝑇𝐶 estimation, substance concentrations were measured at certain time intervals during the 
experiments. Additionally, the initial cell density X was measured and was in the range of 
390 to 430 mg/L. However, cell density was not measured during the experiments. Other 
parameters in the models (i.e., the toluene yield coefficient 𝑌𝑒 and the cell decay rate 𝑏𝑑) 
were treated as known parameters. The toluene yield coefficient 𝑌𝑒 was obtained from a 
separate set of experiments with a value of 0.4872 mg cell/mg toluene. Various values have 
been reported for the biomass specific decay rate. For example, 0.0082 (1/h) was reported 
from Mars et al. (1998), which is equivalent to 0.1968 (1/day); 0.06 (1/h) was reported 
from Sander (2002), which is equivalent to 1.44 (1/day); and 0.39 (1/day) was reported by 
Johnson, Park, Kukor, and Abriola (2006). Given this diversity reported in the literature, 
the average of these values was taken, and 0.68 (1/day) was used as the cell decay constant 
bd for the model.  
 
2.3 Bayesian Estimation and Computational Software 
In Bayesian statistics, parameters are treated as unknown random variables, and inferences 
are made based on the posterior distributions of the parameters, where a posterior 
distribution is proportional to the product of the likelihood function and the prior 
distribution of the parameter (Jang & Gopaluni, 2011). For the single-compound toluene 
or TCE biodegradation case, the posterior parameter distribution 𝑝(𝜽𝑖|𝒚) given observed 
data y can be described as follows:  
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 𝑝(𝜽𝑖|𝒚) =
∏ 𝑝(𝑪𝑖,𝑗|𝜽𝑖)𝑝(𝜽𝑖)𝑁

𝑗=1

∫ ∏ 𝑝(𝑪𝑖,𝑗|𝜽𝑖)𝑝(𝜽𝑖) 𝑑θ𝑖
𝑁
𝑗=1

, (13) 

 
where 𝑪𝑖,𝑗 = [𝐶𝑖,𝑗(𝑡1,𝑗), 𝐶𝑖,𝑗(𝑡2,𝑗), … , 𝐶𝑖,𝑗 (𝑡𝑇𝑗

)],  which is a vector of the measured 
concentrations over time for the replicated experiment j; 𝑇𝑗 is the end sample time point for 
replicate experiment j; i = 1 or 2 for the toluene- and TCE-only experiment, respectively; 
and N is the total number of replicated experiments. For the toluene-only model, 𝜽𝑖 =
[𝑘𝑇𝑂𝐿, 𝐾𝑠,𝑇𝑂𝐿] . For the TCE-only model, 𝜽𝑖 = [𝑘𝑇𝐶𝐸 , 𝐾𝑚,𝑇𝐶𝐸 , 𝑇𝐶  ] , 𝑝(𝜽𝑖)  is the prior 
distribution of the parameters, and 𝑝(𝑪𝑖,𝑗|𝜽𝑖) refers to the likelihood of observing the data 
given the values of the parameters 𝜽𝑖. For the toluene and TCE cometabolism cases, 𝜽 =
[𝑘𝑇𝑂𝐿, 𝐾𝑠,𝑇𝑂𝐿, 𝑘𝑇𝐶𝐸 , 𝐾𝑚,𝑇𝐶𝐸 , 𝑇𝐶  ] . The posterior distribution of the parameter vector 𝜽 
needs to account for the joint distributions of both compounds: 
 

 𝑝(𝜽|𝒚) =
∏ 𝑝([𝑪1,𝑗, 𝑪2,𝑗]|𝜽)𝑝(𝜽)𝑁

𝑗=1

∫ ∏ 𝑝([𝑪1,𝑗, 𝑪2,𝑗]|𝜽)𝑝(𝜃) 𝑑𝜽𝑁
𝑗=1

. (14) 

 
The [𝑪1,𝑗, 𝑪2,𝑗] = ([𝐶1,𝑗(𝑡1,𝑗), 𝐶2,𝑗(𝑡1,𝑗)], [ 𝐶1,𝑗(𝑡2,𝑗), 𝐶2,𝑗(𝑡1,𝑗)], … , [𝐶1,𝑗(𝑡𝑇𝑗

), 𝐶2,𝑗(𝑡𝑇𝑗
)]) 

in Equation (14) are measured concentrations of toluene and TCE over time, respectively.  
 
Computing the posterior distributions of the parameters is not straightforward because 
estimating the likelihood functions— in the numerators of Equations (13) and (14) above—
involves differential equations, and performing integration in the denominators is difficult 
due to the high-dimensional spaces. In this study, the system of nonlinear problems from 
Equations (6) to (14) was solved by employing the PROC MCMC procedure in 
SAS/STATS® 14.1 (SAS Institute, Inc., 2014). This procedure enables users to fit Bayesian 
models via MCMC simulations. It is a simulation-based procedure and also allows users 
to call the ODE solver to solve the differential equations. Within this procedure, MCMC 
simulations generate samples from the desired posterior distributions, then utilize these 
simulated samples to approximate the parameter distributions. Distribution inputs are 
summarized below for the PROC MCMC procedure in SAS. For the chemical 
concentrations in Models 1 and 2, the normalized concentration 𝜇𝑖,𝑗(𝑡𝑘,𝑗) at a certain time 
point is defined as follows:  
 
 𝜇𝑖,𝑗(𝑡𝑘,𝑗) = 𝐶𝑖,𝑗(𝑡𝑘,𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (15) 
 
where i is the index for toluene and TCE, j is the index of the individual replicated 
experiments in the batch experiment, k = 1, 2,…, 𝑇𝑗 for the sample point, and 𝐶𝑖,𝑗(𝑡𝑘,𝑗) is 
the toluene or TCE concentration at time tk for vial j. The 𝐶𝑖,𝑗(𝑡𝑘,𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the expected 

concentration at the time point, which can be computed from 𝐶𝑖,𝑗(𝑡𝑘,𝑗)

𝐷𝑝𝑖,𝑗
, where 𝐷𝑝𝑖,𝑗 is the 

reactant depletion in vial j. Then the likelihood function for toluene or TCE can be 
described as follows:  
 
 𝐶𝑖,𝑗(𝑡𝑘,𝑗) ~ normal(𝜇𝑖,𝑗(𝑡𝑘,𝑗), 𝜎2). (16) 
 
Equation (16) indicates that at each time point, the toluene or TCE concentration in a vial 
follows a normal distribution with a mean 𝜇𝑖,𝑗(𝑡𝑘,𝑗) and a variance 𝜎2. Here, random errors 

 
2454



in the measured concentraions include the sample draw error, measurement error, and vial 
variations. To facilitate the computation, kinetic parameters were first applied to the log-
transformation, and to account for variability between the vials, a random term was 
introduced in the compound depeletion rates 𝐷𝑝𝑇𝑂𝐿  and 𝐷𝑝𝑇𝐶𝐸 . So, each parameter in 
Models 1 and 2 were modeled as follows (SAS Institute, Inc., 2014): 
 
For Model 1: 
 𝑘𝑇𝑂𝐿 = exp (𝛽1𝑟),  (17) 
 𝐾𝑠,𝑇𝑂𝐿 = exp (𝛽1𝑠), (18) 
 𝐷𝑝𝑇𝑂𝐿 = exp (𝛽1 + 𝑏1), (19) 
For Model 2: 
 𝑘𝑇𝐶𝐸 = exp (𝛽2𝑟), (20) 
 𝐾𝑚,𝑇𝐶𝐸 = exp (𝛽2𝑠), (21) 
 𝑇𝐶 = exp (𝛽𝑡𝑐), and (22) 
 𝐷𝑝𝑇𝐶𝐸 = exp (𝛽2 + 𝑏2), (23) 
 
where the 𝛽's are the fixed effects and the 𝑏's are the random effects. The random effect 
terms b1 and b2 enter the model through the depletion variable. Here, random variation due 
to handling or measurement error during the experiment was lumped into one parameter, 
as shown in Equations (19) and (23).  
 
For Model 3, although toluene and TCE are biodegradated under cometabolic conditions—
that is, the bioreaction follows Equations (10) to (12) in Model 3—the measured toluene 
and TCE concentrations at each time point follow a multivariate normal distribution, as 
follows:  
 

 (
𝐶𝑇𝑂𝐿,𝑗(𝑡𝑘,𝑗)

𝐶𝑇𝐶𝐸,𝑗(𝑡𝑘,𝑗)
) ~ MVN (𝜇 = (

𝜇𝑇𝑂𝐿,𝑗(𝑡𝑘,𝑗)

𝜇𝑇𝐶𝐸,𝑗(𝑡𝑘,𝑗)
) , Σ = (

𝜎11 𝜎12

𝜎21 𝜎22
)),  (24) 

 
where Σ is the variance and covariance matrix. For such cases in Model 3, the parameters 
to be estimated are all of the parameters indicated in Equations (17) to (23).  
 
Prior distributions of all of the betas in Equations (17) to (23) are assumed to follow a 
normal distribution with the means and standard deviation obtained from past experimental 
data. The random effect b's in Equations (19) and (23) follow a normal distribution with a 
mean 0 and standard deviations similar to the betas. The prior distributions of the variances 
for the toluene or TCE concentrations in Equation (16) at each time point follow the inverse 
gamma distributions with a shape parameter 3 and a scale 2. For Model 3, the random effect 
b turns into a multivariate normal distribution with a mean 0 and a variance and covariance 
matrix. The prior distribution of the covariance matrix in Equation (24) and the covariance 
matrix for the random effect b's for Model 3 is assumed to follow the inverse Wishart 
distribution with 2 degrees of freedom and a symmetric positive definite scale array S, 
where S is a 2 × 2 identity matrix.  
 
2.4 Goodness of Fit 
The DIC (Spiegelhalter et al., 2002) was used to assess the goodness of fit of the model 
fittings, where the deviance is twice the difference between the log likelihood of the 
probability function based on the data and the log likelihood of a probability function, with 
the normalizing constants based on the model. The DIC is defined as follows:  
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 𝐷𝐼𝐶 = 𝐷(𝜽)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷, (25) 
 
where θ is the vector of the parameters, 𝐷(𝜽)̅̅ ̅̅ ̅̅ ̅ is the posterior mean of deviance, and 𝑝𝐷 is 
the effective number of parameters.  
 
The 𝐷(𝜽)̅̅ ̅̅ ̅̅ ̅ is a Bayesian measure on how well the model fits the data:  
 
 𝐷(𝜽)̅̅ ̅̅ ̅̅ ̅ = 𝐸𝜽|𝒚[−2 ln(𝑓(𝒚)) − 2ln 𝑝(𝒚|𝜽)], (26) 
 
where 𝑝(𝒚|𝜽)  is the likelihood function (i.e., the conditional joint probability density 
function of the data given the unknown parameters; 𝑓(𝒚) is a function of the data; and 𝑝𝐷 
is a penalty term for increasing model complexity. The latter is defined as the difference 
between the posterior mean of the deviance and the deviance of the posterior mean �̅� of 
the parameters:  
 
 𝑝𝐷 =  𝐷(𝜽)̅̅ ̅̅ ̅̅ ̅ − 𝐷(�̅�) = 𝐸𝜽|𝒚[−2ln 𝑝(𝒚|𝜽)] +  2ln 𝑝(𝒚|�̅�),  (27) 
 
where 𝐷(�̅�) is the deviance of the posterior mean �̅�, which in turn is defined as follows: 
 
 𝐷(�̅�) = −2 ln(𝑓(𝒚)) − 2ln 𝑝(𝒚|�̅�). (28) 
 
Besides using the DIC as the overall model-fitting criterion, standard goodness-of-fit 
statistics (also called standard deviation measures), which quantify the discrepancy 
between the experimental data and the predicted data from the fitted model at each time 
point, were calculated to examine the model fitting. They include MSE and MAE:  
 
 Mean Squared Error: 𝑀𝑆𝐸 =

1

∑ 𝑇𝑗
𝑁
𝑗=1

∑ ∑ (�̂�𝑖,𝑗(𝑡𝑘,𝑗) − 𝐶𝑖,𝑗(𝑡𝑘,𝑗))
2𝑇𝑗

𝑘=1
𝑁
𝑗=1   (29) 

and  
 Mean Absolute Error: 𝑀𝐴𝐸 =

1

∑ 𝑇𝑗
𝑁
𝑗=1

∑ ∑ |�̂�𝑖,𝑗(𝑡𝑘,𝑗) − 𝐶𝑖,𝑗(𝑡𝑘,𝑗)|
𝑇𝑗

𝑘=1
𝑁
𝑗=1 ,  (30) 

 
where i = 1, 2 for toluene and TCE, respectively; �̂�𝑖,𝑗(𝑡𝑘,𝑗) is the predicted posterior mean 
concentration at a specific time for the k-th data point, j-th replicate; 𝐶𝑖,𝑗(𝑡𝑘,𝑗) is the 
observed concentration measured at a specific time for the k-th data point, j-th replicate; 
and ∑ 𝑇𝑗

𝑁
𝑗=1  is the total number of data points.  

 
The MSE is the average of the squared deviations between the observed and predicted 
scores, and it is a standard measure of goodness of fit in modeling approaches. The MAE 
is the average of the absolute differences by which an observed value differs from the 
predicted value. These values close to 0 denote better predictions.  
 

3. Results 
 
3.1 Convergence Diagnostics 
In the MCMC simulation, 100,000 iterations for each of the three biodegradation models 
were run for the corresponding experiment group defined in Section 2.1 with initial 
concentrations of (a) 30 mg/L toluene and (b) 1 mg/L TCE for single-compound models 
and (c) 40 mg/L toluene and 1 mg/L TCE for the dual-compound model. The thinning rate 
was set to 10 for all simulations. Prior parameters, including the means and standard 
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deviations of the parameters in Equations (17) to (24), were adjusted until model 
convergence. Diagnostic plots, including trace plots, autocorrelation function plots, and 
kernel density plots, were output to examine model convergence. The trace plot 
demonstrates the degree of chain mixing, the density plot presents the smoothed histogram 
of the posterior distribution of the parameter of interest, and the autocorrelation function 
plot measures serial correlation between lags from the simulation. A convergence criterion 
was achieved for all chains. An example of these diagnostic plots is displayed in Figure 1 
for 𝛽1𝑟  from Equation (17) for toluene-only biodegradation, where 𝛽1𝑟  is the log 
transformation of the reaction rate constant of the toluene biodegradation. The trace plot in 
Figure 1 shows that the chains were well mixed from the posterior samples, and the 
autocorrelation plot indicates that the sample draw autocorrelation between the terms of 
the chain died out quickly. The density plot reveals a nearly standard normal distribution 
of the posterior estimates of parameter 𝛽1𝑟. All of these diagnostic plots provide good 
evidence of chain convergence. Similar diagnostic plots that show good convergence was 
achieved for the parameters from Equations (18) to (23) (diagrams not shown).  
 

 
Figure 1: Example diagnostic plots for 𝛽1𝑟 from Equation (17) for single-compound 

toluene biodegradation 
 
3.2 Goodness of Fit 
As mentioned in Section 2.4, the goodness of fit for the three models was measured by the 
DIC, MSE, and MAE. The DIC measures were directly read from the SAS PROC MCMC 
output. The MSE and MAE measures were calculated by using the observed toluene and/or 
TCE concentrations at each time point and their corresponding model-predicted values, 
which were the means of the posterior distribution of the toluene and/or TCE 
concentrations at that specific time from the MCMC simulation. The results of the 
goodness-of-fit assessment are provided in Table 1.  
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Table 1: Goodness of Fit of Predicted Means Using the Fitted Model Compared with the 
Experimental Data 

Model 
Toluene TCE 
DIC MAE MSE n1 DIC MAE MSE n1 

1 62.44 1.13 2.22 33 -- -- -- -- 
2 -- -- -- -- 0.01 0.04 0.002 22 
3 1.17 0.92 3.21 63 1.17 0.07 0.008 63 

1 n is the total number of data points (∑ 𝑇𝑗
𝑁
𝑗=1 ) denoted in Equations (29) and (30). 

 
Table 1 shows that except for a relatively large DIC for the toluene-only model, all of the 
other goodness-of-fit measures were small, specifically for the TCE concentration 
estimates. The MSE and MAE were all close to zero, either from the TCE-only model or 
from the toluene and TCE cometabolism model. For all of the measures, the desire was to 
have values as close to zero as possible; however, with the 62.44 value for the DIC from 
the toluene-only simulation model, the impact on parameter estimation was small. Figure 
2 lays out the model fit with means and 95% credible intervals in comparison with the 
experimental data. These results show that all three models had good fit to the experimental 
data using the Bayesian approach.  
 

 
Figure 2: Comparison of model predictions, 95% credible intervals, and experimental 

data 
 
3.3 Parameters Estimated from the Bayesian Method 
The MCMC simulation produced posterior distributions of all betas described in Equations 
(17) to (23). These distributions were then converted back to the original scales for the rate 
constants and half-saturation parameters for toluene consumption, TCE degradation, and 
the TCE transformation capacity (𝑇𝐶), partially or jointly using these equations depending 
on the models. Besides the means of the parameters, the 95% credible intervals were also 
calculated to show the range of likely values of the posterior distributions. The Bayesian 
estimates of the parameter values under each model scenario are summarized in Table 2. 
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Table 2: Means and 95% Credible Intervals (C.I.) of Parameters Estimated from the 

Bayesian Approach and Comparisons with Estimations Obtained from the Traditional 
Method in a Batch Culture 

Model 

Toluene TCE 

Rate constant 
kTOL (1/day) 

Substrate half-
saturation 
constant Ks,TOL 
(mg/L) 

Rate constant 
kTCE (1/day) 

Substrate half-
saturation 
constant 
Km,TCE (mg/L) 

TCE 
transformation 
capacity (𝑇𝐶) 

Est. 
95% 
C.I. Est. 

95% 
C.I. Est. 

95% 
C.I. Est. 

95% 
CI Est. 

95% 
C.I. 

1 (Tol)  8.92 (8.51, 
9.36) 

1.11 (1.00, 
1.21) 

-- -- -- -- -- -- 

2 (TCE) -- -- -- -- 1.60 (1.33, 
1.96) 

1.56 (1.28, 
1.89) 

0.0041 (0.0033, 
0.0050) 

3 (Tol + TCE) 10.89 (10.47, 
11.31) 

0.97 (0.82, 
1.17) 

1.60 (1.36, 
1.90) 

1.62 (1.36, 
1.95) 

0.0043 (0.0035, 
0.0052) 

Traditional  
(Yu, 1998) 

8.44 -- 1.11 -- 1.58 -- 1.52 -- 0.0047 -- 

 
Table 2 shows that the Bayesian estimates obtained from the single-compound model 
fittings (Models 1 and 2) using data from the independent experiments were very similar 
to the estimates using the full-scale Model 3 where TCE and toluene were degraded 
cometabolically, with the evidence that their 95% credible intervals were highly 
overlapped. The exception was the toluene rate constant k that the value of 10.89 day-1 
obtained from the full-scale Model 3 was significantly larger than that obtained from the 
toluene-only model (i.e., 8.92 day-1). The reason for this noticeable difference is addressed 
in the discussion section that follows. These results are also supported by the plots of the 
posterior distributions of the parameters from the simulations (Figure 3). 
 

 

 
Figure 3: Posterior distributions of model parameter comparisons 

 
As seen in Figure 3, the parameter values from the simulations were consistent with the 
biological facts that the toluene reaction was faster than that of the TCE. That is, the rate 
constant of toluene (8.92 day-1) was much higher than that of the TCE (1.6 day-1). Toluene 
had a higher affinity to the nonspecific oxygenase than TCE, reflecting at the half-
saturation parameter that the toluene Ks (1.0 – 1.1 mg/L) was lower than the TCE Km (1.6 
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mg/L). (Note that the lower the Ks or Km is, the higher affinity it is to the oxidation 
enzyme.) The TCE transformation capacity (𝑇𝐶) acquired from both the single-compound 
TCE model and the dual-compound toluene and TCE cometabolism model was in the 
similar magnitude of 0.004. 
 
In addition to the parameter values from the model simulation, estimates from the 
traditional method (Yu, 1998) (i.e., the initial rate method) are also presented in Table 2. 
The estimates from Bayesian method for the toluene-only or TCE-only models were very 
close to those obtained from the traditional method. This provides reassurance that the 
estimates from the Bayesian method are robust and can be used in biological parameter 
estimation.  
 
Further, the kinetic parameters obtained from this study were compared with values 
reported in the literature, as can be seen in Table 3. This table shows that each study 
produces its unique set of kinetic parameters for toluene and TCE biodegradation. The 
results from the current study were within the ranges of those values, but they were more 
in line with those reported by Mii et al. (2004), except for the toluene rate constant, where 
their value was much higher than that obtained from this study. 
 

Table 3: Comparison of Kinetic Parameters with Previous Studies for Pseudomonas 
putida F1 

Source 

kTOL (mg 
tol/mg 
cell/day) 

Ks,TOL  
(mg/L) 

kTCE (mg 
TCE/mg 
cell/day) 

Km,TCE  
(mg/L) 

Tc (mg 
TCE/mg 
cell) 

Alvarez-Cohen (1998) -- -- -- -- 0.0052 
Mars et al. (1998)b 15.6 0.14 -- -- -- 
Mii et al. (2004)b,c 38.48 0.48 1.10 2.23 -- 
Reardon et al. (2000) 20.64 13.8 -- -- -- 
Robertson and Button (1987) 0.48 0.06 -- -- -- 
Sun and Wood (1996) -- -- 1.51a 0.66 -- 
Current study 8.92 1.11 1.60 1.56 0.0041 

Note: For toluene or TCE rate constant, if the unit is hr-1 in the original literature, it has been converted to 
day-1 in this table.  

a This was measured in the unit of mg/(day mg protein). 
b Original units were converted for comparison purposes based on toluene's molecular weight at 92.14 g/mol.  
c Original units were converted for comparison purposes based on TCE's molecular weight at 131.4 g/mol.  
 
3.4 Comparison of Experimental Data with Model Predictions 
To verify that Bayesian estimates of biological parameters can be used to predict toluene 
and TCE biotransformation, these parameter values were plugged into Equations (6) to 
(12), then these differential equations were solved numerically under various initial 
concentrations for Models 1 to 3. The numerical solutions of total concentrations—
converted by multiplying the liquid concentrations by a factor of Ai from Equation (5)—
were then plotted against the experimental data.  
 
Figure 4 compares the model prediction kinetics using the toluene-only and TCE-only 
bioreaction model parameters (i.e., the first row in Table 2) with experimental data under 
various starting concentrations: (a) 20 mg/L, 30 mg/L, 40 mg/L, and 50 mg/L for toluene; 
and (b) 0.5 mg/L, 1.0 mg/L, 1.5 mg/L, and 2.0 mg/L for TCE. The results show that the 
toluene or TCE biodegradation kinetics using the parameter values estimated by the 
Bayesian method provided good prediction at different initial concentrations for toluene 
and low concentrations of TCE. When the initial TCE concentrations increased, the model 
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predictions tended to have more departures from the experimental data (see the 2 mg/L 
TCE degradation). This indicates that the TCE toxicity was possibly a function of the TCE 
concentration itself and that a revised mathematical model—Equations (8) and (9)—may 
be needed to account for this.  
 

 

 
Figure 4: Comparison of model prediction and experimental data by different initial 

concentrations 
 
Figure 5 shows the predicted kinetics from Equations (10) to (12) using the bioreaction 
parameters estimated from the Bayesian method (third row in Table 2) along with the 
experimental data for the toluene and TCE cometabolism. Similar to the single-compound 
models for toluene or TCE, the dynamic nonlinear differential equations were solved 
numerically using the fitted parameter values to obtain the predicted toluene and TCE 
concentrations at different time points. The results were compared with the experimental 
data graphically for three experiment sets starting at (a) 10 mg/L toluene and 1 mg/L TCE, 
(b) 10 mg/L toluene and 5mg/L TCE, and (c) 40 mg/L toluene and 1 mg/L TCE. 
 
The results in Figure 5 show that there was good agreement between the model predictions 
and the experimental data. For the toluene and TCE cometabolism, if the toluene 
concentration was low, the toluene inhibition to the TCE biodegradation was not so 
obvious (see the 10 mg/L toluene and 1 mg/L TCE case and the 10 mg/L toluene and 5 
mg/L TCE case). That is, the TCE was immediately consumed by the microorganism when 
compounds were introduced into the reaction vials. However, when the toluene 
concentration was high, the TCE concentrations stayed similar at the beginning of the 
reaction and did not become degraded quickly right away (i.e., there was a lag time). This 
is the effect of the competitive inhibition of toluene in that toluene competes with TCE to 
take the active site of nonspecific dioxygenase. Once toluene had been depleted, the TCE 
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concentration started to drop rapidly (see the 40 mg/L toluene and 1 mg/L TCE experiment 
at time 15 minutes). The TCE toxicity effect was also reflected in the kinetic curve that the 
rate of changes went down when more TCE had been degraded, as shown by the slope of 
the TCE degradation curve decreasing toward the end of the experiment. This toxicity 
effect was more substantial when TCE concentration was high (see the 10 mg/L toluene 
and 5 mg/L TCE case).  
 

 
Figure 5: Model prediction and experimental data: toluene and TCE cometabolism 

 
4. Discussion 

 
4.1 General Comments on Parameter Estimation 
Parameters in mathematical models play critical roles in modeling, prediction, reactor 
design, and process implementation. The source of these parameters can come from the 
literature or model fitting using experimental data. Sometimes, the literature reported 
different values (Kandris et al., 2015) for the same parameters; at other times, under 
different experimental conditions, the observed parameters may have different values even 
when the same microorganism was used (Table 3). This may be due to the fact that the 
toluene and TCE reaction can be affected by various factors, such as the level of toluene 
induction, the medium used, the level of oxygen supply, and (consequently) the kinetics. 
For example, Leahy, Byrne, and Olsen (1996) reported that the growth rate for 
Pseudomonas putida F1 was 10.08 day-1 when grown on lactate, which is different from 
the growth rate when toluene was used as the substrate (e.g., 15.6 day-1, as reported by 
Mars et al., 1998). In such cases, parameter estimation is required for the local system by 
solving the reverse problems. When systems are highly nonlinear and not much data are 
collected, methods other than traditional approaches (such as the initial rate approach and 
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the maximum likelihood estimation approach) are needed to perform parameter estimation, 
which rely less on assumptions. The approach described in the current study using the 
Bayesian estimation method has provided a promising way for conducting parameter 
estimation under such situations for biological and engineering applications.  
 
In this study, some negative values were observed from the simulation in the posterior 
distribution of the TCE concentration (Figure 2) that cannot happen in reality. However, 
the mean fitted values still provided good prediction. In addition, when fewer replicated 
data were in the simulation, there were more variations, which is reflected in the plot that 
the 95% credible interval band for the TCE model simulation was wider than that of toluene 
(Figure 2). The widened 95% credible interval band can be overcome by using more 
replicates.  
 
4.2 Interaction of Toluene and TCE on Biodegradation 
Although Monod-type equations—Equations (6) and (8)—or Monod-derived equations 
(e.g., the Michaelis-Menten equations)—Equations (10) and (11)—are highly nonlinear 
and can have nonunique solutions, both Bayesian estimation approaches using either of the 
single-compound models (Models 1 and 2) or a comprehensive model (Model 3) provided 
similar posterior estimates for the toluene and TCE kinetics (Table 2). That is, they had 
good overlapping coverage of 95% creditable intervals, except for the toluene rate constant 
in which the credible interval from the single substrate model was (8.51, 9.36) and that 
from the cometabolism model was (10.47, 11.31). Estimates of TCE degradation from the 
single substrate model were consistent with those from the cometabolism model, which 
makes sense because in the cometabolism model, the TCE would not start to react until the 
toluene had been depleted. That is, the TCE was basically degraded as a single substance 
without much impact from the toluene. For toluene, on the other hand, under the single 
substrate model, using the traditional method and the single substrate model, estimates for 
the toluene rate constant had good agreement, with values of 8.44 mg/mg day-1 and 8.92 
mg/mg day-1, respectively. However, for toluene degradation in the presence of TCE, its 
reaction rate may have been affected by the TCE, which was therefore reflected in the 
departure of the toluene rate constant under the cometabolism scheme.  
 
A study by Shingleton, Applegate, Nagel, Bienkowski, and Sayler (1998) showed that the 
toluene degradation rate by Pseudomonas putida TVA8 and Pseudomonas putida F1 was 
a function of the toluene and TCE concentrations. Shingleton et al. (1998) demonstrated 
that the TCE had the capability to induce the tod operon that encodes the toluene 
dioxygenase. In the presence of both TCE and toluene, dioxygenase activity is 
superimposed on the toluene inducement, which in turn increases the toluene degradation 
rate. Although the TCE had its toxicity effect on the cells, its toxicity resulted from the 
reaction products of the TCE oxidation (Li & Wachett, 1992), not the TCE itself. Its 
metabolites modified the proteins and reduced the nucleotides in the solution, thus causing 
a decrease in the growth rate or cell death (Heald & Jenkins, 1994). Under the 
cometabolism mechanism, the TCE was likely not to be readily degraded until the toluene 
was depleted due to competitive inhibition. Therefore, before most of the toluene had been 
consumed, the TCE had not really been oxidized yet, and thus its toxicity was small. In 
such cases, the increase in dioxygenase enzyme activity surpassed the TCE toxicity, which 
is why the toluene rate constant was higher in the presence of the TCE for toluene 
degradation than that without the TCE.  
 
In this current study, the impact of the TCE on the toluene degradation rate constant was 
numerically quantified. This substance interaction feature cannot be captured by the 

 
2463



toluene-only kinetic model. Except for the special case of the toluene rate constant, good 
agreement from the different models (i.e., the single-compound models and the dual-
compound models) implied that the Bayesian estimates were robust even under different 
modeling approaches.  
 
The advantage of using separate simplified models for parameter estimation, as in 
Equations (6) and (8), is that model fitting is then easier to converge. However, the 
disadvantages are that (a) more experimental data need to be collected, (b) sometimes the 
experiments are time-consuming, and (c) in a more complicated biological system, 
decomposed models cannot usually capture interactions among coexisting different 
substrates. In such cases, using the comprehensive model is the best option for performing 
parameter estimation, and the Bayesian approach would provide a relatively easy way for 
its implementation and a reliable estimation method for high-dimensional space parameter 
estimation.  
 
4.3 TCE Toxicity Effect 
It was noticed that the TCE transformation capacity (𝑇𝐶) that was obtained based on the 
data in this study applied only to the low TCE concentration range. That is, the ≥ 2 mg/L 
model prediction showed a relatively large deviation from the experimental data (see 
Figure 4 at 2 mg/L TCE and Figure 5 at 5 mg/L TCE). This may indicate that the TCE 
transformation capacity is a function of the TCE concentration and that the higher TCE 
concentration results in a more toxic effect on the biomass. This also suggests that the TCE 
biodegradation model may be revised to consider the impact of the TCE concentration on 
its own degradation, as shown in Equations (9) and (12). Li, Li, Wang, Fan, and Sun (2014) 
and Chen, Lin, Huang, and Lin (2008) also reported that the TCE degradation rate 
decreased in the presence of a high TCE initial concentration when using phenol as the 
growth substrate, possibly due to its self-inhibition.  
 

5. Conclusions 
 
A Bayesian method has been applied in this study for estimating toluene and TCE 
biodegradation kinetic parameters under batch experiment conditions by Pseudomonas 
putida F1. The parameters obtained from this method consistently agreed with those 
obtained from the traditional method where more data were needed for either toluene or 
TCE as a sole substrate biodegradation.  
 
Under cometabolism (i.e., toluene degradation in the presence of TCE), the Bayesian 
method was able to take into account the interactions between the TCE and the toluene 
dioxygenase, which is responsible for the TCE and toluene degradation. In such cases, the 
toluene rate constant tended to be larger than that without the TCE, which numerically 
supported the earlier findings that TCE can induce tod operon for Pseudomonas putida F1.  
 
Models using parameters obtained from the Bayesian method also demonstrated good 
prediction power on the time course of the toluene and TCE biodegradation. The model 
predictions had good agreement with the experimental data at various initial concentrations 
of interest.  
 
Due to the TCE toxicity effect on the cells, the kinetic parameters derived from this study 
applied only to TCE concentrations that were 2 mg/L or lower. The TCE toxicity may have 
been a function of the TCE concentration, so different mathematical models may be needed 
when the TCE concentration is high.  
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This study presented a statistical approach for estimating toluene and TCE cometabolism 
biological parameters under local experiment conditions. The parameters were not 
sensitive to toluene and TCE concentrations that were below 50 mg/L and 2 mg/L, 
respectively. This Bayesian method with a MCMC simulation provided a robust way of 
parameter estimation with few data for high-dimensional parameters involved in nonlinear 
kinetic models. The SAS procedure PROC MCMC that was used in this study was 
implemented fairly easily. 
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